Training Load in Different Age Category Soccer Players and Relationship to Different Pitch Size Small-Sided Games
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Procedures
2.4. Training Load
2.5. Small-Sided Game Conditions
2.6. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aurélio, J.; Dias, E.; Soares, T.; Espada, M.; Jorge, G.; Pessôa Filho, D.; Pereira, A.; Figueiredo, T. Relationship between body composition, anthropometry and physical fitness in under-12 soccer players of different positions. Int. J. Sports Sci. 2016, 6, 25–30. [Google Scholar] [CrossRef]
- Espada, M.; Fernandes, C.; Martins, C.; Leitão, H.; Figueiredo, T.; Santos, F. Goal characterization after ball recovery in players of both genders of first league soccer teams in Portugal. Hum. Mov. 2018, 19, 73–81. [Google Scholar] [CrossRef]
- Espada, M.; Figueiredo, T.; Ferreira, C.; Santos, F. Body composition and physical Fitness Analysis in Different Field Position U-15 Soccer Players. J. Phys. Educ. Sport 2020, 20, 1917–1924. [Google Scholar] [CrossRef]
- Aguiar, M.; Botelho, G.; Lago, C.; Maças, V. Sampaio, J. A review on the effects of soccer small-sided games. J. Hum. Kinet. 2012, 33, 103–113. [Google Scholar] [CrossRef]
- Hammami, A.; Gabbett, T.J.; Slimani, M.; Bouhlel, E. Does small-sided games training improve physical fitness and team-sport-specific skills? A systematic review and meta-analysis. J. Sports Med. Phys. Fitness 2018, 58, 1446–1455. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, S.J.; Pérez-Goye, E.; García-Rubio, J.; Courel-Ibáñez, J. Effects of task constraints on training workload in elite women’s soccer. Int. J. Sports Sci. Coach. 2019, 15, 99–107. [Google Scholar] [CrossRef]
- Waldron, M.; Worsfold, P.; Twist, C.; Lamb, K. Concurrent validity and test-retest reliability of a global positioning system (GPS) and timing gate to assess sprint performance variables. J. Sports Sci. 2011, 29, 1613–1619. [Google Scholar] [CrossRef] [PubMed]
- Calderón, G.P.; Paredes-Hernández, V.; Sánchez-Sánchez, J.; García-Unanue, J.; Gallardo, L. Effect of the fatigue on the physical performance in different small-sided games in elite football players. J. Strength Cond. Res. 2020, 34, 2338–2346. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Sanchez, J.; Sanchez, M.; Hernandez, D.; Ramirez-Campillo, R.; Martínez, C.; Nakamura, F.Y. Fatigue in u12 soccer-7 players during repeated 1-day tournament games-A pilot study. J. Strength Cond. Res. 2019, 33, 3092–3097. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.M.; Nikolaidis, P.T.; Van Der Linden, C.M.I.N.; Silva, B. Effects of small-sided soccer games on internal and external load and lower limb power: A pilot study in collegiate players. Hum. Mov. 2017, 18, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Clemente, F.M.; Chen, Y.S.; Bezerra, J.P.; Guiomar, J.; Lima, R. Between-format differences and variability of technical actions during small-sided soccer games played by young players. Hum. Mov. 2018, 19, 114–120. [Google Scholar] [CrossRef]
- Chow, J.Y.; Davids, K.; Button, C.; Shuttleworth, R.; Renshaw, I.; Araújo, D. The role of nonlinear pedagogy in physical education. Rev. Educ. Res. 2016, 77, 251–278. [Google Scholar] [CrossRef] [Green Version]
- Sangnier, S.; Cotte, T.; Brachet, O.; Coquart, J.; Tourny, C. Planning training workload in football using small-sided games’ density. J. Strength Cond. Res. 2019, 33, 2801–2811. [Google Scholar] [CrossRef]
