Highly Sensitive Dual Parameter Sensor Based on a Hybrid Structure with Multimode Interferometer and Fiber Bragg Grating Fabricated by Femtosecond Laser
Abstract
:1. Introduction
2. Device Fabrication and Sensing Principle
3. Experiment Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhang, Z.; Wang, Y.; Zhou, M.; He, J.; Liao, C.; Wang, Y. Recent advance in hollow-core fiber high-temperature and high-pressure sensing technology. Chin. Opt. Lett. 2021, 19, 070601. [Google Scholar] [CrossRef]
- Sridevi, S.; Vasu, K.S.; Asokan, S.; Sood, A.K. Enhanced strain and temperature sensing by reduced graphene oxide coated etched fiber Bragg gratings. Opt. Lett. 2016, 41, 2604–2607. [Google Scholar]
- Yu, F.; Xue, P.; Zheng, J. Study of a large lateral core-offset in-line fiber modal interferometer for refractive index sensing. Opt. Fiber Technol. 2019, 47, 107–112. [Google Scholar] [CrossRef]
- Yu, F.; Xue, P.; Zheng, J. Enhancement of refractive index sensitivity by bending a core-offset in-line fiber Mach–Zehnder interferometer. IEEE Sens. J. 2019, 19, 3328–3334. [Google Scholar] [CrossRef]
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Zhan, X.; Liu, Y.; Tang, M.; Ma, L.; Wang, R.; Li, D.; Gan, L.; Yang, C.; Tong, W.; Fu, S.; et al. Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination. Opt. Express 2018, 26, 15332–15342. [Google Scholar] [CrossRef]
- Huang, B.; Xiong, S.; Chen, Z.; Zhu, S.; Zhang, H.; Huang, X.; Feng, Y.; Gao, S.; Chen, S.; Liu, W.; et al. In-fiber Mach-Zehnder interferometer exploiting a micro-cavity for strain and temperature simultaneous measurement. IEEE Sens. J. 2019, 19, 5632–5638. [Google Scholar] [CrossRef]
- Dong, X.; Du, H.; Sun, X.; Duan, J. Simultaneous strain and temperature sensor based on a fiber Mach-Zehnder interferometer coated with pt by iron sputtering technology. Materials 2018, 11, 1535. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.N.; Deng, J. Ultra-sensitive strain sensor based on femtosecond laser inscribed in-fiber reflection mirrors and vernier effect. J. Light. Technol. 2019, 37, 4935–4939. [Google Scholar]
- Paixão, T.; Araújo, F.; Antunes, P. Highly sensitive fiber optic temperature and strain sensor based on an intrinsic Fabry-Perot interferometer fabricated by a femtosecond laser. Opt. Lett. 2019, 44, 4833–4836. [Google Scholar] [CrossRef]
- He, C.; Zhou, C.; Zhou, Q.; Xie, S.; Xiao, M.; Tian, J.; Yao, Y. Simultaneous measurement of strain and temperature using Fabry-Pérot interferometry and antiresonant mechanism in a hollow-core fiber. Chin. Opt. Lett. 2021, 19, 041201. [Google Scholar] [CrossRef]
- Chen, G.; Liu, L.; Jia, H.; Yu, J.; Lei, X.; Wang, W. Simultaneous strain and temperature measurements with fiber Bragg grating written in novel Hi-Bi optical fiber. IEEE Photon. Technol. Lett. 2004, 16, 221–223. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, S.; Geng, T.; Sun, C.; Niu, H.; Li, X.; Wang, Z.; Li, X.; Ma, Y.; Yang, W.; et al. A miniature ultra long period fiber grating for simultaneous measurement of axial strain and temperature. Opt. Laser Technol. 2020, 126, 106121. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, W.; Wang, H.; Geng, P.; Zhang, S.; Gao, S.; Yang, C.; Li, J. Fiber in-line Mach-Zehnder interferometer based on near-elliptical core photonic crystal fiber for temperature and strain sensing. Opt. Lett. 2013, 38, 4019–4022. [Google Scholar] [CrossRef]
