A Multi-Pump Magnetohydrodynamics Lab-On-A-Chip Device for Automated Flow Control and Analyte Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Electronics and Hardware
2.3. Apparatus
2.4. Construction and Operation of the Single-Pump MHD Chip
2.5. Construction and Operation of the Multi-Pump MHD Chip
2.6. Valve Construction and Operation
2.7. Firmware, Software, and Operation
3. Results and Discussion
3.1. MHD Chip Optimization
3.2. MHD Multi-Pump Chip with RGB Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Samiei, E.; Tabrizian, M.; Hoorfar, M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab. Chip 2016, 16, 2376–2396. [Google Scholar] [CrossRef] [PubMed]
- da Costa, E.T.; Mora, M.F.; Willis, P.A.; do Lago, C.L.; Jiao, H.; Garcia, C.D. Getting started with open-hardware: Development and control of microfluidic devices. Electrophoresis 2014, 35, 2370–2377. [Google Scholar] [CrossRef] [PubMed]
- Uguz, I.; Proctor, C.M.; Curto, V.F.; Pappa, A.-M.; Donahue, M.J.; Ferro, M.; Owens, R.M.; Khodagholy, D.; Inal, S.; Malliaras, G.G. A Microfluidic Ion Pump for In Vivo Drug Delivery. Adv. Mater. 2017, 29, 1701217. [Google Scholar] [CrossRef] [PubMed]
- Niu, R.; Kreissl, P.; Brown, A.T.; Rempfer, G.; Botin, D.; Holm, C.; Palberg, T.; de Graaf, J. Microfluidic pumping by micromolar salt concentrations. Soft Matter 2017, 13, 1505–1518. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J.M.; Rodriguez, R.X.; Holmes, L.R.; Mather, P.T.; Wetzel, E.D. Thermally driven microfluidic pumping via reversible shape memory polymers. Smart Mater. Struct. 2016, 25, 085043. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, H.; Li, Z.; Wang, W. Chemistry pumps: A review of chemically powered micropumps. Lab. Chip 2016, 16, 1797–1811. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Pu, Q.; Liu, S. Advancement of electroosmotic pump in microflow analysis: A review. Anal. Chim. Acta. 2019, 1060, 1–16. [Google Scholar] [CrossRef]
- Mora, M.F.; Greer, F.; Stockton, A.M.; Bryant, S.; Willis, P.A. Toward Total Automation of Microfluidics for Extraterrestial In Situ Analysis. Anal. Chem. 2011, 83, 8636–8641. [Google Scholar] [CrossRef]
- Weston, M.C.; Gerner, M.D.; Fritsch, I. Magnetic Fields for Fluid Motion. Anal. Chem. 2010, 82, 3411–3418. [Google Scholar] [CrossRef]
- Gregory, T.S.; Cheng, R.; Tang, G.; Mao, L.; Tse, Z.T.H. The Magnetohydrodynamic Effect and Its Associated Material Designs for Biomedical Applications: A State-of-the-Art Review. Adv. Funct. Mater. 2016, 26, 3942–3952. [Google Scholar] [CrossRef]
- Al-Habahbeh, O.M.; Al-Saqqa, M.; Safi, M.; Abo Khater, T. Review of magnetohydrodynamic pump applications. Alex. Eng. J. 2016, 55, 1347–1358. [Google Scholar] [CrossRef] [Green Version]
- Qian, S.; Bau, H.H. Magneto-hydrodynamics based microfluidics. Mech. Res. Commun. 2009, 36, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.; Lee, S.S. Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sens. Actuators Phys. 2000, 80, 84–89. [Google Scholar] [CrossRef]
- Leventis, N.; Gao, X. Magnetohydrodynamic Electrochemistry in the Field of Nd−Fe−B Magnets. Theory, Experiment, and Application in Self-Powered Flow Delivery Systems. Anal. Chem. 2001, 73, 3981–3992. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Yi, M.; Bau, H.H. Magneto hydrodynamic (MHD) pump fabricated with ceramic tapes. Sens. Actuators Phys. 2002, 96, 59–66. [Google Scholar] [CrossRef] [Green Version]
- West, J.; Karamata, B.; Lillis, B.; Gleeson, J.P.; Alderman, J.; Collins, J.K.; Lane, W.; Mathewson, A.; Berney, H. Application of magnetohydrodynamic actuation to continuous flow chemistry. Lab. Chip 2002, 2, 224. [Google Scholar] [CrossRef] [PubMed]