- Carling, C.; Dupont, G. Are declines in physical performance associated with a reduction in skill-related performance during professional soccer match-play? J. Sports Sci. 2011, 29, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Casamichana, D.; Castellano, J.; Castagna, C. Comparing the physical demands of friendly matches and small-sided games in semi-professional soccer players. J. Strength Cond. Res. 2012, 26, 837–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchheit, M.; Al Haddad, H.; Simpson, B.M.; Palazzi, D.; Bourdon, P.C.; Di Salvo, V.; Mendez-Villanueva, A. Monitoring accelerations with GPS in football: Time to slow down? Int. J. Sports Physiol. Perform. 2014, 9, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.J.; Ferreira, C.M.; Figueiredo, T.P.; Espada, M.C. Influence of different 1v1 small-sided game conditions in internal and external load of U-15 and U-12 soccer players. TRENDS Sport Sci. 2021, 29, 45–53. [Google Scholar] [CrossRef]
- Giménez, J.V.; Del-Coso, J.; Leicht, A.S.; Gomez, M.A. Comparison of the movement patterns between small-and large-side games training and competition in professional soccer players. J. Sports Med. Phys. Fitness 2018, 58, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Springham, M.; Williams, S.; Waldron, M.; Strudwick, A.J.; Mclellan, C.; Newton, R.U. Prior workload has moderate effects on high-intensity match performance in elite-level professional football players when controlling for situational and contextual variables. J. Sports Sci. 2020, 38, 2279–2290. [Google Scholar] [CrossRef]
- Gaudino, P.; Iaia, F.M.; Alberti, G.; Strudwick, A.J.; Atkinson, G.; Gregson, W. Monitoring training in elite soccer players: Systematic bias between running speed and metabolic power data. Int. J. Sports Med. 2013, 34, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Gaudino, P.; Iaia, F.M.; Alberti, G.; Hawkins, R.D.; Strudwick, A.J.; Gregson, W. Systematic bias between running speed and metabolic power data in elite soccer players: Influence of drill type. Int. J. Sports Med. 2014, 35, 489–493. [Google Scholar] [CrossRef]
- Osgnach, C.; Poser, S.; Bernardini, R.; Rinaldo, R.; di Prampero, P.E. Energy cost and metabolic power in elite soccer: A new match analysis approach. Med. Sci. Sports Exerc. 2010, 42, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Goto, H.; King, J.A. High-intensity demands of 6-a-side small-sided games and 11-a-side matches in youth soccer players. Pediatr. Exerc. Sci. 2019, 31, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M.; Manouvrier, C.; Cassirame, J.; Morin, J.B. Monitoring locomotor load in soccer: Is metabolic power, powerful? Int. J. Sports Med. 2015, 36, 1149–1155. [Google Scholar] [CrossRef] [Green Version]
- Harriss, D.J.; MacSween, A.; Atkinson, G. Ethical standards in sport and exercise science research: 2020 Update. Int. J. Sports Med. 2019, 40, 813–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánches-Díaz, S.; Yanci, J.; Raya-González, J.; Scanlan, A.T.; Castillo, D.A. Comparison in physical fitness attributes, physical activity behaviors, nutritional habits, and nutritional knowledge between elite male and female youth basketball players. Front. Psychol. 2021, 12, 685203. [Google Scholar] [CrossRef]
