A Smart Archive Box for Museum Artifact Monitoring Using Battery-Less Temperature and Humidity Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. NFC Sensor User Requirements
2.2. Block Diagram of Proposed NFC Sensor
2.3. Low Power Hardware Design Method
2.4. Hardware Prototype of Proposed NFC Sensor
2.5. Integration of the NFC Sensor within a Cardboard Archive Box
- 1.
- The NFC sensor needs to be directly exposed to the ‘packed air’ in contact with the stored museum artifact within the box.
- 2.
- The measurement of temperature and relative humidity needs to take place at a position that ensures the most representative environmental data within the box.
- 3.
- The NFC sensor is required to be readily accessible for wireless reading using the smartphone, even when the boxes are stacked upon each other or lined up together.
- 4.
- The NFC sensor is required to be wirelessly connectable even through multiple layers of cardboard box material.
- 5.
- The NFC sensor needs to be protected from direct contact with the packed goods within the box to prolong its useful life.
- 6.
- The NFC sensor needs to be integrated without the use of adhesives to avoid contamination of the atmosphere inside the box.
3. Results and Discussion
3.1. Temperature and Relative Humidity Measurement Using the Prototype NFC Sensor
3.2. DC Power Consumption and Wireless Communications Range
3.3. Benefits and Convenience of Smart Archive Box to the User
- 1.
- The proposed temperature and humidity sensing solution is the first reporting of a smart archive box of its type in the literature for museum artifact monitoring.
- 2.
- The proposed method uses a battery-less NFC sensor that can be read conveniently with a standard NFC-enabled smartphone.
- 3.
- There is no requirement for a battery and the archive box does not need to be opened during the measurement so the internal environment is un-disturbed.
- 4.
- Another convenient feature is that there is no requirement for maintenance of the NFC sensor such as battery replacement. This could be problematic in a situation where thousands of stored items existed in a large collection for example, requiring significant maintenance and personnel costs.
- 5.
- A low-cost sensor has been developed in this work with a cost of €4.91 in volumes of 10 thousand units making it suitable for small to medium-sized museums.
- 6.
- The removal of the requirement for a battery means that there is a positive environmental impact with no need to dispose of depleted batteries.
- 7.
- The presented solution using passive wireless sensing is convenient for many small and medium sized institutions, making it possible to measure important artifact environmental data without large costs and effort being required.
- 8.
- Several improvements are planned for future work to continue developing in the direction of continuous sensing/monitoring. However, the present solution meets many requirements of many institutions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ashley-Smith, J.; Burmester, A.; Eibl, M. Climate for Collections-Standards and Uncertainties. Postprints of the Munich Climate Conference 7 to 9 November 2012; Doerner Institut: Munich, Germany, 2013. [Google Scholar]
- Rouchon-Quillet, V.; Remazeilles, C.; Bernard, J.; Wattiaux, A.; Fournès, L. The impact of gallic acid on iron gall ink corrosion. Appl. Phys. A 2004, 79, 389–392. [Google Scholar] [CrossRef]
- Kolar, J.; Štolfa, A.; Strlič, M.; Pompe, M.; Pihlar, B.; Budnar, M.; Simčič, J.; Reissland, B. Historical iron gall ink containing documents—properties affecting their condition. Anal. Chim. Acta 2006, 555, 167–174. [Google Scholar] [CrossRef]
- Institution B.S. Specification for Managing Environmental Conditions for Cultural Collections: PAS 198: 2012; British Standards Limited: London, UK, 2012. [Google Scholar]
- Grzywacz, C.M. Monitoring for Gaseous Pollutants in Museum Environments; Getty Publications: Los Angeles, CA, USA, 2006. [Google Scholar]
- Testo. Testo 160 TH—WiFi Data Logger with Integrated Temperature and Humidity Sensor. Available online: https://www.testo.com/en-UK/testo-160-th/p/0572-2021 (accessed on 20 May 2021).
