Application of High-Speed Quantum Cascade Detectors for Mid-Infrared, Broadband, High-Resolution Spectroscopy
Abstract
:1. Introduction
2. Characterization of a Quantum Cascade Detector
3. Broadband Heterodyne Spectroscopy
3.1. Control and Measurement of Beat Signals
3.2. Observation of N2O Absorption Lines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hofstetter, D.; Beck, M.; Faist, J. Quantum-cascade-laser structures as photodetectors. Appl. Phys. Lett. 2002, 81, 2683. [Google Scholar] [CrossRef] [Green Version]
- Gendron, L.; Carras, M.; Huynh, A.; Ortiz, V.; Koeniguer, C.; Berger, V. Quantum cascade photodetector. Appl. Phys. Lett. 2004, 85, 2824. [Google Scholar] [CrossRef]
- Levine, B.F. Quantum-well infrared photodetectors. J. Appl. Phys. 1993, 74, R1. [Google Scholar] [CrossRef]
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum Cascade Laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef]
- Graf, M.; Hoyler, N.; Giovannini, M.; Faist, J.; Hofstetter, D. InP-based quantum cascade detectors in the mid-infrared. Appl. Phys. Lett. 2006, 88, 241118. [Google Scholar] [CrossRef] [Green Version]
- Reininger, P.; Schwarz, B.; Detz, H.; MacFarland, D.; Zederbauer, T.; Andrews, A.M.; Schrenk, W.; Baumgartner, O.; Kosina, H.; Strasser, G. Diagonal-transition quantum cascade detector. Appl. Phys. Lett. 2014, 105, 091108. [Google Scholar] [CrossRef] [Green Version]
- Dougakiuchi, T.; Fujita, K.; Hirohata, T.; Ito, A.; Hitaka, M.; Edamura, T. High photoresponse in room temperature quantum cascade detector based on coupled quantum well design. Appl. Phys. Lett. 2016, 109, 261107. [Google Scholar] [CrossRef]
- Giorgetta, F.R.; Baumann, E.; Hofstetter, D.; Manz, C.; Yang, Q.; Köhler, K.; Graf, M. InGaAs/AlAsSb quantum cascade detectors operating in the near infrared. Appl. Phys. Lett. 2007, 91, 111115. [Google Scholar] [CrossRef] [Green Version]
- Graf, M.; Scalari, G.; Hofstetter, D.; Faist, J.; Beere, H.; Linfield, E.; Ritchie, D.; Davies, G. Terahertz quantum well infrared photodetector. Appl. Phys. Lett. 2004, 84, 475. [Google Scholar] [CrossRef]
- Vardi, A.; Sakr, S.; Mangeney, J.; Kandaswamy, P.K.; Monroy, E.; Tchernycheva, M.; Schacham, S.E.; Julien, F.H.; Bahir, G. Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron. Appl. Phys. Lett. 2011, 99, 202111. [Google Scholar] [CrossRef]
- Dougakiuchi, T.; Ito, A.; Hitaka, M.; Fujita, K.; Yamanishi, M. Ultimate response time in mid-infrared high-speed low-noise quantum cascade detectors. Appl. Phys. Lett. 2021, 118, 041101. [Google Scholar] [CrossRef]
- Hillbrand, J.; Krüger, L.M.; Cin, S.D.; Knötig, H.; Heidrich, J.; Andrews, A.M.; Strasser, G.; Keller, U.; Schwarz, B. High-speed quantum cascade detector characterized with a mid-infrared femtosecond oscillator. Opt. Express 2021, 29, 5774–5781. [Google Scholar] [CrossRef]
- Tittel, F.K.; Richter, D.; Fried, A. Mid-Infrared Laser Applications in Spectroscopy. In Solid-State Mid-Infrared Laser Sources, 1st ed.; Sorokina, I.T., Vodopyanov, K.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 458–529. [Google Scholar]
- Du, Z.; Zhang, S.; Li, J.; Gao, N.; Tong, K. Mid-Infrared Tunable Laser-Based Broadband Fingerprint Absorption Spectroscopy for Trace Gas Sensing: A Review. Appl. Sci. 2019, 9, 338. [Google Scholar] [CrossRef] [Green Version]
