UV Irradiation-Induced SERS Enhancement in Randomly Distributed Au Nanostructures
Abstract
1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Fabrication
2.3. Characterization and Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Thickness of Au Thin Film
Appendix A.2. RMS Roughness of Au Nanostructures
Appendix A.3. Surface Morphology Before and After UV Treatment
References
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguie, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Lee, Y.H.; Koh, C.S.L.; Gia, C.P.Q.; Han, X.M.; Lay, C.L.; Sim, H.Y.F.; Kao, Y.C.; An, Q.; Ling, X.Y. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: Emerging opportunities in analyte manipulations and hybrid materials. Chem. Soc. Rev. 2019, 48, 731–756. [Google Scholar] [CrossRef] [PubMed]
- Li, J.F.; Zhang, Y.J.; Ding, S.Y.; Panneerselvam, R.; Tian, Z.Q. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117, 5002–5069. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.Y.; You, E.M.; Tian, Z.Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076. [Google Scholar] [CrossRef]
- Ding, S.Y.; Yi, J.; Li, J.F.; Ren, B.; Wu, D.Y.; Panneerselvam, R.; Tian, Z.Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021. [Google Scholar] [CrossRef]
- Tang, L.; Li, S.; Han, F.; Liu, L.; Xu, L.; Ma, W.; Kuang, H.; Li, A.; Wang, L.; Xu, C. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens. Bioelectron. 2015, 71, 7–12. [Google Scholar] [CrossRef]
- Ma, W.; Kuang, H.; Wang, L.; Xu, L.; Chang, W.S.; Zhang, H.; Sun, M.; Zhu, Y.; Zhao, Y.; Liu, L.; et al. Chiral plasmonics of self-assembled nanorod dimers. Sci. Rep. 2013, 3, 1934. [Google Scholar] [CrossRef]
- Ahmed, I.; Abdelrahman, A.M.M. Takeyoshi Okajima, and Takeo Ohsaka, Fabrication and Electrochemical Application of Three-Dimensional Gold Nanoparticles: Self-Assembly. J. Phys. Chem. B 2006, 110, 2798–2803. [Google Scholar]
- Liu, H.L.; Yang, Z.L.; Meng, L.Y.; Sun, Y.D.; Wang, J.; Yang, L.B.; Liu, J.H.; Tian, Z.Q. Three-Dimensional and Time-Ordered Surface-Enhanced Raman Scattering Hotspot Matrix. J. Am. Chem. Soc. 2014, 136, 5332–5341. [Google Scholar] [CrossRef]
- Huang, T.; Cao, L.; Zhang, X.; Xiong, X.Y.; Xu, J.J.; Xiao, R.S. A facile method to fabricate a novel 3D porous silicon/gold architecture for surface enhanced Raman scattering. J. Alloys Compounds 2019, 790, 127–133. [Google Scholar] [CrossRef]
- Fu, F.Y.; Yang, B.B.; Hu, X.M.; Tang, H.Y.; Zhang, Y.P.; Xu, X.Y.; Zhang, Y.Y.; Touhid, S.S.B.; Liu, X.D.; Zhu, Y.F.; et al. Biomimetic synthesis of 3D Au-decorated chitosan nanocomposite for sensitive and reliable SERS detection. Chem. Eng. J. 2020, 392, 123693. [Google Scholar] [CrossRef]
- Huang, Y.P.; Huang, S.C.; Wang, X.J.; Bodappa, N.; Li, C.Y.; Yin, H.; Su, H.S.; Meng, M.; Zhang, H.; Ren, B.; et al. Shell-Isolated Tip-Enhanced Raman and Fluorescence Spectroscopy. Angew. Chem.-Int. Ed. 2018, 57, 7523–7527. [Google Scholar] [CrossRef]
- Zrimsek, A.B.; Chiang, N.H.; Mattei, M.; Zaleski, S.; McAnally, M.O.; Chapman, C.T.; Henry, A.I.; Schatz, G.C.; Van Duyne, R.P. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117, 7583–7613. [Google Scholar] [CrossRef] [PubMed]
- Verma, P. Tip-Enhanced Raman Spectroscopy: Technique and Recent Advances. Chem. Rev. 2017, 117, 6447–6466. [Google Scholar] [CrossRef] [PubMed]
