Effects of Buffer Concentration on the Sensitivity of Silicon Nanobelt Field-Effect Transistor Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. SiNB FET Device Fabrication
2.2. Surface Modification of the SC SiNB FET Device
2.3. Preparation of Buffer Solutions of Varying pH
2.4. Surface Modification and Biografting for AFP Sensing
2.5. Measurement and Analysis of the SC SiNB FET Devices
3. Results and Discussion
3.1. Basic Characteristics of the SC SiNB FET Device
3.2. pH Sensing of the SC SiNB FET Device
3.3. Effect of the Buffer Ion Concentration on the SC SiNB FET
3.4. Real-Time Detection of AFP at Various Buffer Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pan, T.M.; Lin, C.H.; Pang, S.T. Structural and Sensing Characteristics of Niox Sensing Films for Extended-Gate Field-Effect Transistor Ph Sensors. IEEE Sens. J. 2021, 21, 2597. [Google Scholar] [CrossRef]
- Leung, W.H.; Pang, C.C.; Pang, S.N.; Weng, S.X.; Lin, Y.L.; Chiou, Y.E.; Pang, S.T.; Weng, W.H. High-Sensitivity Dual-Probe Detection of Urinary Mir-141 in Cancer Patients Via a Modified Screen-Printed Carbon Electrode-Based Electrochemical Biosensor. Sensors 2021, 21, 3183. [Google Scholar] [CrossRef] [PubMed]
- Mukhin, N.; Konoplev, G.; Oseev, A.; Schmidt, M.P.; Stepanova, O.; Kozyrev, A.; Dmitriev, A.; Hirsch, S. Label-Free Protein Detection by Micro-Acoustic Biosensor Coupled with Electrical Field Sorting. Theoretical Study in Urine Models. Sensors 2021, 21, 2555. [Google Scholar] [CrossRef] [PubMed]
- Shylendra, S.P.; Lonsdale, W.; Wajrak, M.; Nur-E-Alam, M.; Alameh, K. Titanium Nitride Thin Film Based Low-Redox-Interference Potentiometric Ph Sensing Electrodes. Sensors 2021, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, G.M.C.; Alves, C.R.; Pinto, M.A.; Leon, L.A.A.; Souza-Silva, F. Detection of Antibodies against Hepatitis a Virus (Hav) by a Surface Plasmon Resonance (Spr) Biosensor: A New Diagnosis Tool Based on the Major Hav Capsid Protein Vp1 (Spr-Havp1). Sensors 2021, 21, 3167. [Google Scholar] [CrossRef]
- Stortini, A.M.; Baldo, M.A.; Moro, G.; Polo, F.; Moretto, L.M. Bio- and Biomimetic Receptors for Electrochemical Sensing of Heavy Metal Ions. Sensors 2020, 20, 6800. [Google Scholar] [CrossRef]
- Scholler, N.; Crawford, M.; Sato, A.; Drescher, C.W.; O’Briant, K.C.; Kiviat, N.; Anderson, G.L.; Urban, N. Bead-Based Elisa for Validation of Ovarian Cancer Early Detection Markers. Clin. Cancer Res. 2006, 12, 2117. [Google Scholar] [CrossRef] [Green Version]
- Bacolod, M.D.; Mirza, A.H.; Huang, J.M.; Giardina, S.F.; Feinberg, P.B.; Soper, S.A.; Barany, F. Application of Multiplex Bisulfite Pcr-Ligase Detection Reaction-Real-Time Quantitative Pcr Assay in Interrogating Bioinformatically Identified, Blood-Based Methylation Markers for Colorectal Cancer. J. Mol. Diagn. 2020, 22, 885. [Google Scholar] [CrossRef]
- Hinz, S.; Hendricks, A.; Wittig, A.; Schafmayer, C.; Tepel, J.; Kalthoff, H.; Becker, T.; Roder, C. Detection of Circulating Tumor Cells with Ck20 Rt-Pcr Is an Independent Negative Prognostic Marker in Colon Cancer Patients—A Prospective Study. BMC Cancer 2017, 17, 53. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.D.; Guo, W.S.; Peng, W.P.; Zhao, Q.; Piao, J.F.; Zhang, B.; Wu, X.L.; Wang, H.J.; Gong, X.Q.; Chang, J. Enhanced Fluorescence Elisa Based on Hat Triggering Fluorescence “Turn-on” with Enzyme-Antibody Dual Labeled Aunp Probes for Ultrasensitive Detection of Afp and Hbsag. ACS Appl. Mater. Interfaces 2017, 9, 9369. [Google Scholar] [CrossRef]