- Bastida-Castillo, A.; Gomez-Carmona, C.D.; De La Cruz Sanchez, E.; Pino-Ortega, J. Comparing accuracy between global positioning systems and ultra-wideband-based position tracking systems used for tactical analyses in soccer. Eur. J. Sport Sci. 2019, 19, 1157–1165. [Google Scholar] [CrossRef]
- Gómez-Carmona, C.D.; Feu, S.; Pino-Ortega, J.; Ibáñez, S.J. Assessment of the multi-location external workload profile in the most common movements in basketball. Sensors 2021, 21, 3441. [Google Scholar] [CrossRef] [PubMed]
- Oliva-Lozano, J.M.; Martín-Fuentes, I.; Muyor, J.M. Validity and reliability of an inertial device for measuring dynamic weight-bearing ankle dorsiflexion. Sensors 2020, 20, 399. [Google Scholar] [CrossRef] [Green Version]
- García-Rubio, J.; Pino, J.; Olivares, P.R.; Ibáñez, S.J. Validity and reliability of the WIMUTM inertial device for the assessment of joint angulations. Int. J. Environ. Res Public Health 2019, 17, 193. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; García-Rubio, J.; Ibáñez, S.J.; Pino-Ortega, J. Static and Dynamic reliability of WIMU PROTM accelerometers according to anatomical placement. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2019, 233, 238–248. [Google Scholar] [CrossRef]
- Hernández-Belmonte, A.; Bastida-Castillo, A.; Gómez-Carmona, C.D.; Pino-Ortega, J. Validity and reliability of an inertial device (WIMU PROTM) to quantify physical activity level through steps measurement. J. Sports Med. Phys. Fitness 2019, 59, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the black box: Applications and considerations for using GPS devices in sport. Int. J. Sport Physiol. 2017, 12, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Liu, Y.; Fan, W. Design and calibration for a smart inertial measurement unit for autonomous helicopters using MEMS sensors. In Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China, 25–28 June 2006; pp. 956–961. [Google Scholar] [CrossRef]
- Bastida-Castillo, A.; Gómez-Carmona, C.D.; Reche, P.; Granero-Gil, P.; Pino-Ortega, J. Valoración de la estabilidad del tronco mediante un dispositivo inercial. Retos 2018, 33, 199–203. [Google Scholar] [CrossRef]
- Gómez-Carmona, C.D.; Gamonales, J.M.; Pino-Ortega, J.; Ibáñez, S.J. Comparative analysis of load profile between small-sided games and official matches in youth soccer players. Sports 2018, 6, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, S. The Heart Rate Monitor Book; Polar CIC: Sacramento, CA, USA, 1992. [Google Scholar]
- Dos Santos, F.J.L.; Louro, H.G.; Espada, M.; Figueiredo, T.; Lopes, H.; Rodrigues, J. Relation of coaches’ expectations with instruction and behavior of athletes. Cuad. Psicol. Deporte 2019, 19, 62–78. [Google Scholar] [CrossRef] [Green Version]
- Levine, T.R.; Hullett, C.R. Eta squared, partial eta squared, and misreporting of effect size in communication research. Hum. Commun. Res. 2002, 28, 612–625. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Sarmento, H.; Clemente, F.M.; Harper, L.D.; Costa, I.T.D.; Owen, A.; Figueiredo, A.J. Small sided games in soccer—A systematic review. Int. J. Perform. Anal. Sport 2018, 18, 693–749. [Google Scholar] [CrossRef]
- Clemente, F.M.; Sarmento, H.; Rabbani, A.; Van der Linden, C.M.I.; Kargarfard, M.; Costa, I.T. Variations of external load variables between medium- and large-sided soccer games in professional players. Res. Sports Med. 2019, 27, 50–59. [Google Scholar] [CrossRef]
