A Solution to Ambiguities in Position Estimation for Solenoid Actuators by Exploiting Eddy Current Variations
Abstract
1. Introduction
2. Analysis of Current Ripples Inside Solenoid Actuators Considering Eddy Currents
2.1. Magnetic Circuit Model Including Eddy Currents
2.2. Electrical Circuit Model
2.3. Current Ripples Induced by a PWM Voltage
3. Position Estimation Using Differential Inductance and Eddy Current Information
3.1. Inductance-Based Position Estimation
3.2. Eddy Current-Based Position Estimation
3.3. Position Data Fusion
4. Experimental Results
4.1. Characterization of the Actuator
4.2. End-Position Detection
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kramer, T.; Weber, J.; Pflug, G.; Harnisch, B. Intelligent Condition Monitoring of Bi-stable Process Valves. Fluid Power Networks 2018, 3, 382–393. [Google Scholar] [CrossRef]
- Kramer, T.; Weber, J.; Pflug, G.; Harnisch, B. Investigations on Condition Monitoring and Potential Energy Savings of Bi-Stable Process Valves Using Position Estimation. In Proceedings of the 2017 Symposium on Fluid Power and Motion Control, Sarasota, FL, USA, 16–19 October 2017. [Google Scholar]
- Gadyuchko, A.; Kireev, V.; Rosenbaum, S. Magnetic Precision Measurement for Electromagnetic Actuators. In Proceedings of the IKMT 2015; 10. ETG/GMM-Symposium Innovative small Drives and Micro-Motor Systems, Cologne, Germany, 14–15 September 2015. [Google Scholar]
- Braun, T.; Reuter, J.; Rudolph, J. Sensorlose Positionsregelung eines hydraulischen Proportional-Wegeventils mittels Signalinjektion. AT-Automatisierungstechnik 2017, 65. [Google Scholar] [CrossRef]
- Espinosa, A.; Ruiz, J.R.; Cusido, J.; Morera, X. Sensorless Control and Fault Diagnosis of Electromechanical Contactors. IEEE Trans. Ind. Electron. 2008, 55, 3742–3750. [Google Scholar] [CrossRef]
- Richter, S. Ein Beitrag zur Integration von Maßnahmen der Funktionalen Sicherheit in Einen Geregelten Elektrohydraulischen Antrieb für Stationäre Anwendungen, 3rd ed.; Fluidmechatronische Systeme, Shaker: Herzogenrath, Germany, 2016. [Google Scholar]
- Eyabi, P.B. Modeling and Sensorless Control of Solenoidal Acutators. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2003. [Google Scholar]
- Braun, T.; Reuter, J.; Rudolph, J. Observer Design for Self-Sensing of Solenoid Actuators with Application to Soft Landing. IEEE Trans. Control Syst. Technol. 2018, 27, 1720–1727. [Google Scholar] [CrossRef]
- Kučera, L. Zur Sensorlosen Magnetlagerung. Ph.D. Thesis, Eigenössische Technische Hochschule Zürich, Zürich, Switzerland, 1997. [Google Scholar]
- Schweitzer, G.; Maslen, E.H. Magnetic Bearings: Theory, Design, and Application to Rotating Machinery, 3rd ed.; Springer: Dordrecht, NY, USA, 2009. [Google Scholar]
- Ganev, E. Sensorless Position Measurement Method for Solenoid-Based Actuation Devices Using Inductance Variation. U.S. Patent US20070030619A1, 2 February 2007. [Google Scholar]
- Pawelczak, D.; Trankler, H.R. Sensorless position control of electromagnetic linear actuator. In Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510), Como, Italy, 18–20 May 2004. [Google Scholar]
- Rahman, M.; Cheung, N.; Lim, K. A Sensorless Position Estimator for a Nonlinear Solenoid Actuator. In Proceedings of the IECON ’95—21st Annual Conference on IEEE Industrial Electronics, Orlando, FL, USA, 6–10 November 1995. [Google Scholar]
- Rahman, M.; Cheung, N.; Lim, K.W. Position estimation in solenoid actuators. IEEE Trans. Ind. Appl. 1996, 32, 552–559. [Google Scholar] [CrossRef]
- Li, L.; Shinshi, T.; Shimokohbe, A. State Feedback Control for Active Magnetic Bearings Based on Current Change Rate Alone. IEEE Trans. Magn. 2004, 40, 3512–3517. [Google Scholar] [CrossRef]
- Kamf, T.; Abrahamsson, J. Self-Sensing Electromagnets for Robotic Tooling Systems: Combining Sensor and Actuator. Machines 2016, 4, 16. [Google Scholar] [CrossRef]
- Renn, J.C.; Chou, Y.S. Sensorless Plunger Position Control for a Switching Solenoid. JSME Int. J. Ser. C 2004, 47, 637–645. [Google Scholar] [CrossRef][Green Version]
- Dulk, I.; Kovacshazy, T. Modelling of a linear proportional electromagnetic actuator and possibilities of sensorless plunger position estimation. In Proceedings of the 2011 12th International Carpathian Control Conference (ICCC), Velke Karlovice, Czech Republic, 25–28 May 2011. [Google Scholar]
- Dulk, I.; Kovacshazy, T. Sensorless position estimation in solenoid actuators with load compensation. In Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 13–16 May 2012. [Google Scholar]
- Glück, T.; Kemmetmüller, W.; Tump, C.; Kugi, A. A novel robust position estimator for self-sensing magnetic levitation systems based on least squares identification. Control Eng. Pract. 2011, 19, 146–157. [Google Scholar] [CrossRef]
- Glück, T. Soft Landing and Self-Sensing Strategies for Electromagnetic Actuators, 3rd ed.; Shaker: Aachen, Germany, 2013. [Google Scholar]
