Hollow-Core Negative Curvature Fiber with High Birefringence for Low Refractive Index Sensing Based on Surface Plasmon Resonance Effect
Abstract
:1. Introduction
2. Design of the Gold Wires-Filled HC-NCF and Theory
3. Influences of the Gold Wires-Filled HC-NCF Structure Parameters on the Propagation Characteristic
4. Low RI Sensing Performances of the Gold Wires-Filled HC-NCF
5. Fabrication Processes of the Gold Wires-Filled HC-NCF
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wei, C.; Weiblen, R.J.; Menyuk, C.R.; Hu, J. Negative curvature fibers. Adv. Opt. Photonics 2017, 9, 504–561. [Google Scholar] [CrossRef]
- Wang, Y.; Hasan, M.I.; Hassan, M.R.A.; Chang, W. Effect of the second ring of antiresonant tubes in negative-curvature fibers. Opt. Express 2020, 28, 1168–1176. [Google Scholar] [CrossRef]
- Nawazuddin, M.B.S.; Wheeler, N.V.; Hayes, J.R.; Sandoghchi, S.R.; Bradley, T.D.; Jasion, G.T.; Slavík, R.; Richardson, D.J.; Poletti, F. Lotus-Shaped Negative Curvature Hollow Core Fiber With 10.5 dB/km at 1550 nm Wavelength. J. Lightwave Technol. 2018, 36, 1213–1219. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, S.; Van Putten, L.D.; Poletti, F.; Sazio, P.J.A. Low Loss Transmission in Negative Curvature Optical Fibers with Elliptical Capillary Tubes. J. Lightwave Technol. 2016, 34, 4228–4231. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Wang, Q.; Lin, Y.; Jin, W.; Xiao, L.; Gao, S.; Wang, Y.; Wang, P.; Ren, W. Photothermal CO detection in a hollow-core negative curvature fiber. Opt. Lett. 2019, 44, 4048–4051. [Google Scholar] [CrossRef]
- Wei, C.; Young, J.T.; Menyuk, C.R.; Hu, J. Temperature sensor based on liquid-filled negative curvature optical fibers. OSA Contin. 2019, 2, 2123–2130. [Google Scholar] [CrossRef]
- Wu, L.; Chu, H.S.; Koh, W.S.; Li, E.P. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, Z.; Yu, Y.; Zhou, L.; Tao, Y.; Li, G.; Yang, J. A Highly Magnetic Field Sensitive Photonic Crystal Fiber Based on Surface Plasmon Resonance. Sensors 2020, 20, 5193. [Google Scholar] [CrossRef]
- Xiao, F.; Michel, D.; Li, G.; Xu, A.; Alameh, K. Simultaneous Measurement of Refractive Index and Temperature Based on Surface Plasmon Resonance Sensors. J. Lightwawe Technol. 2014, 32, 4169–4173. [Google Scholar] [CrossRef]
- Gandhi, M.S.A.; Senthilnathan, K.; Babu, P.R.; Li, Q. Highly Sensitive Localized Surface Plasmon Polariton Based D-Type Twin-Hole Photonic Crystal Fiber Microbiosensor: Enhanced Scheme for SERS Reinforcement. Sensors 2020, 20, 5248. [Google Scholar] [CrossRef]
- Slavík, R.; Homola, J.; Čtyroký, J. Single-mode optical fiber surface plasmon resonance sensor. Sens. Actuators B Chem. 1999, 54, 74–79. [Google Scholar] [CrossRef]
- Xu, Y.; Ang, Y.; Wu, L.S.; Ang, L.K. High Sensitivity Surface Plasmon Resonance Sensor Based on Two-Dimensional MXene and Transition Metal Dichalcogenide: A Theoretical Study. Nanomaterials 2019, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhang, X.; Gao, Y.; Wei, Y.; Wu, P.; Su, Y.; Wu, P. Fiber SPR refractive index sensor with the variable core refractive index. Appl. Opt. 2020, 59, 1323–1328. [Google Scholar] [CrossRef]
- Ding, Z.; Lang, T.; Wang, Y.; Zhao, C. Surface Plasmon Resonance Refractive Index Sensor Based on Tapered Coreless Optical Fiber Structure. J. Lightwave Technol. 2017, 35, 4734–4739. [Google Scholar] [CrossRef]
- Han, H.; Hou, D.; Luan, N.; Bai, Z.; Song, L.; Liu, J.; Hu, Y. Surface Plasmon Resonance Sensor Based on Dual-Side Polished Microstructured Optical Fiber with Dual-Core. Sensor 2020, 20, 3911. [Google Scholar] [CrossRef]
- Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Carrascosa, L.G.; Sina, A.A.I.; Palanisamy, R.; Sepulveda, B.; Otte, M.A.; Rauf, S.; Shiddiky, M.J.A.; Trau, M. Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation. Chem. Commun. 2014, 50, 3585–3588. [Google Scholar] [CrossRef] [Green Version]
- Huang, T. Highly Sensitive SPR Sensor Based on D-shaped Photonic Crystal Fiber Coated with Indium Tin Oxide at Near-Infrared Wavelength. Plasmonics 2016, 12, 583–588. [Google Scholar] [CrossRef]
- Liu, C.; Yang, L.; Lu, X.; Liu, Q.; Wang, F.; Lv, J.; Sun, T.; Mu, H.; Chu, P.K. Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express 2017, 25, 14227–14237. [Google Scholar] [CrossRef]
- Dash, J.N.; Das, R.; Jha, R. AZO Coated Microchannel Incorporated PCF-Based SPR Sensor: A Numerical Analysis. IEEE Photonic Technol. Lett. 2018, 30, 1032–1035. [Google Scholar] [CrossRef]
- Haque, E.; Hossain, M.D.A.; Namihira, Y.; Ahmed, F. Microchannel-based plasmonic refractive index sensor for low refractive index detection. Appl. Opt. 2019, 58, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Gu, S.; Fang, H.; Yang, H. Analysis of Dual-Core Photonic Crystal Fiber Based on Surface Plasmon Resonance Sensor with Segmented Silver Film. Plasmonics 2019, 14, 685–693. [Google Scholar] [CrossRef]
- De, M.; Singh, V.K. Magnetic fluid infiltrated dual core photonic crystal fiber based highly sensitive magnetic field sensor. Opt. Laser Technol. 2018, 106, 61–68. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Chen, H.; Li, J.; Zhang, W.; Wang, M. Surface Plasmon Resonance Induced High Sensitivity Temperature and Refractive Index Sensor Based on Evanescent Field Enhanced Photonic Crystal Fiber. J. Lightwave Technol. 2020, 38, 919–928. [Google Scholar] [CrossRef]
- Qu, Y.W.; Yuan, J.H.; Zhou, X.; Li, F.; Mei, C.; Yan, B.B.; Wu, Q.; Wang, K.R.; Sang, X.Z.; Long, K.P.; et al. A V-shape photonic crystal fiber polarization filter based on surface plasmon resonance effect. Opt. Commun. 2020, 452, 1–6. [Google Scholar] [CrossRef]
- Jiang, L.; Zheng, Y.; Hou, L.; Zheng, K.; Peng, J.; Zhao, X. An ultrabraoadband polarization splitter based on square-lattice dual-core photonic crystal fiber with a gold wire. Opt. Commun. 2015, 351, 50–56. [Google Scholar] [CrossRef]
- Wang, W.; Qiu, S.; Xu, H.; Lin, T.; Meng, F.; Han, Y.; Qi, Y.; Wang, C.; Hou, L. Trench-Assisted Multicore Fiber with Single Supermode Transmission and Nearly Zero Flattened Dispersion. Appl. Sci. 2018, 8, 2483. [Google Scholar] [CrossRef] [Green Version]
- Paul, K.; Sarkar, A.K.; Rahman, A.B.S.; Khaleque, A. Twin Core Photonic Crystal Fiber Plasmonic Refractive Index Sensor. IEEE Sens. J. 2018, 18, 5761–5769. [Google Scholar] [CrossRef]
- Santos, D.F.; Guerreiro, A.; Baptista, J.M. SPR Microstructured D-Type Optical Fiber Sensor Configuration for Refractive Index Measurement. IEEE Sens. J. 2015, 15, 5472–5477. [Google Scholar] [CrossRef]
- Chu, S.; Nakkeeran, K.; Abobaker, A.M.; Aphale, S.S.; Babu, P.R.; Senthilnathan, K. Design and Analysis of Surface-Plasmon-Resonance-Based Photonic Quasi-Crystal Fiber Biosensor for High-Refractive-Index Liquid Analytes. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Wei, C.; Wang, D.; Yuan, L.; Jiao, S.; Bao, Z.; Yang, H. Research on photonic crystal fiber based on a surface plasmon resonance sensor with segmented silver-titanium dioxide film. J. Opt. Soc. Am. B 2020, 37, 736–744. [Google Scholar] [CrossRef]
- Mahfuz, M.A.; Hasan, M.D.R.; Momota, M.R.; Masud, A.; Akter, S. Asymmetrical photonic crystal fiber based plasmonic sensor using the lower birefringence peak method. OSA Contin. 2019, 2, 1713–1725. [Google Scholar] [CrossRef]