- Gu, D.X.; Yang, W.T.; Ning, G.H.; Wang, F.X.; Wu, S.X.; Shi, X.D.; Wang, Y.H.; Pan, Q.H. In Situ Ligand Formation-Driven Synthesis of a Uranyl Organic Framework as a Turn-on Fluorescent Ph Sensor. Inorg. Chem. 2020, 59, 1778. [Google Scholar] [CrossRef] [PubMed]
- Ul Alam, A.; Qin, Y.H.; Nambiar, S.; Yeow, J.T.W.; Howlader, M.M.R.; Hu, N.X.; Deen, M.J. Polymers and Organic Materials-Based Ph Sensors for Healthcare Applications. Prog. Mater. Sci. 2018, 96, 174. [Google Scholar] [CrossRef]
- Jesila, J.A.A.; Umesh, N.M.; Wang, S.F.; Govindasamy, M.; Alothman, Z.A.; Alshgari, R.A. Simple and Highly Selective Electrochemical Sensor Constructed Using Silver Molybdate Nano-Wire Modified Electrodes for the Determination of Oxidative Stress Biomarker in Blood Serum and Lens Cleaning Solution. J. Electrochem. Soc. 2020, 167, 14. [Google Scholar] [CrossRef]
- Ghoneim, M.T.; Nguyen, A.; Dereje, N.; Huang, J.; Moore, G.C.; Murzynowski, P.J.; Dagdeviren, C. Recent Progress in Electrochemical Ph-Sensing Materials and Configurations for Biomedical Applications. Chem. Rev. 2019, 119, 5248. [Google Scholar] [CrossRef]
- Wu, C.-C.; Manga, Y.B.; Yang, M.-H.; Chien, Z.-S.; Lee, K.-S. Label-Free Detection of Brafv599e Gene Mutation Using Side-Gated Nanowire Field Effect Transistors. J. Electrochem. Soc. 2018, 165, B576. [Google Scholar] [CrossRef]
- Manjakkal, L.; Szwagierczak, D.; Dahiya, R. Metal Oxides Based Electrochemical Ph Sensors: Current Progress and Future Perspectives. Prog. Mater. Sci. 2020, 109, 100635. [Google Scholar] [CrossRef]
- Liao, Y.H.; Chou, J.C. Fabrication and Characterization of a Ruthenium Nitride Membrane for Electrochemical Ph Sensors. Sensors 2009, 9, 2478. [Google Scholar] [CrossRef]
- Vivaldi, F.; Salvo, P.; Poma, N.; Bonini, A.; Biagini, D.; Del Noce, L.; Melai, B.; Lisi, F.; Di Francesco, F. Recent Advances in Optical, Electrochemical and Field Effect Ph Sensors. Chemosensors 2021, 9, 33. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Cheng, H.-Y.; Ou, K.-L.; Wu, C.-C. Real-Time Sensing of Hepatitis B Virus X Gene Using an Ultrasensitive Nanowire Field Effect Transistor. J. Polym. Eng. 2014, 34, 273. [Google Scholar] [CrossRef]
- Ahmed, N.M.; Sabah, F.A.; Al-Hardan, N.H.; Almessiere, M.A.; Mohammad, S.M.; Lim, W.F.; Jumaah, M.; Islam, A.K.M.S.; Hassan, Z.; Quah, H.J.; et al. Development of Egfet-Based Ito Ph Sensors Using Epoxy Free Membrane. Semicond. Sci. Tech. 2021, 36, 045027. [Google Scholar] [CrossRef]
- Santermans, S.; Schanovsky, F.; Gupta, M.; Hellings, G.; Heyns, M.; van Roy, W.; Martens, K. The Significance of Nonlinear Screening and the Ph Interference Mechanism in Field-Effect Transistor Molecular Sensors. ACS Sens. 2021, 6, 1049. [Google Scholar] [CrossRef]
- Gupta, M.; Santermans, S.; Hellings, G.; Lagae, L.; Martens, K.; van Roy, W. Surface Charge Modulation and Reduction of Non-Linear Electrolytic Screening in Fet-Based Biosensing. IEEE Sens. J. 2021, 21, 4143. [Google Scholar] [CrossRef]
- Kim, S.; Lee, R.; Kwon, D.; Kim, T.H.; Park, T.J.; Choi, S.J.; Mo, H.S.; Kim, D.H.; Park, B.G. Multiplexed Silicon Nanowire Tunnel Fet-Based Biosensors with Optimized Multi-Sensing Currents. IEEE Sens. J. 2021, 21, 8839. [Google Scholar] [CrossRef]
