A Recursive Algorithm for Indoor Positioning Using Pulse-Echo Ultrasonic Signals
Abstract
1. Introduction
2. Materials and Methods
2.1. Ultrasound Sensors
2.2. Monitoring Routine
2.3. Experimental Validation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rocchi, A.; Santecchia, E.; Ciciulla, F.; Mengucci, P.; Barucca, G. Characterization and optimization of level measurement by an ultrasonic sensor system. IEEE Sens. J. 2019, 19, 3077–3084. [Google Scholar] [CrossRef]
- Rocchia, A.; Santecchia, E.; Barucca, G.; Menguccia, P. Optimization of distances measurement by an ultrasonic sensor. Mater. Today Proc. 2019, 19, 33–39. [Google Scholar]
- Malvasi, A.; Baldini, D. Pick Up and Oocyte Management; Springer: London, UK, 2020. [Google Scholar]
- Santagati, G.E.; Melodia, T. Experimental Evaluation of Impulsive Ultrasonic Intra-Body Communications for Implantable Biomedical Devices. IEEE Trans. Mob. Comput. 2016, 16, 367–380. [Google Scholar] [CrossRef]
- Bianco, M.G.; Pullano, S.A.; Citraro, R.; Russo, E.; De Sarro, G.; de Villers Sidani, E.; Fiorillo, A.S. Neural Modulation of the Primary Auditory Cortex by Intracortical Microstimulation with a Bio-Inspired Electronic System. Bioengineering 2020, 7, 23. [Google Scholar] [CrossRef]
- Saad, M.; Bleakley, C.J.; Nigram, V.; Kettle, P. Ultrasonic hand gesture recognition for mobile devices. J. Multimodal User Interfaces 2018, 12, 31–39. [Google Scholar] [CrossRef]
- Fiorillo, A.S. Design and Characterization of a PVDF Ultrasonic Range Sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1992, 39, 688–692. [Google Scholar] [CrossRef]
- Pinggera, P.; Franke, U.; Mester, R. High-performance long range obstacle detection using stereo vision. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015. [Google Scholar]
- Rabadan, J.; Guerra, V.; Rodríguez, R.; Rufo, J.; Luna-Rivera, M.; Perez-Jimenez, R. Hybrid Visible Light and Ultrasound-Based Sensor for Distance Estimation. Sensors 2017, 17, 330. [Google Scholar] [CrossRef]
- Dahl, T.; Ealo, J.L.; Bang, H.J.; Holm, S.; Khuri-Yakub, P. Applications of airborne ultrasound in human-computer interaction. Ultrasonics 2014, 54, 1912–1921. [Google Scholar] [CrossRef]
- Carotenuto, R.; Merenda, M.; Iero, D.; Della Corte, F. Mobile Synchronization Recovery for Ultrasonic Indoor Positioning. Sensors 2020, 20, 702. [Google Scholar] [CrossRef]
- Yan, X.; Wu, Q.; Wang, X.; Sun, X. Semicool Temperature Compensation Algorithm Based on the Double Exponential Model in the Ultrasonic Positioning System. IEEE Trans. Instrum. Meas. 2020, 69, 995–1010. [Google Scholar] [CrossRef]
- Toda, M.; Thompson, M. Detailed investigations of polymer/metal multilayer matching layer and backing absorber structures for wideband ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2012, 59, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, A.S.; Grimaldi, D.; Paolino, D.; Pullano, S.A. Low-frequency ultrasound in medicine: An in vivo evaluation. IEEE Trans. Instrum. Meas. 2012, 61, 1658–1663. [Google Scholar] [CrossRef]
- Gurkan, K.; Akan, A. Simulation and Measurement of Air-Coupled Semi-Circular and Conical PVDF Sensors. IEEE Sens. J. 2016, 16, 983–988. [Google Scholar] [CrossRef]
- Gohl, P.; Honegger, D.; Omari, S.; Achtelik, M.; Pollefeys, M.; Siegwart, R. Omnidirectional visual obstacle detection using embedded. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015. [Google Scholar]
- Ionescu, R.; Carotenuto, R.; Urbani, F. 3D localization and tracking of objects using miniature microphones. Wirel. Sens. Netw. 2011, 3, 147. [Google Scholar] [CrossRef][Green Version]
- Chassagne, L.; Bruneau, O.; Bialek, A.; Falguière, C.; Broussard, E.; Barrois, O. Ultrasonic sensor triangulation for accurate 3D relative positioning of humanoid robot feet. IEEE Sens. J. 2015, 15, 2856–2865. [Google Scholar] [CrossRef]
- Jia, L.; Xue, B.; Chen, S.; Wu, H.; Yang, X.; Zhai, J.; Zeng, Z. A High-Resolution Ultrasonic Ranging System Using Laser Sensing and a Cross-Correlation Method. Appl. Sci. 2019, 9, 1483. [Google Scholar] [CrossRef]