- Chandrasekar, P.; Dutta, A. Recent Developments in Near Field Communication: A Study. Wirel. Person. Commun. 2020, 116, 2913–2932. [Google Scholar] [CrossRef]
- Lazaro, A.; Villarino, R.; Girbau, D. A survey of NFC sensors based on energy harvesting for IoT applications. Sensors 2018, 18, 3746. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Chen, P.; Ma, Z.; Li, S.; Gao, X.; Wu, R.-X.; Pan, L.; Shi, Y. Near-field communication sensors. Sensors 2019, 19, 3947. [Google Scholar] [CrossRef] [Green Version]
- Minihold, R. Near Field Communication (NFC) Technology and Measurements White Paper; Rohde & Schwarz: Munich, Germany, 2011. [Google Scholar]
- Coskun, V.; Ozdenizci, B.; Ok, K. A survey on near field communication (NFC) technology. Wirel. Person. Commun. 2013, 71, 2259–2294. [Google Scholar] [CrossRef]
- STMicroelectronics. TN1216 Technical Note ST25 NFC Guide. 2016. Available online: https://www.stmicroelectronics.com.cn/content/ccc/resource/technical/document/technical_note/f9/a8/5a/0f/61/bf/42/29/DM00190233.pdf/files/DM00190233.pdf/jcr:content/translations/en.DM00190233.pdf (accessed on 20 May 2021).
- Igoe, T.; Coleman, D.; Jepson, B. Beginning NFC: Near Field Communication with Arduino, Android, and Phonegap; O’Reilly Media, Inc.: Newton, MA, USA, 2014. [Google Scholar]
- Finkenzeller, K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- ISO/IEC 18092. Information Technology—Telecommunications and Information Exchange between Systems—Near Field Communication—Interface and Protocol (NFCIP-1), 1st ed.; ISO/IEC: Washington, DC, USA, 2004; p. 18092. [Google Scholar]
- ISO/IEC. ISO/IEC 21481:2012 Information Technology—Telecommunications and Information Exchange between Systems—Near Field Communication Interface and Protocol -2 (NFCIP-2); ISO/IEC: Geneva, Switzerland, 2012. [Google Scholar]
- ETSI. Near Field Communication Interface and Protocol (NFCIP-1); ETSI: Valbonne, Germany, 2013. [Google Scholar]
- Peres, C.; Pigeon, M.; Rather, N.; Gawade, D.; Buckley, J.; Jafarzadeh, H.; O’Flynn, B. Theoretical models for underwater RFID and the impact of water salinity on the design of wireless systems. Int. J. Adv. Netw. Serv. 2020, 13, 45–59. [Google Scholar]
- NFC_Forum. In Proceedings of the new NFC Forum Technical Specifications Broaden Tag Support and Enhance Interoperability. Wakefield, MA, USA, 14 October 2015. [Google Scholar]
- STMicroelectronics. NFC/RFID ST25 Product Overview. Available online: https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/product_presentation/group1/a9/5d/77/96/be/9a/48/7e/ST25_NFC_RFID_product_overview/files/ST25_product_overview.pdf/jcr:content/translations/en.ST25_product_overview.pdf (accessed on 20 May 2021).
