Measuring High Dynamic Range Spectral Reflectance of Artworks through an Image Capture Matrix Hyperspectral Camera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Measurement Procedure
2.2.1. Calibration
2.2.2. HDR Algorithm
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiao, C.C.; Cronin, T.W.; Osorio, D. Color signals in natural scenes: Characteristics of reflectance spectra and effects of natural illuminants. JOSA A 2000, 17, 218–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairchild, M.D. Color Appearance Models; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Peddle, D.R.; White, H.P.; Soffer, R.J.; Miller, J.R.; Ledrew, E.F. Reflectance processing of remote sensing spectroradiometer data. Comput. Geosci. 2001, 27, 203–213. [Google Scholar] [CrossRef]
- Li, J.; Rao, X.; Ying, Y. Detection of common defects on oranges using hyperspectral reflectance imaging. Comput. Electron. Agric. 2011, 78, 38–48. [Google Scholar] [CrossRef]
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 010901. [Google Scholar] [CrossRef] [PubMed]
- Cadd, S.; Li, B.; Beveridge, P.; O’Hare, W.T.; Islam, M. Age determination of blood-stained fingerprints using visible wavelength reflectance hyperspectral imaging. J. Imaging 2018, 4, 141. [Google Scholar] [CrossRef] [Green Version]
- Cucci, C.; Delaney, J.K.; Picollo, M. Reflectance hyperspectral imaging for investigation of works of art: Old master paintings and illuminated manuscripts. Acc. Chem. Res. 2016, 49, 2070–2079. [Google Scholar] [CrossRef]
- Mayorga, S.; Vazquez, D.; Cabello, C.; Melgosa, M.; Muro, C.; Fernandez-Balbuena, A.A. Evaluation of the influence of varnish on the color of Picasso’s Woman in Blue. Spectrosc. Lett. 2020, 53, 140–151. [Google Scholar] [CrossRef]
- CIE Normative. Colorimetry 15:2004; Central Bureau; CIE: Vienna, Austria, 2004. [Google Scholar]
- Fernandez-Balbuena, A.A.; Moliní, D.V.; Gómez-Manzanares, Á.; Martínez-Antón, J.C.; Pinilla, S.M. Heritage-New Paradigm; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- Prieto, B.; Sanmartín, P.; Silva, B.; Martínez-Verdú, F. Measuring the color of granite rocks: A proposed procedure. Color Res. Appl. 2010, 35, 368–375. [Google Scholar] [CrossRef]
- De Luna, J.M.; Fernandez-Balbuena, A.A.; Vázquez, D.; Melgosa, M.; Durán, H.; García, J.; Muro, C. Accurate measurements of spectral reflectance in Picasso’s Guernica painting. Appl. Spectrosc. 2016, 70, 147–155. [Google Scholar] [CrossRef]
- Sanmartín, P.; Chorro, E.; Vázquez-Nion, D.; Martínez-Verdú, F.M.; Prieto, B. Conversion of a digital camera into a non-contact colorimeter for use in stone cultural heritage: The application case to Spanish granites. Measurement 2014, 56, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Tremeau, A.; Tominaga, S.; Plataniotis, K. Color in image and video processing: Most recent trends and future research directions. EURASIP J. Image Video Process. 2008, 2008, 581371. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.I. Hyperspectral Data Processing: Algorithm Design and Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Tao, L.; Mughees, A. Deep Learning for Hyperspectral Image Analysis and Classification; Springer: Berlin/Heidelberg, Germany, 2021; Volume 5. [Google Scholar]
- Nascimento, S.M.C.; Masuda, O. Best lighting for visual appreciation of artistic paintings–xperiments with real paintings and real illumination. JOSA A 2014, 31, A214–A219. [Google Scholar] [CrossRef]
- Ali, M.F.; Darwish, S.S.; El Sheikha, A.M. Multispectral analysis and investigation of overlapping layer cartonnage fragments from egyptian museum, Cairo. Sci. Cult. 2020, 6, 25–36. [Google Scholar] [CrossRef]
- Maria, B.; Ioannis, L.; Athena, A.; Dimitrios, M. Visualising underpainted layers via spectroscopic techniques: A brief review of case studies. Sci. Cult. 2019, 5, 55–68. [Google Scholar] [CrossRef]
- Kaimaris, D.; Patias, P. Systematic observation of the change of marks of known buried archaeological structures: Case study in the plain of Philippi, Eastern Macedonia, Greece. Mediterr. Archaeol. Archaeom. 2015, 15, 129–142. [Google Scholar] [CrossRef]
- Feitosa-Santana, C.; Gaddi, C.M.; Gomes, A.E.; Nascimento, S. Art through the colors of graffiti: From the perspective of the chromatic structure. Sensors 2020, 20, 2531. [Google Scholar] [CrossRef]
- Bolton, F.J.; Bernat, A.S.; Bar-Am, K.; Levitz, D.; Jacques, S. Portable, low-cost multispectral imaging system: Design, development, validation, and utilization. J. Biomed. Opt. 2018, 23, 121612. [Google Scholar] [CrossRef]