- Randers, M.B.; Orntoft, C.; Hagman, M.; Nielsen, J.J.; Krustrup, P. Movement pattern and physiological response in recreational small-sided football—Effect of number of players with a fixed pitch size. J. Sports Sci. 2018, 36, 1549–1556. [Google Scholar] [CrossRef]
- Martín-García, A.; Castellano, J.; Méndez Villanueva, A.; Gómez-Díaz, A.; Cos, F.; Casamichana, D. Physical demands of ball possession games in relation to the most demanding passages of a competitive match. J. Sports Sci. Med. 2020, 19, 1–9. [Google Scholar] [PubMed]
- Jones, S.; Drust, B. Physiological and technical demands of 4 v 4 and 8 v 8 games in elite youth soccer players. Kinesiology 2007, 39, 150–156. [Google Scholar]
SSG1 | SSG2 | SSG3 | Manova (SSG) | ||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Age Category | M ± SD | M ± SD | M ± SD | F | Post-Hoc | |||
Distance (m) | U-12 | 277.55 ± 41.85 * | 299.35 ± 25.52 | 325.51 ± 14.49 * | 5.294 | 0.001 | 0.335 | 0.778 | 1 < 3 |
U-15 | 356.91 ± 30.41 * | 383.48 ± 23.37 | 394.00 ± 24.97 * | 4.226 | 0.029 | 0.287 | 0.676 | 1 < 3 | |
U-23 | 359.85 ± 18.87 * | 374.78 ± 26.45 | 405.97 ± 37.30 * | 4.752 | 0.022 | 0.346 | 9.505 | 1 < 3 | |
Speed (0–6 km·h−1) (m) | U-12 | 117.00 ± 10.14 | 106.55 ± 16.60 | 117.87 ± 39.65 | 0.488 | 0.624 | 0.044 | 0.119 | - |
U-15 | 99.14 ± 13.37 *# | 81.61 ± 7.02 * | 80.53 ± 12.54 # | 6.793 | 0.005 | 0.393 | 0.875 | 1 > 2; 1 > 3 | |
U-23 | 95.20 ± 15.17 | 91.99 ± 11.19 | 83.98 ± 17.15 | 1.079 | 0.361 | 0.107 | 0.209 | ||
Speed (6–12 km·h−1) (m) | U-12 | 156.90 ± 21.80 | 160.26 ± 32.95 | 160.28 ± 21.39 | 0.045 | 0.956 | 0.004 | 0.056 | - |
U-15 | 187.75 ± 17.68 *# | 227.70 ± 11.85 * | 215.83 ± 25.82 # | 9.081 | 0.001 | 0.464 | 0.953 | 1 < 2; 1 < 3 | |
U-23 | 196.91 ± 29.23 | 198.06 ± 21.74 | 200.84 ± 33.70 | 0.035 | 0.966 | 0.004 | 0.054 | ||
Speed (12–18 km·h−1) (m) | U-12 | 16.14 ± 8.94 *# | 32.51 ± 11.36 *† | 56.43 ± 12.03 # | 27.847 | 0.000 | 0.726 | 1.000 | 1 < 2; 1 < 3; 2 < 3 |
U-15 | 65.46 ± 25.90 | 72.03 ± 24.55 | 90.25 ± 20.86 | 2.315 | 0.123 | 0.181 | 0.417 | - | |
U-23 | 65.34 ± 15.57 * | 82.40 ± 28.24 | 99.72 ± 26.20 * | 3.593 | 0.049 | 0.285 | 0.589 | 1 < 3 | |
Speed (18–21 km·h−1) (m) | U-12 | 0 ± 0 * | 0 ± 0 # | 2.28 ± 2.55 *# | 6.408 | 0.007 | 0.379 | 0.855 | 1 < 3; 2 < 3 |
U-15 | 1.78 ± 5.04 | 1.95 ± 2.61 | 6.70 ± 6.22 | 2.632 | 0.095 | 0.200 | 0.466 | - | |
U-23 | 2.37 ± 2.53 | 2.30 ± 3.56 * | 12.73 ± 11.95 * | 13.105 | 0.002 | 0.421 | 0.928 | 2 < 3 | |
Speed (21–24 km·h−1) (m) | U-12 | 0 ± 0 | 0 ± 0 | 0 ± 0 | - | - | - | - | - |
U-15 | 0 ± 0 | 0 ± 0 | 0.89 ± 1.80 | 1.965 | 0.165 | 0.158 | 0.360 | - | |
U-23 | 0 ± 0 * | 0 ± 0 # | 7.15 ± 8.85 *# | 4.569 | 0.047 | 0.202 | 0.525 | 1 < 3; 2 < 3 | |
Speed (24–50 km·h−1) (m) | U-12 | 0 ± 0 | 0 ± 0 | 0 ± 0 | - | - | - | - | - |
U-15 | 0 ± 0 | 0 ± 0 | 0 ± 0 | - | - | - | - | - | |
U-23 | 0 ± 0 | 0 ± 0 | 1.50 ± 1.94 | 4.208 | 0.055 | 0.189 | 0.493 | - | |
Metabolic Power (W/kg) | U-12 | 844.01 ± 46.34 * | 815.18 ± 68.32 | 930.85 ± 51.79 * | 4.956 | 0.017 | 0.321 | 0.719 | 1 < 3 |
U-15 | 917.80 ± 336.04 | 1112.87 ± 75.65 | 1151.38 ± 74.15 | 3.032 | 0.070 | 0.224 | 0.525 | - | |
U-23 | 1097.89 ± 77.50 | 1132.35 ± 96.35 | 1188.72 ± 137.84 | 1.288 | 0.300 | 0.125 | 0.243 | - | |
High Metabolic Load Distance (>25.5 W/kg) (m) | U-12 | 26.11 ± 6.20 *# | 38.65 ± 7.86 *† | 52.67 ± 15.10 #† | 12.902 | 0.000 | 0.551 | 0.992 | 1 < 2; 1 < 3; 2 < 3 |