- Sima, K.; Syrovy, T.; Pretl, S.; Freisleben, J.; Cesek, D.; Hamacek, A. Flexible smart tag for cold chain temperature monitoring. In Proceedings of the 2017 40th International Spring Seminar on Electronics Technology (ISSE), Sofia, Bulgaria, 10 May 2017; pp. 1–5. [Google Scholar]
- Yuan, M.; Ghannam, R.; Karadimas, P.; Heidari, H. Flexible RFID Patch for Food Spoilage Monitoring. In Proceedings of the 2018 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), Chengdu, China, 26 October 2018; 2018; pp. 68–71. [Google Scholar]
- Raju, R.; Bridges, G.E.; Bhadra, S. Wireless Passive Sensors for Food Quality Monitoring: Improving the Safety of Food Products. IEEE Antennas Propag. Mag. 2020, 62, 76–89. [Google Scholar] [CrossRef]
- Nguyen, T.-B.; Tran, V.-T.; Chung, W.-Y. Pressure Measurement-Based Method for Battery-Free Food Monitoring Powered by NFC Energy Harvesting. Sci. Rep. 2019, 9, 17556. [Google Scholar] [CrossRef] [PubMed]
- Athauda, T.; Karmakar, N.C. Review of RFID-based sensing in monitoring physical stimuli in smart packaging for food-freshness applications. Wirel. Power Transf. 2019, 6, 161–174. [Google Scholar] [CrossRef]
- Lorite, G.S.; Selkälä, T.; Sipola, T.; Palenzuela, J.; Jubete, E.; Viñuales, A.; Cabañero, G.; Grande, H.J.; Tuominen, J.; Uusitalo, S. Novel, smart and RFID assisted critical temperature indicator for supply chain monitoring. J. Food Eng. 2017, 193, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, M.; Escobedo, P.; Nikbakhtnasrabadi, F.; Dahiya, R. NFC based Polymer Strain Sensor for Smart Packaging. In Proceedings of the 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Rome, Italy, 29 August 2020; pp. 1–4. [Google Scholar]
- Cao, X.-T.; Chung, W.-Y. An enhanced multiplication of RF energy harvesting efficiency using relay resonator for food monitoring. Sensors 2019, 19, 1963. [Google Scholar] [CrossRef] [Green Version]
- Chung, W.-Y.; Le, G.T.; Tran, T.V.; Nguyen, N.H. Novel proximal fish freshness monitoring using batteryless smart sensor tag. Sens. Actuators B Chem. 2017, 248, 910–916. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Chung, W.-Y. Battery-less pork freshness real-time monitoring system with high efficient RF energy scavenging. In Proceedings of the 2017 International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 13–17 May 2017; pp. 235–238. [Google Scholar]
- Eyvazi Hesar, M.; Khan, D.; Seyedsadrkhani, N.S.; Ingebrandt, S. Contactless, Battery-free, and Stretchable Wearable for Continuous Recording of Seismocardiograms. ACS Appl. Electron. Mater. 2020, 3, 11–20. [Google Scholar] [CrossRef]
- Ali, S.M.; Chung, W.-Y. Monitoring Transepidermal Water Loss and Skin Wettedness Factor with Battery-Free NFC Sensor. Sensors 2020, 20, 5549. [Google Scholar] [CrossRef]
- Noda, A. Wearable NFC Reader and Sensor Tag for Health Monitoring. In Proceedings of the 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 17–19 October 2019; pp. 1–4. [Google Scholar]
- Cho, H.-W.; Yoon, J.H.; Yoo, S.-S.; Choi, B.G.; Yoo, H.-J. A Batteryless Chronic Wound Monitoring System with NFC. In Proceedings of the 2019 IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS), Okinawa, Japan, 31 May–3 June 2019; pp. 31–34. [Google Scholar]
- Rahimi, R.; Brener, U.; Ochoa, M.; Ziaie, B. Flexible and transparent pH monitoring system with NFC communication for wound monitoring applications. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 125–128. [Google Scholar]
- Dang, W.; Manjakkal, L.; Navaraj, W.T.; Lorenzelli, L.; Vinciguerra, V.; Dahiya, R. Stretchable wireless system for sweat pH monitoring. Biosens. Bioelectron. 2018, 107, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, R.; Brener, U.; Chittiboyina, S.; Soleimani, T.; Detwiler, D.A.; Lelièvre, S.A.; Ziaie, B. Laser-enabled fabrication of flexible and transparent pH sensor with near-field communication for in-situ monitoring of wound infection. Sens. Actuators B Chem. 2018, 267, 198–207. [Google Scholar] [CrossRef]