- Ju, J.; Jin, W. Photonic crystal fiber sensors for strain and temperature measurement. J. Sens. 2014, 2009, 476267. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.; Wen, X.; Li, C.; Sun, J.; Wang, J.; Jian, S. Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement. Appl. Opt. 2014, 53, 2691–2695. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, C.; Ren, D.; Lu, L.; Lv, W.; Feng, F.; Yu, B. Temperature-insensitive Mach-Zehnder interferometric strain sensor based on concatenating two waist-enlarged fiber tapers. Chin. Opt. Lett. 2012, 10, 070603. [Google Scholar]
- Yang, H.Z.; Qiao, X.G.; Wang, Y.P.; Ali, M.M.; Lai, M.H.; Lim, K.S.; Ahmad, H. In-fiber gratings for simultaneous monitoring temperature and strain in ultrahigh temperature. IEEE Photon. Technol. Lett. 2014, 27, 58–61. [Google Scholar] [CrossRef]
- Shu, X.; Yu, L.; Zhao, D.; Gwandu, B.; Floreani, F.; Zhang, L.; Bennion, I. Dependence of temperature and strain coefficients on fiber grating type and its application to simultaneous temperature and strain measurement. Opt. Lett. 2002, 27, 701–703. [Google Scholar] [CrossRef]
- Song, D.; Chai, Q.; Liu, Y.; Jiang, Y.; Zhang, J.; Sun, W.; Yuan, L.; Canning, J.; Peng, G.D. A simultaneous strain and temperature sensing module based on FBG-in-SMS. Meas. Sci. Technol. 2014, 25, 055205. [Google Scholar] [CrossRef]
- Kipriksiz, S.E.; Yücel, M. Tilted fiber Bragg grating design for a simultaneous measurement of temperature and strain. Opt. Quantum Electron. 2021, 53, 1–15. [Google Scholar] [CrossRef]
- Guo, G. Superstructure fiber Bragg gratings for simultaneous temperature and strain measurement. Optik 2019, 182, 331–340. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, W.; Shao, L.-Y.; Pan, W.; Yan, L. Strain and temperature discrimination by using temperature-independent FPI and FBG. Sens. Actuators A Phys. 2018, 272, 134–138. [Google Scholar] [CrossRef]
- Oliveira, R.; Osório, J.H.; Aristilde, S.; Bilro, L.; Nogueira, R.N.; Cordeiro, C. Simultaneous measurement of strain, temperature and refractive index based on multimode interference, fiber tapering and fiber Bragg gratings. Meas. Sci. Technol. 2016, 27, 075107. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, W.; Gao, S.; Bai, Z.; Wang, L.; Liang, H.; Yan, T. Simultaneous force and temperature measurement using S fiber taper in fiber Bragg grating. IEEE Photon. Technol. Lett. 2014, 26, 309–312. [Google Scholar] [CrossRef]
- Sun, H.; Yang, S.; Zhang, X.; Yuan, L.; Yang, Z.; Hu, M. Simultaneous measurement of temperature and strain or temperature and curvature based on an optical fiber Mach–Zehnder interferometer. Opt. Commun. 2015, 340, 39–43. [Google Scholar] [CrossRef]
- Feng, W.L.; Yang, X.Z.; Yu, J.; Yue, Z. Strain and temperature sensor based on fiber Bragg grating cascaded bi-tapered four-core fiber Mach-Zehnder interferometer. J. Phys. D Appl. Phys. 2020, 53, 465104. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, T.; Jiang, J.; Liu, K.; Wang, S.; Yin, J.; He, P.; Yan, J. Simultaneous measurement of temperature and strain using spheroidal-cavity-overlapped FBG. IEEE Photon. J 2015, 7, 1–6. [Google Scholar]
- Tian, Z.; Yam, S.H.; Loock, H.P. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Opt. Lett. 2008, 33, 1105–1107. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, Y.; Liao, C.; Yin, G.; Xu, X.; Yang, K.; Zhong, X.; Wang, Q.; Li, Z. Intensity-modulated strain sensor based on fiber in-line Mach-Zehnder interferometer. IEEE Photon. Technol. Lett. 2014, 26, 508–511. [Google Scholar] [CrossRef]