- Zhou, K.; Zhao, Z.D.; Yu, P.B.; Wang, Z.Y. Highly Sensitive Ph Sensors Based on Double-Gate Silicon Nanowire Field-Effect Transistors with Dual-Mode Amplification. Sens. Actuators B Chem. 2020, 320, 128403. [Google Scholar] [CrossRef]
- Wu, C.C.; Ko, F.H.; Yang, Y.S.; Hsia, D.L.; Lee, B.S.; Su, T.S. Label-Free Biosensing of a Gene Mutation Using a Silicon Nanowire Field-Effect Transistor. Biosens. Bioelectron. 2009, 25, 820. [Google Scholar] [CrossRef]
- Wu, C.C.; Liu, F.K.; Lin, L.H.; Pang, S.T.; Chuang, C.K.; Pan, T.M.; Ou, K.L.; Ko, F.H. Surface Cleaning of the Nanowire Field-Effect Transistor for Gene Detection. J. Nanosci. Nanotechnol. 2011, 11, 10639. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.L.; Chen, S.X.; Zhang, H.P.; Huang, Z.P.; Liu, X.Q.; Cheng, Z.X.; Li, T. Trace Level Analysis of Nerve Agent Simulant Dmmp with Silicon Nanowire Fet Sensor. IEEE Sens. J. 2020, 20, 12096. [Google Scholar] [CrossRef]
- Kim, D.; Park, C.; Choi, W.; Shin, S.H.; Jin, B.; Baek, R.H.; Lee, J.S. Improved Long-Term Responses of Au-Decorated Si Nanowire Fet Sensor for Nh3 Detection. IEEE Sens. J. 2020, 20, 2270. [Google Scholar] [CrossRef]
- Li, Y.Y.; Kang, P.; Huang, H.Q.; Liu, Z.G.; Li, G.; Guo, Z.; Huang, X.J. Porous Cuo Nanobelts Assembly Film for Nonenzymatic Electrochemical Determination of Glucose with High Fabrication Repeatability and Sensing Stability. Sens. Actuators B Chem. 2020, 307, 127639. [Google Scholar] [CrossRef]
- Chen, C.W.; Yip, B.S.; Pan, F.M.; Sheu, J.T. Optimization of Nanobelt Field Effect Transistor with a Capacitive Extended Gate for Use as a Biosensor. ECS J. Solid State Sci. 2018, 7, Q3172. [Google Scholar] [CrossRef]
- Zhao, Y.L.; You, S.S.; Zhang, A.Q.; Lee, J.H.; Huang, J.L.; Lieber, C.M. Scalable Ultrasmall Three-Dimensional Nanowire Transistor Probes for Intracellular Recording. Nat. Nanotechnol. 2019, 14, 783. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Zhao, Z.D.; Pan, L.Y.; Wang, Z.Y. Silicon Nanowire Ph Sensors Fabricated with Cmos Compatible Sidewall Mask Technology. Sens. Actuators B Chem. 2019, 279, 111. [Google Scholar] [CrossRef]
- Mu, L.; Chang, Y.; Sawtelle, S.D.; Wipf, M.; Duan, X.X.; Reed, M.A. Silicon Nanowire Field-Effect Transistors—A Versatile Class of Potentiometric Nanobiosensors. IEEE Access 2015, 3, 287. [Google Scholar] [CrossRef]
- Stern, E.; Wagner, R.; Sigworth, F.J.; Breaker, R.; Fahmy, T.M.; Reed, M.A. Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors. Nano Lett. 2007, 7, 3405. [Google Scholar] [CrossRef] [Green Version]
- Zafar, S.; D’Emic, C.; Afzali, A.; Fletcher, B.; Zhu, Y.; Ning, T. Optimization of Ph Sensing Using Silicon Nanowire Field Effect Transistors with HfO2 as the Sensing Surface. Nanotechnology 2011, 22, 405501. [Google Scholar] [CrossRef]
- Manga, Y.B.; Ko, F.-H.; Yang, Y.-S.; Hung, J.-Y.; Yang, W.-L.; Huang, H.-M.; Wu, C.-C. Ultra-Fast and Sensitive Silicon Nanobelt Field-Effect Transistor for High-Throughput Screening of Alpha-Fetoprotein. Sens. Actuators B Chem. 2018, 256, 1114. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1981. [Google Scholar]