- Waynant, R.W.; Ilev, I.K.; Gannot, I. Mid-infrared laser applications in medicine and biology. Phil. Trans. R. Soc. Lond. A 2001, 359, 635–644. [Google Scholar] [CrossRef]
- Sigrist, M.W. Mid-infrared laser-spectroscopic sensing of chemical species. J. Adv. Res. 2015, 6, 529–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ycas, G.; Giorgetta, F.R.; Cossel, K.C.; Waxman, E.M.; Baumann, E.; Newbury, N.R.; Coddington, I. Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths. Optica 2019, 6, 165–168. [Google Scholar] [CrossRef]
- Gong, Y.; Bu, L.; Yang, B.; Mustafa, F. High Repetition Rate Mid-Infrared Differential Absorption Lidar for Atmospheric Pollution Detection. Sensors 2020, 20, 2211. [Google Scholar] [CrossRef] [Green Version]
- Lenth, W. Optical heterodyne spectroscopy with frequency- and amplitude-modulated semiconductor lasers. Opt. Lett. 1983, 8, 575–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piotrowski, A.; Piotrowski, J. Uncooled infrared detectors in Poland, history and recent progress. In Proceedings of the 26th European Conference on Solid-State Transducers (Eurosensors), Krakow, Poland, 9–12 September 2012; pp. 1506–1512. [Google Scholar]
- Dougakiuchi, T.; Edamura, T. High-speed quantum cascade detector with frequency response of over 20 GHz. In Proceedings of the SPIE Future Sensing Technologies, Tokyo, Japan, 12 November 2019. [Google Scholar]
- Hofstetter, D.; Graf, M.; Aellen, T.; Faist, J.; Hvozdara, L.; Blaser, S. 23 GHz operation of a room temperature photovoltaic quantum cascade detector at 5.35 μm. Appl. Phys. Lett. 2006, 89, 061119. [Google Scholar] [CrossRef]
- Goldenstein, C.S.; Miller, V.A.; Spearrin, R.M.; Strand, C.L. SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases. J. Quant. Spectrosc. Radiat. Transf. 2017, 200, 249–257. [Google Scholar] [CrossRef] [Green Version]
- SpectraPlot. Available online: https://www.spectraplot.com/ (accessed on 31 May 2021).
- Choi, H.; Diehl, L.; Wu, Z.K.; Giovannini, M.; Faist, J.; Capasso, F.; Norris, T.B. Gain Recovery Dynamics and Photon-Driven Transport in Quantum Cascade Lasers. Phys. Rev. Lett. 2008, 100, 167401. [Google Scholar] [CrossRef] [PubMed]
- Talukder, M.A. Modeling of gain recovery of quantum cascade lasers. J. Appl. Phys. 2011, 109, 033104. [Google Scholar] [CrossRef]
- Zhai, S.Q.; Liu, J.Q.; Liu, F.Q.; Wang, Z.G. A normal incident quantum cascade detector enhanced by surface plasmons. Appl. Phys. Lett. 2012, 100, 181104. [Google Scholar] [CrossRef]
- Reininger, P.; Schwarz, B.; Harrer, A.; Zederbauer, T.; Detz, H.; Andrews, A.M.; Gansch, R.; Schrenk, W.; Strasser, G. Photonic crystal slab quantum cascade detector. Appl. Phys. Lett. 2013, 103, 241103. [Google Scholar] [CrossRef]
- Wang, F.J.; Zhuo, N.; Liu, S.M.; Ren, F.; Ning, Z.D.; Ye, X.L.; Liu, J.Q.; Zhai, S.Q.; Liu, F.Q.; Wang, Z.G. Temperature independent infrared responsivity of a quantum dot quantum cascade detector. Appl. Phys. Lett. 2016, 108, 251103. [Google Scholar] [CrossRef]
- Palaferri, D.; Todorov, Y.; Bigioli, A.; Mottaghizadeh, A.; Gacemi, D.; Calabrese, A.; Vasanelli, A.; Li, L.; Davies, A.G.; Linfield, E.H.; et al. Room-temperature nine-μm-wavelength photodetectors and GHz-frequency heterodyne receivers. Nature 2018, 556, 85–88. [Google Scholar] [CrossRef]