- Villladangos, J.M.; Ureña, J.; García, J.J.; Mazo, M.; Hernández, Á.; Jiménez, A.; Ruíz, D.; Marziani, C.D. Measuring Time-of-Flight in an Ultrasonic LPS System Using Generalized Cross-Correlation. Sensors 2011, 11, 10326–10342. [Google Scholar] [CrossRef]
- Toda, M. High sensitivity and wideband design for impedance matching layer between protection Metal and PZT. In Proceedings of the IEEE International Ultrasonics Symposium, Washington, DC, USA, 6–9 September 2017. [Google Scholar]
- Howcroft, J.; Wallace, B.; Goubran, R.; Marshall, S.; Porter, M.M.; Knoefel, F. Trip-Based Measures of Naturalistic Driving: Considerations and Connections with Cognitive Status in Older Adult Drivers. IEEE Trans. Instrum. Meas. 2019, 68, 2451–2459. [Google Scholar] [CrossRef]
- Lavergne, T.; Škvor, Z.; Husník, L.; Bruneau, M. On the modeling of an emitting cylindrical transducer with a piezoelectric polymer membrane. Acta Acust. United Acust. 2016, 102, 705–713. [Google Scholar] [CrossRef]
- Park, J.; Je, Y.; Lee, H.; Moon, W. Design of an ultrasonic sensor for measuring distance and detecting obstacles. Ultrasonics 2010, 50, 340–346. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Pullano, S.A.; Bianco, M.G.; Critello, C.D. Bioinspired US sensor for broadband applications. Sens. Actuators A Phys. 2019, 294, 148–153. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, J.; Lin, L.; Sun, X. Truncated Conical PVDF Film Transducer for Air Ultrasound. IEEE Sens. J. 2019, 19, 8618–8625. [Google Scholar] [CrossRef]
- Corcoran, A.; Moss, C.F. Sensing in a noisy world: Lessons from an auditory specialist, the echolocating bat. J. Exp. Biol. 2017, 220, 4554–4566. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; D’Angelo, G. Echo signals processing with neural network in bat-like sonars based on PVDF. In Proceedings of the IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002. [Google Scholar]
- Grimaldi, D. Time-of-Flight Measurement of Ultrasonic Pulse Echoes Using Wavelet Networks. IEEE Trans. Instrum. Meas. 2006, 55, 5–13. [Google Scholar] [CrossRef]
- Angrisani, L.; Bechou, L.; Dallet, D.; Daponte, P.; Ousten, Y. Detection and location of defects in electronic devices by means of scanning ultrasonic microscopy and the wavelet transform. Measurement 2002, 31, 77–91. [Google Scholar] [CrossRef]
- Jackson, J.C.; Summan, R.; Dobie, G.I.; Whiteley, S.M.; Gareth Pierce, S.; Hayward, G. Time-of-Flight Measurement Techniques for Airborne Ultrasonic Ranging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2013, 60, 343–355. [Google Scholar] [CrossRef]
- Khyam, M.O.; Ge, S.S.; Li, X.; Pickering, M. Orthogonal Chirp-Based Ultrasonic Positioning. Sensors 2017, 17, 976. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Zhang, X.; Wang, D.; Jin, B. Design and Performance Analysis of an Intrinsically Safe Ultrasonic Ranging Sensor. Sensors 2016, 16, 867. [Google Scholar] [CrossRef]
- Suga, N. Cortical Computational Maps for Auditory Imaging. Neural Netw. 1990, 3, 3–21. [Google Scholar] [CrossRef]
- Inoue, S.; Kimyou, M.; Kashimori, Y.; Hoshino, O.; Kamba, T. A neural model of medial geniculate body and auditory cortex detecting target distance independently of target velocity in echolocation. Neurocomputing 2000, 32–33, 833–841. [Google Scholar] [CrossRef]
- Zafari, F.; Gkelias, A.; Leung, K.K. A Survey of Indoor Localization Systems and Technologies. IEEE Commun. Surv. Tutor. 2019, 21, 2568–2599. [Google Scholar] [CrossRef]
- Pelenis, D.; Barauskas, D.; Vanagas, G.; Dzikaras, M.; Viržonis, D. CMUT-based biosensor with convolutional neural network signal processing. Ultrasonics 2019, 99, 105956. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y. Wheelchair Navigation System for Disabled and Elderly People. Sensors 2016, 16, 1806. [Google Scholar] [CrossRef] [PubMed]
- Ealo, J.L.; Camacho, J.J.; Fritsch, C. Airborne ultrasonic phased arrays using ferroelectrets: A new fabrication approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2009, 56, 848–858. [Google Scholar] [CrossRef] [PubMed]
