IoT-Based Microclimate and Vibration Monitoring of a Painted Canvas on a Wooden Support in the Monastero of Santa Caterina (Palermo, Italy)
Abstract
1. Introduction
2. Method
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Swart, J.A.; van der Windt, H.J.; Keulartz, J. Valuation of nature in conservation and restoration. Restor. Ecol. 2001, 9, 230–238. [Google Scholar] [CrossRef]
- Natali, A. Some considerations on conservation and restoration in contemporary art. Conserv. Sci. Cult. Herit. 2008, 8, 187–197. [Google Scholar]
- Lamarque, P. Reflections on the Ethics and Aesthetics of Restoration and Conservation. Br. J. Aesthet. 2016, 56, 281–299. [Google Scholar] [CrossRef][Green Version]
- Yousefnejad, S.; Falamaki, M.M. Analyzing Truth and Time in the Conservation and Restoration of Cultural Heritage. Mon. Sci. J. Bagh E Nazar 2019, 15, 5–18. [Google Scholar]
- Noll-Minor, M. Conservation-restoration and conservation science-the challenge of transdisciplinarity. Ochr. Dziedzictwa Kult. 2019, 8, 223–238. [Google Scholar] [CrossRef]
- Baglioni, P.; Chelazzi, D. How science can contribute to the remedial conservation of cultural heritage. Chem. A Eur. J. 2021, 27, 10798–10806. [Google Scholar] [CrossRef]
- Blundo, D.S.; Ferrari, A.M.; del Hoyo, A.F.; Riccardi, M.P.; Muiña, F.E.G. Improving sustainable cultural heritage restoration work through life cycle assessment based model. J. Cult. Herit. 2018, 32, 221–231. [Google Scholar] [CrossRef]
- Barbabietola, N.; Tasso, F.; Grimaldi, M.; Alisi, C.; Chiavarini, S.; Marconi, P.; Sprocati, A.R. Microbe-based technology for a novel approach to conservation and restoration. EAI Spec. II Knowl. Diagn. Preserv. Cult. Herit. 2012, 69–76. Available online: https://www.researchgate.net/publication/272793185_Microbe-Based_Technology_for_a_Novel_Approach_to_Conservation_and_Restoration (accessed on 16 May 2022).
- Camuffo, D.; Bertolin, C. Unfavorable microclimate conditions in exhibition rooms: Early detection, risk identification, and preventive conservation measures. J. Paleontol. Tech. 2016, 15, 144–161. [Google Scholar]
- van Balen, K. Challenges that preventive conservation poses to the cultural heritage documentation field. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 713. [Google Scholar] [CrossRef]
- Hirsenberger, H.; Ranogajec, J.; Vucetic, S.; Lalic, B.; Gracanin, D. Collaborative projects in cultural heritage conservation–management challenges and risks. J. Cult. Herit. 2019, 37, 215–224. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. Wiley Interdiscip. Rev. Clim. Change 2021, 12, e710. [Google Scholar] [CrossRef]
- Anaf, W.; van Bos, M.; Debulpaep, M.; Wei, W.; Schillemans, L.; Carton, T. The impact of vibrations on fragile historical mixed-media object. ECR Stud. Conserv. Restor. 2018, 1, 1–9. [Google Scholar] [CrossRef]
- Bayoumi, M.; Henin, E. Micro-climate control for paper heritage as a way of preventive conservation in museums. Int. J. Adv. Stud. World Archaeol. 2021, 4, 245–259. [Google Scholar] [CrossRef]
- Macchia, A.; Cesaro, S.N.; Campanella, L.; Maras, A.; Rocchia, M.; Roscioli, G. Which light for cultural heritage: Comparison of light sources with respect to realgar photodegradation. J. Appl. Spectrosc. 2013, 80, 637–643. [Google Scholar] [CrossRef]
- Andretta, M.; Coppola, F.; Pavlovic, A. Application of the quality norms to the monitoring and the preventive conservation analysis of the cultural heritage. Int. J. Qual. Res. 2015, 9, 299. [Google Scholar]
- Michalski, S. Paintings: Their response to temperature, relative humidity, shock, and vibration. Art Transit Stud. Transp. Paint. 1991, 223–248. Available online: http://www.urbis-libnet.org/vufind/Record/ICCROM.ICCROM51060 (accessed on 16 May 2022).