- van Schrojenstein Lantman, E.M.; Deckert-Gaudig, T.; Mank, A.J.G.; Deckert, V.; Weckhuysen, B.M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 2012, 7, 583–586. [Google Scholar] [CrossRef]
- Li, J.F.; Huang, Y.F.; Ding, Y.; Yang, Z.L.; Li, S.B.; Zhou, X.S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Wu, D.Y.; et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Lu, J.; Liu, T.; Chen, G.; Liu, G.; Ren, B.; Tian, Z. Key Role of Direct Adsorption on SERS Sensitivity: Synergistic Effect among Target, Aggregating Agent, and Surface with Au or Ag Colloid as Surface-Enhanced Raman Spectroscopy Substrate. J. Phys. Chem. Lett. 2020, 11, 1022–1029. [Google Scholar] [CrossRef]
- Bailey, M.R.; Martin, R.S.; Schultz, Z.D. Role of Surface Adsorption in the Surface-Enhanced Raman Scattering and Electrochemical Detection of Neurotransmitters. J. Phys. Chem. C 2016, 120, 20624–20633. [Google Scholar] [CrossRef]
- Skoupa, V.; Jenistova, A.; Setnicka, V.; Matejka, P. Role of TiO2 Nanoparticles and UV Irradiation in the Enhancement of SERS Spectra To Improve Levamisole and Cocaine Detection on Au Substrates. Langmuir 2019, 35, 4540–4547. [Google Scholar] [CrossRef]
- Hai, L.T.; Tiggelaar, R.M.; Berenschot, E.; van den Berg, A.; Tas, N.; Eijkel, J.C.T. Postdeposition UV-Ozone Treatment: An Enabling Technique to Enhance the Direct Adhesion of Gold Thin Films to Oxidized Silicon. ACS Nano 2019, 13, 6782–6789. [Google Scholar]
- Chatterjee, A.; Gale, D.J.G.; Grebennikov, D.; Whelan, L.D.; Merschrod, S.E. Surface potential and morphology mapping to investigate analyte adsorption effects on surface enhanced Raman scattering (SERS). Chem. Commun. 2017, 53, 12024–12027. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, H.; Shentu, B.Q. Effect of surface modification of titanium dioxide on the UV-C aging behavior of silicone rubber. J. Appl. Polym. Sci. 2019, 136, 47170. [Google Scholar] [CrossRef]
- Yanez-Pacios, A.J.; Martin-Martinez, J.M. Surface modification and adhesion of wood-plastic composite (WPC) treated with UV/ozone. Compos. Interfaces 2018, 25, 127–149. [Google Scholar] [CrossRef]
- Verkuijlen, R.O.F.; van Dongen, M.H.A.; Stevens, A.A.E.; van Geldrop, J.; Bernards, J.P.C. Surface modification of polycarbonate and polyethylene naphtalate foils by UV-ozone treatment and mu Plasma printing. Appl. Surf. Sci. 2014, 290, 381–387. [Google Scholar] [CrossRef]
- Murakami, T.N.; Fukushima, Y.; Hirano, Y.; Tokuoka, Y.; Takahashi, M.; Kawashima, N. Surface modification of polystyrene and poly(methyl methacrylate) by active oxygen treatment. Colloids Surf. B-Biointerfaces 2003, 29, 171–179. [Google Scholar] [CrossRef]
- Zeng, Y.; Du, X.; Hou, W.; Liu, X.J.; Zhu, C.; Gao, B.B.; Sun, L.D.; Li, Q.W.; Liao, J.L.; Levkin, P.A.; et al. UV-Triggered Polydopamine Secondary Modification: Fast Deposition and Removal of Metal Nanoparticles. Adv. Funct. Mater. 2019, 29, 1901875. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Nastulyavichus, A.A.; Tolordava, E.R.; Kirichenko, A.N.; Saraeva, I.N.; Rudenko, A.A.; Romanova, Y.M.; Panarin, A.Y.; Ionin, A.A.; Itina, T.E. Surface-Enhanced IR-Absorption Microscopy of Staphylococcus aureus Bacteria on Bactericidal Nanostructured Si Surfaces. Molecules 2019, 24, 4488. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Lin, X.; Li, Z.; Wang, X.; Qiao, Y.; Zhao, H.; Zhang, J.; Wang, L. Fabrication of highly sensitive and reproducible 3D surface-enhanced Raman spectroscopy substrates through in situ cleaning and layer-by-layer assembly of Au@Ag nanocube monolayer film. Nanotechnology 2019, 30, 345604. [Google Scholar] [CrossRef]