- Schroder, D.K. Semiconductor Material and Device Characterization, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Vacic, A.; Criscione, J.M.; Rajan, N.K.; Stern, E.; Fahmy, T.M.; Reed, M.A. Determination of Molecular Configuration by Debye Length Modulation. J. Am. Chem. Soc. 2011, 133, 13886. [Google Scholar] [CrossRef] [PubMed]
- Curreli, M.; Zhang, R.; Ishikawa, F.N.; Chang, H.K.; Cote, R.J.; Zhou, C.; Thompson, M.E. Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based Fets. IEEE Trans. Nanotechnol. 2008, 7, 651. [Google Scholar] [CrossRef]
- Tang, S.Q.; Yan, J.; Zhang, J.; Wei, S.H.; Zhang, Q.Z.; Li, J.J.; Fang, M.; Zhang, S.; Xiong, E.Y.; Wang, Y.R.; et al. Fabrication of Low Cost and Low Temperature Poly-Silicon Nanowire Sensor Arrays for Monolithic Three-Dimensional Integrated Circuits Applications. Nanomaterials 2020, 10, 2488. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.K.; Cho, W.J. Ultra-High Sensitivity Ph-Sensors Using Silicon Nanowire Channel Dual-Gate Field-Effect Transistors Fabricated by Electrospun Polyvinylpyrrolidone Nanofibers Pattern Template Transfer. Sens. Actuators B Chem. 2021, 326, 128835. [Google Scholar] [CrossRef]
- Dorvel, B.R.; Reddy, B.; Go, J.; Guevara, C.D.; Salm, E.; Alam, M.A.; Bashir, R. Silicon Nanowires with High-K Hafnium Oxide Dielectrics for Sensitive Detection of Small Nucleic Acid Oligomers. ACS Nano 2012, 6, 6150. [Google Scholar] [CrossRef] [Green Version]
- Vu, X.T.; Stockmann, R.; Wolfrum, B.; Offenhaesser, A.; Ingebrandt, S. Fabrication and Application of a Microfluidic-Embedded Silicon Nanowire Biosensor Chip. Phys. Status Solidi A 2010, 207, 850. [Google Scholar] [CrossRef]
- Mishra, A.K.; Jarwal, D.K.; Mukherjee, B.; Kumar, A.; Ratan, S.; Jit, S. Cuo Nanowire-Based Extended-Gate Field-Effect-Transistor (FET) for Ph Sensing and Enzyme-Free/Receptor-Free Glucose Sensing Applications. IEEE Sens. J. 2020, 20, 5039. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular Carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Oh, H.G.; Park, W.H.; Jeon, D.C.; Lim, K.M.; Kim, H.J.; Jang, B.K.; Song, K.S. Detection of Alpha-Fetoprotein in Hepatocellular Carcinoma Patient Plasma with Graphene Field-Effect Transistor. Sensors 2018, 18, 4032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
pH Sensitivity | Nanowire Materials | Ref. |
---|---|---|
178 mV/pH | Poly-Si nanowire | [41] |
56.3 mV/pH (single gate) 143.7 mV/pH (double gate) | Si nanowire | [42] |
55.8 mV/pH | Si nanowire | [43] |
42 mV/pH | Si nanowire | [44] |
48.34 mV/pH | CuO | [45] |
42.2 nA/pH (for 0.1X buffer) | Si nanowire | Our work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-C.; Wang, M.-R. Effects of Buffer Concentration on the Sensitivity of Silicon Nanobelt Field-Effect Transistor Sensors. Sensors 2021, 21, 4904. https://doi.org/10.3390/s21144904
Wu C-C, Wang M-R. Effects of Buffer Concentration on the Sensitivity of Silicon Nanobelt Field-Effect Transistor Sensors. Sensors. 2021; 21(14):4904. https://doi.org/10.3390/s21144904
Chicago/Turabian StyleWu, Chi-Chang, and Min-Rong Wang. 2021. "Effects of Buffer Concentration on the Sensitivity of Silicon Nanobelt Field-Effect Transistor Sensors" Sensors 21, no. 14: 4904. https://doi.org/10.3390/s21144904
APA StyleWu, C.-C., & Wang, M.-R. (2021). Effects of Buffer Concentration on the Sensitivity of Silicon Nanobelt Field-Effect Transistor Sensors. Sensors, 21(14), 4904. https://doi.org/10.3390/s21144904