- Bau, H.H.; Zhu, J.; Qian, S.; Xiang, Y. A magneto-hydrodynamically controlled fluidic network. Sens. Actuators B Chem. 2003, 88, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Qian, S.; Bau, H. Magneto-hydrodynamic stirrer for stationary and moving fluids. Sens. Actuators B Chem. 2005, 106, 859–870. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, Z.P.; Arumugam, P.; Fritsch, I. Study of magnetohydrodynamic driven flow through LTCC channel with self-contained electrodes. J. Electroanal. Chem. 2006, 591, 201–209. [Google Scholar] [CrossRef]
- Weston, M.C.; Nash, C.K.; Fritsch, I. Redox-Magnetohydrodynamic Microfluidics Without Channels and Compatible with Electrochemical Detection Under Immunoassay Conditions. Anal. Chem. 2010, 82, 7068–7072. [Google Scholar] [CrossRef] [Green Version]
- Weston, M.C.; Nash, C.K.; Homesley, J.J.; Fritsch, I. Maximizing Flow Velocities in Redox-Magnetohydrodynamic Microfluidics Using the Transient Faradaic Current. Anal. Chem. 2012, 84, 9402–9409. [Google Scholar] [CrossRef] [PubMed]
- Nash, C.K.; Fritsch, I. Poly(3,4-ethylenedioxythiophene)-Modified Electrodes for Microfluidics Pumping with Redox-Magnetohydrodynamics: Improving Compatibility for Broader Applications by Eliminating Addition of Redox Species to Solution. Anal. Chem. 2016, 88, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.Z.; Hutcheson, J.A.; Hunter, C.J.; Powless, A.J.; Benson, D.; Fritsch, I.; Muldoon, T.J. Redox-Magnetohydrodynamically Controlled Fluid Flow with Poly(3,4-ethylenedioxythiophene) Coupled to an Epitaxial Light Sheet Confocal Microscope for Image Cytometry Applications. Anal. Chem. 2018, 90, 7862–7870. [Google Scholar] [CrossRef] [PubMed]
- Homsy, A.; Koster, S.; Eijkel, J.C.T.; van den Berg, A.; Lucklum, F.; Verpoorte, E.; de Rooij, N.F. A high current density DC magnetohydrodynamic (MHD) micropump. Lab. Chip 2005, 5, 466. [Google Scholar] [CrossRef]
- Nguyen, B.; Kassegne, S.K. High-current density DC magenetohydrodynamics micropump with bubble isolation and release system. Microfluid. Nanofluid. 2008, 5, 383–393. [Google Scholar] [CrossRef]
- Homsy, A.; Linder, V.; Lucklum, F.; de Rooij, N.F. Magnetohydrodynamic pumping in nuclear magnetic resonance environments. Sens. Actuators B Chem. 2007, 123, 636–646. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Flanagan, L.; Lee, A.P. Side-Wall Vertical Electrodes for Lateral Field Microfluidic Applications. J. Microelectromech. Syst. 2007, 16, 454–461. [Google Scholar] [CrossRef]
- da Costa, E.T.; Santos, M.F.S.; Jiao, H.; do Lago, C.L.; Gutz, I.G.R.; Garcia, C.D. Fast production of microfluidic devices by CO2 laser engraving of wax-coated glass slides. Electrophoresis 2016, 37, 1691–1695. [Google Scholar] [CrossRef]
- Gabriel, E.F.M.; Coltro, W.K.T.; Garcia, C.D. Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving. Electrophoresis 2014, 35, 2325–2332. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, R.M.; Santos, R.O.d.; Munoz, R.A.A.; Garcia, C.D.; Blanes, L. A Multi-Pump Magnetohydrodynamics Lab-On-A-Chip Device for Automated Flow Control and Analyte Delivery. Sensors 2020, 20, 4909. https://doi.org/10.3390/s20174909
Cardoso RM, Santos ROd, Munoz RAA, Garcia CD, Blanes L. A Multi-Pump Magnetohydrodynamics Lab-On-A-Chip Device for Automated Flow Control and Analyte Delivery. Sensors. 2020; 20(17):4909. https://doi.org/10.3390/s20174909
Chicago/Turabian StyleCardoso, Rafael M., Robson O. dos Santos, Rodrigo A. A. Munoz, Carlos D. Garcia, and Lucas Blanes. 2020. "A Multi-Pump Magnetohydrodynamics Lab-On-A-Chip Device for Automated Flow Control and Analyte Delivery" Sensors 20, no. 17: 4909. https://doi.org/10.3390/s20174909
APA StyleCardoso, R. M., Santos, R. O. d., Munoz, R. A. A., Garcia, C. D., & Blanes, L. (2020). A Multi-Pump Magnetohydrodynamics Lab-On-A-Chip Device for Automated Flow Control and Analyte Delivery. Sensors, 20(17), 4909. https://doi.org/10.3390/s20174909