- Lu, C.; Su, J.; Dong, X.; Sun, T.; Grattan, K. Simultaneous measurement of strain and temperature with a few-mode fiber-based sensor. J. Light. Technol. 2018, 36, 2796–2802. [Google Scholar] [CrossRef]
- Tosi, D. Review and analysis of peak tracking techniques for fiber Bragg grating sensors. Sensors 2017, 17, 2368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, M.; Wang, X.; Zhao, Y.; Jin, B.; Dai, W. The analysis of FBG central wavelength variation with crack propagation based on a self-adaptive multi-peak detection algorithm. Sensors 2019, 19, 1056. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Liu, C.; Zhang, W.; Mao, D.; Yang, D.; Zhao, J. Multi-parameter sensing using a fiber Bragg grating inscribed in dual-mode fiber. IEEE Photon. Technol. Lett. 2017, 29, 1607–1610. [Google Scholar] [CrossRef]
- Oliveira, R.; Marques, T.; Bilro, L.; Nogueira, R.; Cordeiro, C. Multiparameter POF sensing based on multimode interference and fiber Bragg grating. J. Light. Technol. 2017, 35, 3–9. [Google Scholar] [CrossRef]
- Liu, N.; Li, Y.; Wang, Y.; Wang, H.; Liang, W.; Lu, P. Bending insensitive sensors for strain and temperature measurements with Bragg gratings in Bragg fibers. Opt. Express 2011, 19, 13880–13891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Structure Types | Temperature Sensitivity | Strain Sensitivity | Measurement Resolution | References |
---|---|---|---|---|
Cascade structure with MZI and FBG | 9 pm/°C (FBG); 52 pm/°C (MZI) | 0.48 pm/με (FBG); −0.45 pm/με (MZI) | / | [26] |
Cascade structure with FPI and FBG | 0.162 pm/°C (FPI) 7.82 pm/°C (FBG) | 2.1 pm/με (FPI) 1.01 pm/με (FBG) | / | [23] |
Dual FBGs | 11.4 pm/°C (FBG1) 15.2 pm/°C (FBG2) | 0.22 pm/με (FBG1) 0.24 pm/με (FBG2) | 28.3 με 4.1 °C | [18] |
FBGs written in DMF | 7.9 pm/°C (LP01); 9.3 pm/°C (LP11) | 1.21 pm/με (LP01); 1.24 pm/με (LP01) | ±0.8 °C ±6.3 με | [34] |
Reduced graphene oxide coated etched FBGs | 33 pm/°C | 5.5 pm/με | 1 με 0.3 °C | [2] |
Multimode POF-FBG | 102.2 pm/°C (MZI) −64.6 pm/°C (FBG) | −3.03 pm/με (MZI) 1.51 pm/με (FBG) | ±1.1 °C ±40.3 με | [35] |
FBG written in Bragg fiber | 9.68 pm/°C (dip A) 11.2 pm/°C (dip D) | 1.10 pm/με (dipA) 1.12 pm/με (dipD) | ±1.2 °C ±26 με | [36] |
Hybrid structure with MZI and FBG | 19.96 pm/°C (FBG); 42.84 pm/°C (MZI) | 0.65 pm/με (FBG); −1.15 pm/με (MZI) | ±0.35 °C ±12.36 με | our work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Zeng, L.; Chu, D.; Sun, X. Highly Sensitive Dual Parameter Sensor Based on a Hybrid Structure with Multimode Interferometer and Fiber Bragg Grating Fabricated by Femtosecond Laser. Sensors 2021, 21, 5938. https://doi.org/10.3390/s21175938
Dong X, Zeng L, Chu D, Sun X. Highly Sensitive Dual Parameter Sensor Based on a Hybrid Structure with Multimode Interferometer and Fiber Bragg Grating Fabricated by Femtosecond Laser. Sensors. 2021; 21(17):5938. https://doi.org/10.3390/s21175938
Chicago/Turabian StyleDong, Xinran, Li Zeng, Dongkai Chu, and Xiaoyan Sun. 2021. "Highly Sensitive Dual Parameter Sensor Based on a Hybrid Structure with Multimode Interferometer and Fiber Bragg Grating Fabricated by Femtosecond Laser" Sensors 21, no. 17: 5938. https://doi.org/10.3390/s21175938
APA StyleDong, X., Zeng, L., Chu, D., & Sun, X. (2021). Highly Sensitive Dual Parameter Sensor Based on a Hybrid Structure with Multimode Interferometer and Fiber Bragg Grating Fabricated by Femtosecond Laser. Sensors, 21(17), 5938. https://doi.org/10.3390/s21175938