- Liu, C.; Su, W.; Wang, F.; Li, X.; Liu, Q.; Mu, H.; Sun, T.; Chu, P.K.; Liu, B. Birefringent PCF-Based SPR Sensor for a Broad Range of Low Refractive Index Detection. IEEE Photonic Technol. Lett. 2018, 30, 1471–1474. [Google Scholar] [CrossRef]
- Pryamikov, A.D.; Biriukov, A.S.; Kosolapov, A.F.; Plotnichenko, V.G.; Semjonov, S.L.; Dianov, E.M. Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm. Opt. Express 2011, 19, 1441–1448. [Google Scholar] [CrossRef]
- Yu, F.; Knight, J.C. Negative Curvature Hollow-Core Optical Fiber. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.W.; Schmidt, M.A.; Russell, R.F.; Joly, N.Y.; Tyagi, H.K.; Uebel, P.; Russell, P.S.J. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Opt. Express 2011, 19, 12180–12189. [Google Scholar] [CrossRef]
- Li, L.; Xiao, L. Plasmonic Nodeless Hollow-Core Photonic Crystal Fibers for In-Fiber Polarizers. J. Lightwave Technol. 2019, 37, 5199–5211. [Google Scholar] [CrossRef]
- Wadsworth, W.J.; Witkowska, A.; Leon-Saval, S.G.; Birks, T.A. Hole inflation and tapering of stock photonic crystal fibres. Opt. Express 2005, 13, 6541–6549. [Google Scholar] [CrossRef]
- Tyagi, H.K.; Lee, H.W.; Uebel, P.; Schmidt, M.A.; Joly, N.; Scharrer, M.; Russell, P.S.J. Plasmon resonances on gold nanowires directly drawn in a step-index fiber. Opt. Lett. 2010, 35, 2573–2575. [Google Scholar] [CrossRef]
Increase of the Structure Parameters | Resonant Wavelength/Peak Loss | Sensitivity/Resolution | FOM |
---|---|---|---|
r1 | Blue-shift/Increased | Unchanged | Slightly Decreased |
t1 | Unchanged | Unchanged | Unchanged |
r2 | Unchanged | Unchanged | Unchanged |
t2 | Unchanged | Unchanged | Unchanged |
r3 | Slightly Red-shift/ Decreased | Unchanged | Unchanged |
t3 | Red-shift/Decreased | Increased/Decreased | Slightly Decreased |
D | Red-shift/Decreased | Unchanged | Slightly Decreased |
Refs. | Structures | RI Range | |Sensitivity| | Resolution (RIU) | FOM (RIU−1) |
---|---|---|---|---|---|
[12] | MXene-based SPR RI sensor | 1–1.36 | N/A (Avg), 198°/RIU (Max) | N/A | N/A |
[18] | Indium tin oxide-coated D-shape PCF sensor | 1.28–1.34 | N/A (Avg), 6000 nm/RIU (Max) | 1.6 × 10−7 | N/A |
[19] | Gold-coated SPR PCF sensor | 1.23–1.29 | N/A (Avg), 5500 nm/RIU (Max) | 7.69 × 10−6 | N/A |
[20] | Aluminum-doped zinc oxide-coated PCF sensor | 1.32–1.34 | N/A (Avg), 5000 nm/RIU (Max) | 2.0 × 10−5 | N/A |
[21] | Gold and TiO2-coated PCF sensor | 1.22–1.34 | N/A (Avg), 7000 nm/RIU (Max) | 1.96 × 10−6 | N/A |
This work | Gold wires-filled HC-NCF sensor | 1.20–1.34 | 4667 nm/RIU (Avg), 5700 nm/RIU (Max) 4833 nm/RIU (Avg), 6100 nm/RIU (Max) | 2.63 × 10−5 2.56 × 10−5 | 317 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, S.; Yuan, J.; Zhou, X.; Li, F.; Wang, Q.; Qu, Y.; Yan, B.; Wu, Q.; Wang, K.; Sang, X.; et al. Hollow-Core Negative Curvature Fiber with High Birefringence for Low Refractive Index Sensing Based on Surface Plasmon Resonance Effect. Sensors 2020, 20, 6539. https://doi.org/10.3390/s20226539
Qiu S, Yuan J, Zhou X, Li F, Wang Q, Qu Y, Yan B, Wu Q, Wang K, Sang X, et al. Hollow-Core Negative Curvature Fiber with High Birefringence for Low Refractive Index Sensing Based on Surface Plasmon Resonance Effect. Sensors. 2020; 20(22):6539. https://doi.org/10.3390/s20226539
Chicago/Turabian StyleQiu, Shi, Jinhui Yuan, Xian Zhou, Feng Li, Qiwei Wang, Yuwei Qu, Binbin Yan, Qiang Wu, Kuiru Wang, Xinzhu Sang, and et al. 2020. "Hollow-Core Negative Curvature Fiber with High Birefringence for Low Refractive Index Sensing Based on Surface Plasmon Resonance Effect" Sensors 20, no. 22: 6539. https://doi.org/10.3390/s20226539