- Nguyen, T.-B.; Nguyen, T.-H.; Chung, W.-Y. Battery-Free and Noninvasive Estimation of Food pH and CO2 Concentration for Food Monitoring Based on Pressure Measurement. Sensors 2020, 20, 5853. [Google Scholar] [CrossRef]
- Kumar, S.; Buckley, J.; Barton, J.; O’Flynn, B. Performance analysis of a novel flexible NFC Tag for IoT applications. In Proceedings of the 12th Smart Systems Integration Conference 2018, Dresden, Germany, 11–12 April 2018; pp. 432–435. [Google Scholar]
- Cappelli, I.; Fort, A.; Mugnaini, M.; Panzardi, E.; Pozzebon, A.; Tani, M.; Vignoli, V. Battery-less HF RFID sensor tag for soil moisture measurements. IEEE Trans.Instrum. Meas. 2020, 70, 1–13. [Google Scholar] [CrossRef]
- Boada, M.; Lazaro, A.; Villarino, R.; Girbau, D. Battery-less soil moisture measurement system based on a NFC device with energy harvesting capability. IEEE Sens. J. 2018, 18, 5541–5549. [Google Scholar] [CrossRef]
- Boada, M.; Lazaro, A.; Villarino, R.; Gil, E.; Girbau, D. Near-field soil moisture sensor with energy harvesting capability. In Proceedings of the 2018 48th European Microwave Conference (EuMC), Madrid, Spain, 25–27 September 2018; pp. 235–238. [Google Scholar]
- Lazaro, A.; Boada, M.; Villarino, R.; Girbau, D. Color measurement and analysis of fruit with a battery-less NFC sensor. Sensors 2019, 19, 1741. [Google Scholar] [CrossRef] [Green Version]
- Boada, M.; Lázaro, A.; Villarino, R.; Girbau, D. NFC Battery-Less Colour Sensor and its Applications. In Proceedings of the 2020 Global Congress on Electrical Engineering (GC-ElecEng), Valencia, Spain, 4–6 September 2020; pp. 46–50. [Google Scholar]
- Strangfeld, C.; Johann, S.; Bartholmai, M. Smart RFID Sensors Embedded in Building Structures for Early Damage Detection and Long-Term Monitoring. Sensors 2019, 19, 5514. [Google Scholar] [CrossRef] [Green Version]
- Bigler, T.; Kovács, G.; Treytl, A.; Windl, R. NFC for Powering Sensors in Concrete. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; pp. 1355–1358. [Google Scholar]
- Escobedo, P.; Erenas, M.; Lopez-Ruiz, N.; Carvajal, M.; Gonzalez-Chocano, S.; De Orbe-Paya, I.; Capitan-Valley, L.; Palma, A.; Martinez-Olmos, A. Flexible passive near field communication tag for multigas sensing. Anal. Chem. 2017, 89, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Irene, C.; Ada, F.; Marco, M.; Enza, P.; Alessandro, P.; Marco, T.; Valerio, V. Battery-less HF RFID sensor tag for humidity measurements based on TiO 2 nanoparticles. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Eldebiky, A.; Elsobky, M.; Richter, H.; Burghartz, J.N. Humidity and temperature sensor system demonstrator with NFC tag for HySiF applications. Adv. Radio Sci. ARS 2018, 16, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, M.D.; Kimbriel, C.S.; D’Hont, L.S. Autonomous near-field communication (NFC) sensors for long-term preventive care of fine art objects. Sens. Actuators A Phys. 2019, 285, 456–467. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, N.; Li, D.; Lv, Y.; Gong, J. SCRMS: An RFID and sensor web-enabled smart cultural relics management system. Sensors 2017, 17, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tse, J. Development of a new environmental monitoring system for museums and galleries using RFID-enabled technology. Stud. Conserv. 2016, 61, 334–336. [Google Scholar] [CrossRef]
- Gawade, D.R.; Buckley, J.; Rather, N.N.; Ziemann, S.; Zabeo, A.; Barton, J.; Iacopino, D.; Schuhmann, K.; Anders, M.; Burke, M. A battery-less NFC sensor transponder for museum artefact monitoring-a review of NFC sensor technology and a proposed solution. In Proceedings of the SENSORCOMM 2019, Nice, France, 27–31 October 2019. [Google Scholar]
- Microsensys. TELID 332-th Product Datasheet. Available online: https://www.microsensys.de/fileadmin/user_upload/pdf-dateien/ds_sensor-transpond/TELID332-05.pdf (accessed on 20 May 2021).
- Gosense. Gosense Wireless Ltd Product Index- NFC and RFID Mobile Sensors. Available online: http://www.gosense-wireless.com/GoSense%20TH-StatID%20DS%20Rev1.pdf (accessed on 20 May 2021).