- Kumar, S.; Lodhi, D.K.; Singh, J.P. Highly sensitive multifunctional recyclable Ag–TiO2 nanorod SERS substrates for photocatalytic degradation and detection of dye molecules. RSC Adv. 2016, 6, 45120–45126. [Google Scholar] [CrossRef]
- Saliba, N.; Parker, D.H.; Koel, B.E. Adsorption of oxygen on Au (111) by exposure to ozone. Surf. Sci. 1998, 410, 270–282. [Google Scholar] [CrossRef]
- Sun, K.J.; Kohyama, M.; Tanaka, S.; Takeda, S. Theoretical Study of Atomic Oxygen on Gold Surface by Huckel Theory and DFT Calculations. J. Phys. Chem. A 2012, 116, 9568–9573. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Kim, D.Y. Hydrophobic Paper-Based SERS Sensor Using Gold Nanoparticles Arranged on Graphene Oxide Flakes. Sensors 2019, 19, 5471. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, R.J.; Ma, X.F.; Liu, X.Y.; Zhang, Y.X.; Zhang, J. Ag nanoparticle decorated MnO2 flakes as flexible SERS substrates for rhodamine 6G detection. RSC Adv. 2018, 8, 37750–37756. [Google Scholar] [CrossRef]
- Yang, L.; Hu, J.; He, L.; Tang, J.; Zhou, Y.; Li, J.; Ding, K. One-pot synthesis of multifunctional magnetic N-doped graphene composite for SERS detection, adsorption separation and photocatalytic degradation of Rhodamine 6G. Chem. Eng. J. 2017, 327, 694–704. [Google Scholar] [CrossRef]
- Eckertová, L. Mechanism of Film Formation. In Physics of Thin Films; Springer: Boston, MA, USA, 1977; pp. 72–114. [Google Scholar]
- Worley, C.G.; Linton, R.W. Removing sulfur from gold using ultraviolet/ozone cleaning. J. Vac. Sci. Technol. A 1995, 13, 2281–2284. [Google Scholar] [CrossRef]
- Moldovan, A.; Feldmann, F.; Krugel, G.; Zimmer, M.; Rentsch, J.; Hermle, M.; Roth-Fölsch, A.; Kaufmann, K.; Hagendorf, C. Simple Cleaning and Conditioning of Silicon Surfaces with UV/Ozone Sources. Energy Procedia 2014, 55, 834–844. [Google Scholar] [CrossRef]
- Vig, J.R. UV/Ozone Cleaning of Surfaces: A Review. In Surface Contamination; Mittal, K.L., Ed.; Springer: Boston, MA, USA, 1979; pp. 235–254. [Google Scholar]
RT | 150 °C | 250 °C | 350 °C | |
---|---|---|---|---|
Au3.4 | 7.76% | 8.95% | 3.54% | 19.28% |
Au4.5 | 4.68% | 14.14% | 7.72% | 68.75% |
Au6.4 | 46.44% | 40.61% | 1.3% | 7.28% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-J.; Kim, D.Y. UV Irradiation-Induced SERS Enhancement in Randomly Distributed Au Nanostructures. Sensors 2020, 20, 3842. https://doi.org/10.3390/s20143842
Lee D-J, Kim DY. UV Irradiation-Induced SERS Enhancement in Randomly Distributed Au Nanostructures. Sensors. 2020; 20(14):3842. https://doi.org/10.3390/s20143842
Chicago/Turabian StyleLee, Dong-Jin, and Dae Yu Kim. 2020. "UV Irradiation-Induced SERS Enhancement in Randomly Distributed Au Nanostructures" Sensors 20, no. 14: 3842. https://doi.org/10.3390/s20143842
APA StyleLee, D.-J., & Kim, D. Y. (2020). UV Irradiation-Induced SERS Enhancement in Randomly Distributed Au Nanostructures. Sensors, 20(14), 3842. https://doi.org/10.3390/s20143842