- Harrer, A.; Schwarz, B.; Schuler, S.; Reininger, P.; Wirthmüller, A.; Detz, H.; MacFarland, D.; Zederbauer, T.; Andrews, A.M.; Rothermund, M.; et al. 4.3 μm quantum cascade detector in pixel configuration. Opt. Express 2016, 24, 17041. [Google Scholar] [CrossRef]
- Kawai, A.; Hashimoto, K.; Dougakiuchi, T.; Badarla, V.R.; Imamura, T.; Edamura, T.; Ideguchi, T. Time-stretch infrared spectroscopy. Commun. Phys. 2020, 3, 152. [Google Scholar] [CrossRef]
- Martini, R.; Whittaker, E.A. Quantum cascade laser-based free space optical communications. J. Opt. Fiber. Commun. Rep. 2005, 2, 1–14. [Google Scholar] [CrossRef]
- Pang, X.; Ozolins, O.; Schatz, R.; Storck, J.; Udalcovs, A.; Navarro, J.R.; Kakkar, A.; Maisons, G.; Carras, M.; Jacobsen, G.; et al. Gigabit free-space multi-level signal transmission with a mid-infrared quantum cascade laser operating at room temperature. Opt. Lett. 2017, 42, 3646–3649. [Google Scholar] [CrossRef]
- Weidmann, D.; Reburn, W.J.; Smith, K.M. Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies. Rev. Sci. Instrum. 2007, 78, 073107. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Soskind, M.G.; Wang, W.; Wysocki, G. High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers. Appl. Phys. Lett. 2014, 104, 031114. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, J.C.; Zhuo, N.; Wang, L.J.; Liu, F.Q.; Yao, D.Y.; Liu, J.Q.; Wang, Z.G. Low-threshold, high SMSR tunable external cavity quantum cascade laser around 4.7 μm. Opt. Quant. Electron. 2013, 45, 1147–1155. [Google Scholar] [CrossRef]
- Dougakiuchi, T.; Fujita, K.; Akikusa, N.; Sugiyama, A.; Edamura, T.; Yamanishi, M. Broadband Tuning of External Cavity Dual-Upper-State Quantum-Cascade Lasers in Continuous Wave Operation. Appl. Phys. Express 2011, 4, 102101. [Google Scholar] [CrossRef]
- Mohan, A.; Wittmann, A.; Hugi, A.; Blaser, S.; Giovannini, M.; Faist, J. Room-temperature continuous-wave operation of an external-cavity quantum cascade laser. Opt. Lett. 2007, 32, 2792–2794. [Google Scholar] [CrossRef] [PubMed]
- Dougakiuchi, T.; Fujita, K.; Sugiyama, A.; Ito, A.; Akikusa, N.; Edamura, T. Broadband tuning of continuous wave quantum cascade lasers in long wavelength (>10 μm) range. Opt. Express 2014, 22, 19930–19935. [Google Scholar] [CrossRef] [PubMed]
- Weidmann, D.; Wysocki, G. High-resolution broadband (>100 cm−1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser. Opt. Express 2009, 17, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Schliesser, A.; Picqué, N.; Hänsch, T.W. Mid-infrared frequency combs. Nat. Photonics 2012, 6, 440–449. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dougakiuchi, T.; Akikusa, N. Application of High-Speed Quantum Cascade Detectors for Mid-Infrared, Broadband, High-Resolution Spectroscopy. Sensors 2021, 21, 5706. https://doi.org/10.3390/s21175706
Dougakiuchi T, Akikusa N. Application of High-Speed Quantum Cascade Detectors for Mid-Infrared, Broadband, High-Resolution Spectroscopy. Sensors. 2021; 21(17):5706. https://doi.org/10.3390/s21175706
Chicago/Turabian StyleDougakiuchi, Tatsuo, and Naota Akikusa. 2021. "Application of High-Speed Quantum Cascade Detectors for Mid-Infrared, Broadband, High-Resolution Spectroscopy" Sensors 21, no. 17: 5706. https://doi.org/10.3390/s21175706
APA StyleDougakiuchi, T., & Akikusa, N. (2021). Application of High-Speed Quantum Cascade Detectors for Mid-Infrared, Broadband, High-Resolution Spectroscopy. Sensors, 21(17), 5706. https://doi.org/10.3390/s21175706