- Microsensys. Product Datasheet—TELID 232.NFC. Available online: https://www.microsensys.de/fileadmin/user_upload/pdf-dateien/datasheets/TELID232nfc-01.pdf (accessed on 20 May 2021).
- Monarch_Instrument. Track-It RFID Temp or Temp/Humidity Data Logger. Available online: https://monarchinstrument.com/products/track-it-rfid-temp-temp-humidity-data-logger?variant=30756070984 (accessed on 20 May 2021).
- Intellilog. End-to-End Cold Chain Monitoring. Available online: https://intellilog.io/ (accessed on 20 May 2021).
- Boada, M.; Lazaro, A.; Villarino, R.; Girbau, D. Battery-less NFC sensor for pH monitoring. IEEE Access 2019, 7, 33226–33239. [Google Scholar] [CrossRef]
- Lazaro, A.; Boada, M.; Villarino, R.; Girbau, D. Study on the Reading of Energy-Harvested Implanted NFC Tags Using Mobile Phones. IEEE Access 2020, 8, 2200–2221. [Google Scholar] [CrossRef]
- Boada Navarro, M. Battery-Less Near Field Communications (NFC) Sensors for INTERNET of Things (Iot) Applications; Universitat Rovira i Virgili: Catalunya, Spain, 2020. [Google Scholar]
- Zhao, Y.; Smith, J.R.; Sample, A. NFC-WISP: A sensing and computationally enhanced near-field RFID platform. In Proceedings of the 2015 IEEE International Conference on RFID (RFID), San Diego, CA, USA, 15–17 April 2015; pp. 174–181. [Google Scholar]
- Cho, H.-W.; Jo, S.-H.; Yoon, J.H.; Goh, T.-S.; Choi, B.G.; Yoo, H.-J. A Batteryless Chronic Wound Monitoring System With 13.56-MHz Energy Harvesting. IEEE Sens. J. 2019, 19, 9431–9440. [Google Scholar] [CrossRef]
- Di Rienzo, F.; Virdis, A.; Vallati, C.; Carbonaro, N.; Tognetti, A. Evaluation of NFC-Enabled devices for heterogeneous Wearable Biomedical Application. IEEE J. Radio Freq. Identif. 2020, 4, 373–383. [Google Scholar] [CrossRef]
- Rosa, B.M.G.; Anastasova-Ivanova, S.; Yang, G.Z. NFC-Powered Flexible Chest Patch for Fast Assessment of Cardiac, Hemodynamic, and Endocrine Parameters. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1603–1614. [Google Scholar] [CrossRef]
- STMicroelectronics. ST25DV16K—Datasheet. Available online: https://www.st.com/resource/en/datasheet/st25dv04k.pdf (accessed on 20 May 2021).
- STMicroelectronics. Datasheet of STM32L031x4 STM32L031x6. Available online: https://www.st.com/resource/en/datasheet/stm32l031k6.pdf (accessed on 20 May 2021).
- STMicroelectronics. Datasheet—STLQ015. Available online: https://www.st.com/resource/en/datasheet/stlq015.pdf (accessed on 20 May 2021).
- Sensirion. Datasheet—SHTC3 Humidity and Temperature Sensor IC. Available online: https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/2_Humidity_Sensors/Datasheets/Sensirion_Humidity_Sensors_SHTC3_Datasheet.pdf (accessed on 20 May 2021).
- Curran, K.; Možir, A.; Underhill, M.; Gibson, L.T.; Fearn, T.; Strlič, M. Cross-infection effect of polymers of historic and heritage significance on the degradation of a cellulose reference test material. Polym. Degrad. Stab. 2014, 107, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Instrument, T. RF430FRL152HEVM User’s Guide. Available online: https://www.ti.com/lit/ug/slau607c/slau607c.pdf?ts=1611854593411 (accessed on 28 March 2021).
- STMicroelectronics. STEVAL-SMARTAG1 Data Brief. Available online: https://www.st.com/resource/en/data_brief/steval-smartag1.pdf (accessed on 20 May 2021).
- NXP. NHS3152TEMOADK: NHS3152 General Starter Kit. Available online: https://www.nxp.com/products/rfid-nfc/nfc-hf/ntag-smartsensor/nhs3152-general-starter-kit:NHS3152TEMOADK (accessed on 20 May 2021).