- Marioli, D.; Narduzzi, C.; Offelli, C.; Petri, D.; Sardini, E.; Taroni, A. Digital time of flight measurement for ultrasonic sensors. IEEE Trans. Instrum. Meas. Technol. 1992, 41, 93–97. [Google Scholar] [CrossRef]
- Gurbatov, S.N.; Rudenko, O.V.; Saichev, A.I. Types of Acoustic Nonlinearities and Methods of Nonlinear Acoustic Diagnostics. Waves Struct. Nonlinear Nondispersive Media 2011, 271–307. [Google Scholar] [CrossRef]
- Toda, M.; Tosima, S. Theory of curved, clamped, piezoelectric film, air-borne transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2000, 47, 1421–1431. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Pullano, S.A.; Critello, C.D. Spiral-Shaped Biologically-Inspired Ultrasonic Sensor. Trans. Ultrason. Ferroelectr. Freq. Control. 2019, 67, 635–642. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Pullano, S.A.; Bianco, M.G.; Critello, C.D. Ultrasonic Transducers Shaped in Archimedean and Fibonacci Spiral: A Comparison. Sensors 2020, 20, 2800. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Pullano, S.A.; Menniti, M.; Bianco, M.G.; Critello, C.D. Ultrasonic Transducer for Broadband Applications. Lect. Notes Electr. Eng. 2020, 629. [Google Scholar] [CrossRef]
- Pullano, S.A.; Islam, S.K.; Fiorillo, A.S. Pyroelectric Sensor for Temperature Monitoring of Biological Fluids in Microchannel Devices. IEEE Sens. J. 2014, 14, 2725–2730. [Google Scholar] [CrossRef]
- Carullo, A.; Parvis, M. An ultrasonic sensor for distance measurement in automotive applications. IEEE Sens. J. 2001, 1, 143–147. [Google Scholar] [CrossRef]
- Pullano, S.A.; Fiorillo, A.S.; La Gatta, A.; Lamonaca, F.; Carnì, D.L. Comprehensive System for the Evaluation of the Attention Level of a Driver. In Proceedings of the IEEE International Symposium on Medical Measurements and Applications, Benevento, Italy, 15–18 May 2016. [Google Scholar]
- Wang, H.-Y.; Zhao, M.-M.; Beurier, G.; Wang, X.-G. Automobile Driver Posture Monitoring Systems: A Review. China J. Highw. Transp. 2019, 2, 1–18. [Google Scholar]
- Pullano, S.A.; Fiorillo, A.S.; Vanello, N.; Landini, L. Obstacle Detection System based on Low Quality Factor Ultrasonic Transducers for Medical Devices. In Proceedings of the IEEE International Symposium on Medical Measurements and Applications, Benevento, Italy, 15–18 May 2016. [Google Scholar]
Time | Pulse–Pulse Maxima | Pulse-Echo Maxima | |
---|---|---|---|
Ra1 | T | Ra1 − Rb2 = TOF0 Ra3 − Rb4 = TOF1 d1/v = (TOF1 − TOF0) Ra5 − Rb6 = TOF2 d2/v = TOF2 − TOF1 | Rb1 − Ra2 = TOF0+k k = tb − ta Rb3 − Ra4 = TOF1+k d1/v = (TOF1 + k) − (TOF0 + k) = TOF1 − TOF0 Rb5 − Ra6 = TOF2 + k d2 = (TOF2 + k) − (TOF1 + k) = TOF2 − TOF1 |
Ra2 | (T − td) + ta | ||
Rb1 | (T − tc) + tb | ||
Rb2 | T − d | ||
Ra3 | T | ||
Rb3 | (T − tc1) + ta | ||
Ra4 | (T − td1) + ta | ||
Rb4 | T − d1 | ||
Ra5 | T | ||
Rb5 | (T − tc2) + ta | ||
Ra6 | (T − td2) + ta | ||
Rb6 | T − d |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pullano, S.A.; Bianco, M.G.; Critello, D.C.; Menniti, M.; La Gatta, A.; Fiorillo, A.S. A Recursive Algorithm for Indoor Positioning Using Pulse-Echo Ultrasonic Signals. Sensors 2020, 20, 5042. https://doi.org/10.3390/s20185042
Pullano SA, Bianco MG, Critello DC, Menniti M, La Gatta A, Fiorillo AS. A Recursive Algorithm for Indoor Positioning Using Pulse-Echo Ultrasonic Signals. Sensors. 2020; 20(18):5042. https://doi.org/10.3390/s20185042
Chicago/Turabian StylePullano, Salvatore A., Maria Giovanna Bianco, Davide C. Critello, Michele Menniti, Antonio La Gatta, and Antonino S. Fiorillo. 2020. "A Recursive Algorithm for Indoor Positioning Using Pulse-Echo Ultrasonic Signals" Sensors 20, no. 18: 5042. https://doi.org/10.3390/s20185042
APA StylePullano, S. A., Bianco, M. G., Critello, D. C., Menniti, M., La Gatta, A., & Fiorillo, A. S. (2020). A Recursive Algorithm for Indoor Positioning Using Pulse-Echo Ultrasonic Signals. Sensors, 20(18), 5042. https://doi.org/10.3390/s20185042