U-15 | 62.85 ± 15.74 | 64.13 ± 14.95 | 76.47 ± 15.15 | 1.937 | 0.169 | 0.156 | 0.356 | - | |
U-23 | 73.57 ± 14.55 | 78.09 ± 24.09 | 94.92 ± 25.20 | 1.862 | 0.184 | 0.171 | 0.336 | - | |
Edwards’ TRIMP (a.u.) | U-12 | 10.90 ± 1.69 | 11.20 ± 1.69 | 12.11 ± 1.49 | 1.177 | 0.328 | 0.101 | 0.230 | - |
U-15 | 11.97 ± 1.66 | 12.45 ± 1.56 | 12.33 ± 1.45 | 0.204 | 0.817 | 0.019 | 0.078 | - | |
U-23 | 12.38 ± 1.52 | 13.96 ± 0.56 | 13.42 ± 1.11 | 3.470 | 0.053 | 0.278 | 0.574 | - |
SSGs | Variables | F | Post-Hoc | |||
---|---|---|---|---|---|---|
1 | Distance (m) | 16.303 | 0.000 | 0.620 | 0.998 | U12 < U15; U12 < U23 |
Speed (0–6 km·h−1) (m) | 6.205 | 0.008 | 0.383 | 0.840 | U12 > U15; U12 > U23 | |
Speed (6–12 km·h−1) (m) | 6.340 | 0.007 | 0.388 | 0.848 | U12 < U15; U12 < U23 | |
Speed (12–18 km·h−1) (m) | 18.861 | 0.000 | 0.654 | 1.000 | U12 < U15; U12 < U23 | |
High Metabolic Load Distance (>25.5 W/kg) | 29.066 | 0.000 | 0.744 | 1.000 | U12 < U15; U12 < U23 | |
2 | Distance (m) | 26.813 | 0.000 | 0.728 | 1.000 | U12 < U15; U12 < U23 |
Speed (0–6 km·h−1) (m) | 8.295 | 0.002 | 0.453 | 0.931 | U-12 > U-15 | |
Speed (6–12 km·h−1) (m) | 16.075 | 0.000 | 0.616 | 0.998 | U12 < U15; U12 < U23 | |
Speed (12–18 km·h−1) (m) | 10.764 | 0.001 | 0.518 | 0.977 | U12 < U15; U12 < U23 | |
Metabolic Power (>25.5 W/kg) | 25.930 | 0.000 | 0.718 | 1.000 | U12 < U15; U12 < U23 | |
High Metabolic Load Distance (>25.5 W/kg) | 11.066 | 0.001 | 0.525 | 0.980 | U12 < U15; U12 < U23 | |
Edwards’ TRIMP (a.u.) | 7.223 | 0.004 | 0.419 | 0.893 | U-12 < U15 | |
3 | Distance (m) | 20.608 | 0.000 | 0.673 | 1.000 | U12 < U15; U12 < U23 |
Speed (0–6 km·h−1) (m) | 4.832 | 0.019 | 0.326 | 0.734 | U12 > U15 | |
Speed (6–12 km·h−1) (m) | 8.948 | 0.002 | 0.472 | 0.948 | U12 < U15; U12 < U23 | |
Speed (12–18 km·h−1) (m) | 9.733 | 0.001 | 0.493 | 0.963 | U12 < U15; U12 < U23 | |
Speed (21–24 km·h−1) (m) | 4.504 | 0.024 | 0.311 | 0.702 | U12 < U23 | |
Speed (24–50 km·h−1) (m) | 4.879 | 0.019 | 0.328 | 0.738 | U12 < U23 | |
Metabolic Power (>25.5 W/kg) | 17.552 | 0.000 | 0.637 | 0.999 | U12 < U15; U12 < U23 | |
High Metabolic Load Distance (>25.5 W/kg) | 9.623 | 0.001 | 0.490 | 0.962 | U12 < U15; U12 < U23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, F.J.; Figueiredo, T.P.; Filho, D.M.P.; Verardi, C.E.L.; Macedo, A.G.; Ferreira, C.C.; Espada, M.C. Training Load in Different Age Category Soccer Players and Relationship to Different Pitch Size Small-Sided Games. Sensors 2021, 21, 5220. https://doi.org/10.3390/s21155220
Santos FJ, Figueiredo TP, Filho DMP, Verardi CEL, Macedo AG, Ferreira CC, Espada MC. Training Load in Different Age Category Soccer Players and Relationship to Different Pitch Size Small-Sided Games. Sensors. 2021; 21(15):5220. https://doi.org/10.3390/s21155220
Chicago/Turabian StyleSantos, Fernando J., Teresa P. Figueiredo, Dalton M. Pessôa Filho, Carlos E. L. Verardi, Anderson G. Macedo, Cátia C. Ferreira, and Mário C. Espada. 2021. "Training Load in Different Age Category Soccer Players and Relationship to Different Pitch Size Small-Sided Games" Sensors 21, no. 15: 5220. https://doi.org/10.3390/s21155220
APA StyleSantos, F. J., Figueiredo, T. P., Filho, D. M. P., Verardi, C. E. L., Macedo, A. G., Ferreira, C. C., & Espada, M. C. (2021). Training Load in Different Age Category Soccer Players and Relationship to Different Pitch Size Small-Sided Games. Sensors, 21(15), 5220. https://doi.org/10.3390/s21155220