- STMicroelectronics. AN4913 Application Note: Energy Harvesting Delivery Impact on ST25DVxxx Behavior during RF Communication. Available online: https://www.st.com/resource/en/application_note/dm00329035-energy-harvesting-delivery-impact-on-st25dvxxx-behavior-during-rf-communication-stmicroelectronics.pdf (accessed on 20 May 2021).
- STMicroelectronics. User Manual of X-NUCLEO-NFC04A1 NFC/RFID. Available online: https://www.st.com/resource/en/user_manual/dm00402774-getting-started-with-the-xnucleonfc04a1-nfcrfid-tag-ic-expansion-board-based-on-st25dv04k-for-stm32-nucleo-stmicroelectronics.pdf (accessed on 20 May 2021).
- STMicroelectronics. UM1956 User Manual STM32 Nucleo-32 Boards. Available online: https://www.st.com/resource/en/user_manual/dm00231744-stm32-nucleo32-boards-mb1180-stmicroelectronics.pdf (accessed on 20 May 2021).
- Mikroe. TEMP&HUM 9 CLICK. Available online: https://www.mikroe.com/temphum-9-click (accessed on 20 May 2021).
- DigiKey. World’s Largest Selection of Electronic Components Available for Immediate Dispatch. Available online: https://www.digikey.ie/ (accessed on 20 May 2021).
- PCBway. PCB Prototype Instant Quote. Available online: https://www.pcbway.com/?gw1&campaignid=172480651&adgroupid=8787904531&feeditemid=&targetid=aud-453960202066:kwd338664447536&loc_physical_ms=1007835&matchtype=b&network=g&device=c&devicemodel=&creative=377957049820&keyword=prototype%20pcb&placement=&target=&adposition=&gclid=Cj0KCQjwpdqDBhCSARIsAEUJ0hPq7NZRIyi6wo49Jn1IoH8--k99xXQyRapO4Dpfzt-rnbElHOX1v-kaAi7MEALw_wcB (accessed on 14 April 2021).
- Haigh, P.; Hayes, M.; Gawade, D.R.; O’Flynn, B. Towards Autonomous Smart Sensing Systems. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; pp. 1–6. [Google Scholar]
- APACHE. APACHE Project Objective. Available online: http://www.apacheproject.eu/objectives/ (accessed on 28 March 2021).
- Gulati, R.K.; Pal, A.; Kant, K. Experimental evaluation of a near-field magnetic induction based communication system. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar]
- Freudenthal, E.; Herrera, D.; Kautz, F.; Natividad, C.; Ogrey, A.; Sipla, J.; Sosa, A.; Betancourt, C.; Estevez, L. Suitability of nfc for medical device communication and power delivery. In Proceedings of the 2007 IEEE Dallas Engineering in Medicine and Biology Workshop, Dallas, TX, USA, 11–12 Nov. 2007; pp. 51–54. [Google Scholar]
- Jun, Q.; Chao, H.; Yunhan, Y.; Jizui, Q. Application of modern communication technology in smart home system. In Proceedings of the 2018 IEEE International Conference on Information and Automation (ICIA), Wuyishan, China, 11–13 August 2018; pp. 1577–1581. [Google Scholar]
- Brown, T.W.; Diakos, T.; Briffa, J.A. Evaluating the eavesdropping range of varying magnetic field strengths in NFC standards. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013; pp. 3525–3528. [Google Scholar]
- Chandrakasan, A.P.; Brodersen, R.W. Minimizing power consumption in digital CMOS circuits. Proceedings of the IEEE 1995, 83, 498–523. [Google Scholar] [CrossRef] [Green Version]
- ARM. ARMv8-A Power Management. Available online: https://developer.arm.com/documentation/100960/0100/Dynamic-Voltage-and-Frequency-Scaling?lang=en (accessed on 28 March 2021).
- Shop, B. Telescope Boxes. Available online: https://www.boxshop24.com/en/Telescope-boxes.html (accessed on 20 May 2021).