- Brauers, J.; Schulte, N.; Aach, T. Multispectral filter-wheel cameras: Geometric distortion model and compensation algorithms. IEEE Trans. Image Process. 2008, 17, 2368–2380. [Google Scholar] [CrossRef]
- Li, C.; Wang, W. LCTF Hyperspectral Imaging for Vegetable Quality Evaluation. In Hyperspectral Imaging Technology in Food and Agriculture; Springer: Berlin/Heidelberg, Germany, 2015; pp. 331–357. [Google Scholar]
- Baek, S.H.; Kim, I.; Gutierrez, D.; Kim, M.H. Compact single-shot hyperspectral imaging using a prism. ACM Trans. Graph. (TOG) 2017, 36, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Fauch, L.; Nippolainen, E.; Teplov, V.; Kamshilin, A.A. Recovery of reflection spectra in a multispectral imaging system with light emitting diodes. Opt. Express 2010, 18, 23394–23405. [Google Scholar] [CrossRef]
- Geelen, B.; Tack, N.; Lambrechts, A. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic. In Proceedings of the Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VII SPIE, San Francisco, CA, USA, 18 January–2 February 2014; Volume 8974, pp. 80–87. [Google Scholar] [CrossRef]
- Genser, N.; Seiler, J.; Kaup, A. Camera array for multi-spectral imaging. IEEE Trans. Image Process. 2020, 29, 9234–9249. [Google Scholar] [CrossRef]
- Brauers, J.; Schulte, N.; Bell, A.A.; Aach, T. Multispectral high dynamic range imaging. In Proceedings of the Color Imaging XIII: Processing, Hardcopy, and Applications. International Society for Optics and Photonics, San Francisco, CA, USA, 18 January–2 February 2014; Volume 6807, p. 680704. [Google Scholar] [CrossRef]
- Daniel, F.; Mounier, A.; Pérez-Arantegui, J.; Pardos, C.; Prieto-Taboada, N.; de Vallejuelo, S.F.O.; Castro, K. Hyperspectral imaging applied to the analysis of Goya paintings in the Museum of Zaragoza (Spain). Microchem. J. 2016, 126, 113–120. [Google Scholar] [CrossRef]
- Martnez, M.; Valero, E.M.; Nieves, J.L.; Blanc, R.; Manzano, E.; Vlchez, J.L. Multifocus HDR VIS/NIR hyperspectral imaging and its application to works of art. Opt. Express 2019, 27, 11323–11338. [Google Scholar] [CrossRef]
- Reinhard, E.; Heidrich, W.; Debevec, P.; Pattanaik, S.; Ward, G.; Myszkowski, K. High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting; Morgan Kaufmann: San Fransisco, CA, USA, 2010. [Google Scholar]
- Thorlabs. Available online: https://www.thorlabs.com (accessed on 17 June 2022).
- CIE Normative. Control of Damage to Museum Objects by Optical Radiation 157:2004; Technical Report; Commission Internationale de l’Eclairage: Vienna, Austria, 2004. [Google Scholar]
- Gómez Manzanares, Á.; Benítez, A.J.; Martínez Antón, J.C. Virtual Restoration and Visualization Changes through Light: A Review. Heritage 2020, 3, 1373–1384. [Google Scholar] [CrossRef]
Comparison with Spectral Reflectance Obtained with PR 655 | Comparison with Spectral Reflectance Provided by the Manufacturer | |||||||
---|---|---|---|---|---|---|---|---|
Red | 17.09 | 14.04 | 0.014 | 0.013 | 17.37 | 14.25 | 0.015 | 0.014 |
Green | 7.03 | 6.69 | 0.012 | 0.006 | 4.17 | 3.42 | 0.013 | 0.006 |
Blue | 10.68 | 6.24 | 0.018 | 0.013 | 4.27 | 1.79 | 0.011 | 0.012 |
Mean | 11.6 | 8.99 | 0.014 | 0.011 | 8.60 | 6.49 | 0.013 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez Manzanares, Á.; Vázquez Moliní, D.; Alvarez Fernandez-Balbuena, A.; Mayorga Pinilla, S.; Martínez Antón, J.C. Measuring High Dynamic Range Spectral Reflectance of Artworks through an Image Capture Matrix Hyperspectral Camera. Sensors 2022, 22, 4664. https://doi.org/10.3390/s22134664
Gómez Manzanares Á, Vázquez Moliní D, Alvarez Fernandez-Balbuena A, Mayorga Pinilla S, Martínez Antón JC. Measuring High Dynamic Range Spectral Reflectance of Artworks through an Image Capture Matrix Hyperspectral Camera. Sensors. 2022; 22(13):4664. https://doi.org/10.3390/s22134664
Chicago/Turabian StyleGómez Manzanares, Ángela, Daniel Vázquez Moliní, Antonio Alvarez Fernandez-Balbuena, Santiago Mayorga Pinilla, and Juan Carlos Martínez Antón. 2022. "Measuring High Dynamic Range Spectral Reflectance of Artworks through an Image Capture Matrix Hyperspectral Camera" Sensors 22, no. 13: 4664. https://doi.org/10.3390/s22134664
APA StyleGómez Manzanares, Á., Vázquez Moliní, D., Alvarez Fernandez-Balbuena, A., Mayorga Pinilla, S., & Martínez Antón, J. C. (2022). Measuring High Dynamic Range Spectral Reflectance of Artworks through an Image Capture Matrix Hyperspectral Camera. Sensors, 22(13), 4664. https://doi.org/10.3390/s22134664