- Ahmed, S.; Doan, V.D.; Koseki, T. Electromagnetic levitation control with sensorless large air gap detection for translational motion application using measured current-ripple slope. In Proceedings of the IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016. [Google Scholar]
- Pawelczak, D.R. Nutzung inhärenter Messeffekte von Aktoren und Methoden zur Sensorlosen Positionsmessung im Betrieb. Ph.D. Thesis, Bundeswehr University Munich, Munich, Germany, 2006. [Google Scholar]
- Noh, M.; Maslen, E. Self-sensing magnetic bearings using parameter estimation. IEEE Trans. Instrum. Meas. 1997, 46, 45–50. [Google Scholar] [CrossRef]
- Grasso, E.; König, N.; Nienhaus, M.; Merl, D. Verfahren und Vorrichtung zur Bestimmung Einer Induktivitätsangabe Eines Elektromagnetischen Aktuators. EP Patent EP3544173A1, 25 September 2019. [Google Scholar]
- König, N.; Nienhaus, M.; Grasso, E. Analysis of Current Ripples in Electromagnetic Actuators with Application to Inductance Estimation Techniques for Sensorless Monitoring. Actuators 2020, 9, 17. [Google Scholar] [CrossRef]
- Straussberger, F.; Schwab, M.; Braun, T.; Reuter, J. Position estimation in electro-magnetic actuators using a modified discrete time class A/B model reference approach. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014. [Google Scholar]
- Straussberger, F.; Schwab, M.; Braun, T.; Reuter, J. New results for position estimation in electro-magnetic actuators using a modified discrete time class A/B model reference approach. In Proceedings of the 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 2–5 September 2014. [Google Scholar]
- Kallenbach, E.; Eick, R.; Quendt, P.; Ströhla, T.; Feindt, K.; Kallenbach, M.; Radler, O. Elektromagnete: Grundlagen, Berechnung, Entwurf und Anwendung; mit 38 Tabellen, 3rd ed.; Vieweg + Teubner: Wiesbaden, Germany, 2012. [Google Scholar]
- Ströhla, T. Ein Beitrag zur Simulation und zum Entwurf von Elektromagnetischen Systemen mit Hilfe der Netzwerkmethode. Ph.D. Thesis, Technische Universität Ilmenau, Ilmenau, Germany, 2002. [Google Scholar]
- Meeker, D.; Maslen, E.; Noh, M. An augmented circuit model for magnetic bearings including eddy currents, fringing, and leakage. IEEE Trans. Magn. 1996, 32, 3219–3227. [Google Scholar] [CrossRef]
- Ranft, E.; van Schoor, G.; Rand, C.d. Self-sensing for electromagnetic actuators. Part II: Position estimation. Sens. Actuators A 2011, 172, 410–419. [Google Scholar] [CrossRef]
- Fraga, E.; Prados, C.; Chen, D.X. Practical model and calculation of AC resistance of long solenoids. IEEE Trans. Magn. 1998, 34, 205–212. [Google Scholar] [CrossRef]
- Schröder, D. Intelligente Verfahren: Identifikation und Regelung nichtlinearer Systeme, 3rd ed.; Springer: Berlin, Germany, 2010. [Google Scholar]
- Koenig, N.; Grasso, E.; Merl, D.; Nienhaus, M. A Position Estimation Method for Single-Phase Electrical Machines Without Injecting Extra Test Pulses. In Proceedings of the 2018 IEEE 9th International Symposium on Sensorless Control for Electrical Drives (SLED), Helsinki, Finland, 13–14 September 2018. [Google Scholar]
- Analog Devices. AD8418 Datasheet and Product Info|Analog Devices. Available online: https://www.analog.com/en/products/ad8418.html (accessed on 13 January 2020).
- Physik Instrumente (PI) GmbH. M-403 Linear Stage. Available online: https://www.physikinstrumente.com/en/products/linear-stages/stages-with-stepper-dc-brushless-dc-bldc-motors/m-403-precision-translation-stage-701750/ (accessed on 13 January 2020).
- Red Magnetics. ITS-LZ 1949-Z. Available online: https://red-magnetics.com/de/produktgruppen/hubmagnete/zylindermagnete/its-lz-1949-z/ (accessed on 24 March 2020).
Parameter | Value |
---|---|
Nominal Voltage | 24 V |
Series Resistance | 23 Ω |
Nominal Stroke | 10 mm |
Max. Force | 6 N |
PWM Frequency | 1000 Hz |
Reset time | 50 μs |
Measurement time | −12 μs |
Measurement time | 20 μs |
Low pass filter frequency | 20 Hz |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
König, N.; Nienhaus, M. A Solution to Ambiguities in Position Estimation for Solenoid Actuators by Exploiting Eddy Current Variations. Sensors 2020, 20, 3441. https://doi.org/10.3390/s20123441
König N, Nienhaus M. A Solution to Ambiguities in Position Estimation for Solenoid Actuators by Exploiting Eddy Current Variations. Sensors. 2020; 20(12):3441. https://doi.org/10.3390/s20123441
Chicago/Turabian StyleKönig, Niklas, and Matthias Nienhaus. 2020. "A Solution to Ambiguities in Position Estimation for Solenoid Actuators by Exploiting Eddy Current Variations" Sensors 20, no. 12: 3441. https://doi.org/10.3390/s20123441
APA StyleKönig, N., & Nienhaus, M. (2020). A Solution to Ambiguities in Position Estimation for Solenoid Actuators by Exploiting Eddy Current Variations. Sensors, 20(12), 3441. https://doi.org/10.3390/s20123441