- Fluke. Fluke 971 Temperature Humidity Meter Technical Datasheet. Available online: https://www.fluke-direct.com/pdfs/cache/www.fluke-direct.com/971/datasheet/971-datasheet.pdf (accessed on 20 May 2021).
- Tétreault, J. Products Used in Preventive Conservation–Technical Bulletin 32; Canadian Conservation Institute: Ottawa, ON, Cannada, 2018. [Google Scholar]
- Multiwall Polycarbonate Panels Offer Better Insulation. Available online: https://www.tuflite.com/blog/multiwall-polycarbonate-panels-offer-better-insulation (accessed on 31 May 2021).
- Sensirion, A.G. Calibration Certification. Available online: https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/2_Humidity_Sensors/Sensirion_Humidity_Sensors_SHTxx_Calibration_Certification.pdf (accessed on 8 July 2021).
Requirements | Values |
---|---|
Power Source | Wireless power transfer using NFC |
DC Power | >1 mW |
NFC sensor cost | <€5 in 10k quantities |
NFC sensor operational Life | >5 years |
Wireless communication Range | <4 cm |
User memory (EEPROM) | <20 kbits RF and I2C dual interface access |
Wireless communication data rate | 25 kbps |
Communication standard | ISO/IEC 15693 and NFC Type-5 |
NFC sensor form factor | 85.60 mm × 53.90 mm × 2 mm |
NFC sensor packaging | Encapsulation in cardboard box packaging material without adhesive |
Sensed environmental parameters | Temperature and Humidity |
Temperature accuracy | <±0.5 °C |
Relative humidity accuracy | <±1% |
Operational temperature range | –40 to +125 °C [69] |
Operational humidity range | 0 to 100% [69] |
Response time at τ (63%) | 8 s for relative humidity, 5 to 30 s for temperature [69] |
Sensor parameter reading | NFC wireless using Smartphone |
Component and Part Number | Maximum Power Consumption (mW) | Operating Condition | Supply VOLTAGE Range (V) | Datasheet Reference |
---|---|---|---|---|
MCU (STM32L031K6U6) | 8.1 | VDD = 3.0, VCORE = 1.8, fCLK = 16 MHz | 1.65–3.6 | [67] |
NFC radio transceiver (ST25DV16K-JFR6D3) | 1.089 | VDD = 3.3, fC (I2C) = 1 MHz (<50 ns), Write operation | 1.8–5.5 | [66] |
Sensor (SHTC3) | 1.881 | Low power mode, VDD = 3.3 | 1.62–3.6 | [69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawade, D.R.; Ziemann, S.; Kumar, S.; Iacopino, D.; Belcastro, M.; Alfieri, D.; Schuhmann, K.; Anders, M.; Pigeon, M.; Barton, J.; et al. A Smart Archive Box for Museum Artifact Monitoring Using Battery-Less Temperature and Humidity Sensing. Sensors 2021, 21, 4903. https://doi.org/10.3390/s21144903
Gawade DR, Ziemann S, Kumar S, Iacopino D, Belcastro M, Alfieri D, Schuhmann K, Anders M, Pigeon M, Barton J, et al. A Smart Archive Box for Museum Artifact Monitoring Using Battery-Less Temperature and Humidity Sensing. Sensors. 2021; 21(14):4903. https://doi.org/10.3390/s21144903
Chicago/Turabian StyleGawade, Dinesh R., Steffen Ziemann, Sanjeev Kumar, Daniela Iacopino, Marco Belcastro, Davide Alfieri, Katharina Schuhmann, Manfred Anders, Melusine Pigeon, John Barton, and et al. 2021. "A Smart Archive Box for Museum Artifact Monitoring Using Battery-Less Temperature and Humidity Sensing" Sensors 21, no. 14: 4903. https://doi.org/10.3390/s21144903
APA StyleGawade, D. R., Ziemann, S., Kumar, S., Iacopino, D., Belcastro, M., Alfieri, D., Schuhmann, K., Anders, M., Pigeon, M., Barton, J., O’Flynn, B., & Buckley, J. L. (2021). A Smart Archive Box for Museum Artifact Monitoring Using Battery-Less Temperature and Humidity Sensing. Sensors, 21(14), 4903. https://doi.org/10.3390/s21144903