- Richard, M.; Mecklenburg, M.F.; Tumosa, C.S. Technical considerations for the transport of panel paintings. In The Structural Conservation of Panel Paintings; Dardes, K., Rothe, A., Eds.; The Getty Conservation Institute: Los Angeles, CA, USA, 1998; pp. 525–556. [Google Scholar]
- Vici, P.D.; Mazzanti, P.; Uzielli, L. Mechanical response of wooden boards subjected to humidity step variations: Climatic chamber measurements and fitted mathematical models. J. Cult. Herit. 2006, 7, 37–48. [Google Scholar] [CrossRef]
- Dionisi-Vici, P.; de Vincenzi, M.; Uzielli, L. An analytical method for the determination of the climatic distance between different microclimates for the conservation of wooden cultural heritage objects. Stud. Conserv. 2011, 56, 41–57. [Google Scholar] [CrossRef]
- Allegretti, O.; de Vincenzi, M.; Uzielli, L.; Dionisi-Vici, P. Long-term hygromechanical monitoring of Wooden Objects of Art (WOA): A tool for preventive conservation. J. Cult. Herit. 2013, 14, e161–e164. [Google Scholar] [CrossRef]
- Bratasz, Ł. Allowable microclimatic variations for painted wood. Stud. Conserv. 2013, 58, 65–79. [Google Scholar] [CrossRef]
- Sterflinger, K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24, 47–55. [Google Scholar] [CrossRef]
- Baglioni, P.; Berti, D.; Bonini, M.; Carretti, E.; Dei, L.; Fratini, E.; Giorgi, R. Micelle, microemulsions, and gels for the conservation of cultural heritage. Adv. Colloid Interface Sci. 2014, 205, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Pinna, D.; Galeotti, M.; Perito, B.; Daly, G.; Salvadori, B. In situ long-term monitoring of recolonization by fungi and lichens after innovative and traditional conservative treatments of archaeological stones in Fiesole (Italy). Int. Biodeterior. Biodegrad. 2018, 132, 49–58. [Google Scholar] [CrossRef]
- Camuffo, D. Microclimate for Cultural Heritage: Measurement, Risk Assessment, Conservation, Restoration, and Maintenance of Indoor and Outdoor Monuments; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Lee, W.; Lee, D.H. Cultural heritage and the intelligent internet of things. J. Comput. Cult. Herit. 2019, 12, 1–14. [Google Scholar] [CrossRef]
- Maksimović, M.; Ćosović, M. Preservation of cultural heritage sites using IoT. In Proceedings of the 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 20–22 March 2019; pp. 1–4. [Google Scholar]
- González, E.M.A.; Municio, E.; Alemán, M.N.; Marquez-Barja, J.M. Cultural heritage and internet of things. In Proceedings of the 6th EAI International Conference on Smart Objects and Technologies for Social Good, Antwerp, Belgium, 14–16 September 2020; pp. 248–251. [Google Scholar]
- Lombardo, L.; Corbellini, S.; Parvis, M.; Elsayed, A.; Angelini, E.; Grassini, S. Wireless sensor network for distributed environmental monitoring. IEEE Trans. Instrum. Meas. 2017, 67, 1214–1222. [Google Scholar] [CrossRef]
- Agbota, H.; John, E.M.; Odlyha, M.; Strlič, M. Remote assessment of cultural heritage environments with wireless sensor array networks. Sensors 2014, 14, 8779–8793. [Google Scholar] [CrossRef]
- D’Alvia, L.; Palermo, E.; Rossi, S.; Cappa, P. Development of wireless sensor network for museum environmental monitoring. In Proceedings of the IMEKO International Conference on Metrology for Archeology and Cultural Heritage, Torino, Italy, 19–21 October 2016; pp. 19–21. [Google Scholar]
- Mesas-Carrascosa, F.J.; Santano, D.V.; de Larriva, J.E.M.; Cordero, R.O.; Fernández, R.E.H.; García-Ferrer, A. Monitoring heritage buildings with open source hardware sensors: A case study of the mosque-cathedral of Córdoba. Sensors 2016, 16, 1620. [Google Scholar] [CrossRef]
- Bacci, M.; Cucci, C.; Mencaglia, A.A.; Mignani, A.G. Innovative sensors for environmental monitoring in museums. Sensors 2008, 8, 1984–2005. [Google Scholar] [CrossRef]
- UNI 10586; Documentazione. Condizioni Climatiche per Ambienti di Conservazione di Documenti Grafici e Caratteristiche Degli Alloggiamenti. UNI: Milano, Italy, 1997.
- UNI 10829; Beni di Interesse Storico e Artistico—Condizioni Ambientali di Conservazione—Misurazione ed Analisi. UNI: Milano, Italy, 1999.
- UNI 10969; Beni culturali—Principi Generali per la Scelta e il Controllo del Microclima per la Conservazione dei Beni Culturali in Ambienti Interni. UNI: Milano, Italy, 2002.
- UNI 11120; Beni Culturali—Misurazione in Campo Della Temperatura Dell’aria e Della Superficie dei Manufatti. UNI: Milano, Italy, 2004.
- UNI 11131; Beni Culturali—Misurazione in Campo Dell’umidità Dell’aria. UNI: Milano, Italy, 2005.
- UNI 11161; Beni culturali—Manufatti lignei—Linee Guida per la Conservazione, il Restauro e la Manutenzione. UNI: Milano, Italy, 2005.
- UNI EN 15757; Conservazione dei Beni Culturali—Specifiche Concernenti la Temperatura e L’umidità Relativa per Limitare i Danni Meccanici Causati dal Clima ai Materiali Organici Igroscopici. UNI: Milano, Italy, 2010.
Materials and Objects of Organic Nature | ||||
---|---|---|---|---|
Temperature (°C) | Relative Humidity % | |||
Range | Deviation | Range | Deviation | |
Paper artifacts, papier-mâché, tissue paper, tapestries | 18–22 | 1.5 | 40–55 | 6 |
Fabrics, velarium, carpets, tapestries, silk, costumes, clothing, religious vestments, natural fibers, sisal, jute * | 19–24 | 1.5 | 30–50 | 6 |
Waxes, anatomical waxes | <18 | NR | NR | NR |
Herbaria and collections | 21–23 | 1.5 | 45–55 | 2 |
Entomological collections | 19–24 | 1.5 | 40–60 | 6 |
Animals, dried anatomical organs, mummies | 21–23 | 1.5 | 20–35 | - |
Furs, feathers, stuffed animals and birds | 4–10 | 1.5 | 30–50 | 5 |
Drawings, watercolors, pastels, and similar works on paper | 19–24 | 1.5 | 45–60 | 2 |
Ethnographic collections, masks, leather, and leather clothing | 19–24 | 1.5 | 45–60 | 6 |
Paintings on canvas, oil paintings on canvas, tempera, gouaches | 19–24 | 1.5 | 40–55 | 6 |
Archival documents on paper and parchments, papyri, manuscripts, printed volumes, philatelic collections | 13–18 | - | 50–60 | 5 |
Leather or parchment bindings | 19–24 | 1.5 | 45–55 | 6 |
Lacquers, decorated or lacquered furniture | 19–24 | 1.5 | 50–60 | 4 |
Polychrome wood sculptures, painted wood, paintings in wood, wooden icons, wooden musical instruments | 19–24 | 1.5 | 50–60 | 4 |
Unpainted wooden sculptures, wicker objects, wooden panels or bark | 19–24 | 1.5 | 45–60 | 4 |
Materials and Objects of Inorganic Nature | ||||
Porcelain, ceramics, grès, terracotta, non-excavation tiles and excavated tiles if demineralized | NR | - | NR | 10 |
Stones, rocks, minerals, stable (porous) meteorites | 19–24 | - | 40–60 | 6 |
Stome mosaics, stones **, rocks, minerals, meteorites (non porous), fossils and stone collections | 15–25 | - | 20–60 | 10 |
Metals, polished metals, metal alloys, silver, armour, weapons, bronze, coins, copper, tin, iron, steel, lead, pewter *** | NR | - | <50 | - |
Metals with active corrosion sites | NR | - | <40 | - |
Gold | NR | - | NR | - |
Chalk | 21–23 | 1.5 | 45–55 | 2 |
Unstable, iridescent, sensitive glass mosaics | 20–24 | 1.5 | 40–45 | - |
Mixed Objects | ||||
Wall paintings, frescoes, sinopites (detached) | 10–24 | - | 55–65 | - |
Dry wall paintings (detached) | 10–24 | - | 50–45 | - |
Ivories, horns, malacological, collection, eggs, nests, corals | 19–24 | 1.5 | 40–60 | 6 |
Synthetic fibres | 19–24 | - | 40–60 | - |
Film and photographs **** | 0–15 | - | 30–45 | - |
Device | Description | Main Performance | Size |
---|---|---|---|
STM32L4R9 | Microcontrollori ARM-MCU Ultra-low-power FPU Arm Cortex-M4 |
| 7 mm × 7 mm × 0.50 mm |
STTS751 | Low-voltage local digital temperature sensor |
| 2 mm × 2 mm × 0.5 mm |
HTS221 | Capacitive Digital Humidity Sensor |
| 2 mm × 2 mm × 0.9 mm |
LIS2DW12 | MEMS Digital Output Motion Sensor |
| 2.0 mm × 2.0 mm × 0.7 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trigona, C.; Costa, E.; Politi, G.; Gueli, A.M. IoT-Based Microclimate and Vibration Monitoring of a Painted Canvas on a Wooden Support in the Monastero of Santa Caterina (Palermo, Italy). Sensors 2022, 22, 5097. https://doi.org/10.3390/s22145097
Trigona C, Costa E, Politi G, Gueli AM. IoT-Based Microclimate and Vibration Monitoring of a Painted Canvas on a Wooden Support in the Monastero of Santa Caterina (Palermo, Italy). Sensors. 2022; 22(14):5097. https://doi.org/10.3390/s22145097
Chicago/Turabian StyleTrigona, Carlo, Eliana Costa, Giuseppe Politi, and Anna M. Gueli. 2022. "IoT-Based Microclimate and Vibration Monitoring of a Painted Canvas on a Wooden Support in the Monastero of Santa Caterina (Palermo, Italy)" Sensors 22, no. 14: 5097. https://doi.org/10.3390/s22145097
APA StyleTrigona, C., Costa, E., Politi, G., & Gueli, A. M. (2022). IoT-Based Microclimate and Vibration Monitoring of a Painted Canvas on a Wooden Support in the Monastero of Santa Caterina (Palermo, Italy). Sensors, 22(14), 5097. https://doi.org/10.3390/s22145097