A Breakthrough Application of a Cross-Linked Polystyrene Anion-Exchange Membrane for a Hydrogencarbonate Ion-Selective Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Ion-Exchanger Membrane
2.3. Hydrogencarbonate (Bicarbonate) Ion-Selective Electrode
2.4. Potentiometric Measurements
2.5. Measuring Procedure
2.6. Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS)
3. Results and Discussion
3.1. Inducing Sensitivity towards Bicarbonates
3.2. Sensitivity of the Sensor
3.3. Electrode Response and Selectivity
3.4. Determination of Bicarbonates in Samples by Simplex Method
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lewenstam, A. Routines and Challenges in Clinical Application of Electrochemical Ion-Sensors. Electroanalysis 2014, 26, 1171–1181. [Google Scholar] [CrossRef]
- Grekovich, A.L.; Mikhelson, K.N. An Anomalous Behavior of Anion-Exchange Membranes with Low Concentration of Quaternary Ammonium Sites: An Apparent Selectivity to Bicarbonate and Phosphate, and Its True Nature. Electroanalysis 2002, 14, 1391–1396. [Google Scholar] [CrossRef]
- Maj-Zurawska, M.; Sokalski, T.; Ostaszewska, J.; Paradowski, D.; Mieczkowski, J.; Czarnocki, Z.; Lewenstam, A.; Hulanicki, A. Carbonate Ion Selective Electrodes with Trifluoroacetophenone Derivatives in Potentiometric Clinical Analyser. Talanta 1997, 44, 1641–1647. [Google Scholar] [CrossRef]
- Bobacka, J.; Maj-Zurawska, M.; Lewenstam, A. Carbonate Ion-Selective Electrode with Reduced Interference from Salicylate. Biosens. Bioelectron. 2003, 18, 245–253. [Google Scholar] [CrossRef]
- Sokalski, T.; Paradowski, D.; Ostaszewska, J.; Maj-Żurawska, M.; Mieczkowski, J.; Lewenstam, A.; Hulanicki, A. Observations on the Behaviour of Some Trifluoroacetophenone Derivatives as Neutral Carriers for Carbonate Ion-Selective Electrodes. Analyst 1996, 121, 133–138. [Google Scholar] [CrossRef]
- Levitchev, S.; Smirnova, A.; Khitrova, V.; Lvova, L.; Bratov, A.; Vlasov, Y. Photocurable Carbonate-Selective Membranes for Chemical Sensors Containing Lipophilic Additives. Sens. Actuators B Chem. 1997, 44, 397–401. [Google Scholar] [CrossRef]
- Xie, X.; Bakker, E. Non-Severinghaus Potentiometric Dissolved CO2 Sensor with Improved Characteristics. Anal. Chem. 2013, 85, 1332–1336. [Google Scholar] [CrossRef] [PubMed]
- Zhan, N.; Huang, Y.; Rao, Z.; Zhao, X.-L. Fast Detection of Carbonate and Bicarbonate in Groundwater and Lake Water by Coupled Ion Selective Electrode. Chin. J. Anal. Chem. 2016, 44, 355–360. [Google Scholar] [CrossRef]
- Mikhelson, K.N. Ion-Selective Electrodes; Lecture notes in chemistry; Springer: Berlin, Germany, 2013. [Google Scholar]
- Park, E.R.; Chung, Y.J.; Hwang, S.W.; Heo, M.; Chae, Y.J.; Kim, H.S.; Lee, S.W.; Shin, J.H.; Kim, I.T.; Kwan, G.-C.; et al. All-Solid-State Ion-Selective Silicone Rubber Membrane Electrodes with a New Conducting Polymer. J. Korean Phys. Soc. 2012, 60, 925–928. [Google Scholar] [CrossRef]
- Cha, M.J.; Shin, J.H.; Oh, B.K.; Kim, C.Y.; Cha, G.S.; Shin, D.S.; Kim, B. Asymmetric Cellulose Acetate Membrane-Based Carbonate- and Chloride-Selective Electrodes. Anal. Chim. Acta 1995, 315, 311–319. [Google Scholar] [CrossRef]
- Sakong, D.S.; Cha, M.J.; Shin, J.H.; Cha, G.S.; Ryu, M.S.; Hower, R.W.; Brown, R.B. Asymmetric Membrane-Based Potentiometric Solid-State Ion Sensors. Sens. Actuators B Chem. 1996, 32, 161–166. [Google Scholar] [CrossRef]
- Moulay, S. Chemical Modification of Poly(Vinyl Chloride)—Still on the Run. Prog. Polym. Sci. 2010, 35, 303–331. [Google Scholar] [CrossRef]
- Górski, Ł.; Malinowska, E. Fluoride-Selective Sensors Based on Polyurethane Membranes Doped with Zr(IV)-Porphyrins. Anal. Chim. Acta 2005, 540, 159–165. [Google Scholar] [CrossRef]
- González-Bellavista, A.; Macanás, J.; Muñoz, M.; Fabregas, E. Sulfonated Poly(Ether Ether Ketone) as an Alternative Charged Material to Poly(Vinyl Chloride) in the Design of Ion-Selective Electrodes. Anal. Chim. Acta 2006, 577, 85–90. [Google Scholar] [CrossRef]
- Dabrowska, S.; Migdalski, J.; Lewenstam, A. Direct Potentiometric Determination of Hydrogen Carbonate in Mineral Waters. Electroanalysis 2017, 29, 140–145. [Google Scholar] [CrossRef]
- Varcoe, J.R.; Atanassov, P.; Dekel, D.R.; Herring, A.M.; Hickner, M.A.; Kohl, P.A.; Kucernak, A.R.; Mustain, W.E.; Nijmeijer, K.; Scott, K.; et al. Anion-Exchange Membranes in Electrochemical Energy Systems. Energy Environ. Sci. 2014, 7, 3135–3191. [Google Scholar] [CrossRef]
- Hickner, M.A. Strategies for Developing New Anion Exchange Membranes and Electrode Ionomers. Electrochem. Soc. Interface 2017, 26, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Lewenstam, A.; Ivaska, A.; Wänninen, E. Single-Point Titration of Metal Ions and Ligands by Measuring Change in pH. Talanta 1986, 33, 739–742. [Google Scholar] [CrossRef]
- Kortlever, R.; Tan, K.H.; Kwon, Y.; Koper, M.T.M. Electrochemical Carbon Dioxide and Bicarbonate Reduction on Copper in Weakly Alkaline Media. J. Solid State Electrochem. 2013, 17, 1843–1849. [Google Scholar] [CrossRef]
- Encyclopedia of Life Support Systems (Eolss): V.1: Desalination and Water Resources (Desware): Membrane Processes; EOLSS Publishers Co., Ltd.: Oxford, UK, 2010.
- Li, N.; Guiver, M.D. Ion Transport by Nanochannels in Ion-Containing Aromatic Copolymers. Macromolecules 2014, 47, 2175–2198. [Google Scholar] [CrossRef] [Green Version]
- Koter, S. Transport of Simple Electrolyte Solutions through Ion-Exchange Membranes—The Capillary Model. J. Membr. Sci. 2002, 206, 201–215. [Google Scholar] [CrossRef]
- Hulanicki, A.; Lewenstam, A. Interpretation of Selectivity Coefficients of Solid-State Ion-Selective Electrodes by Means of the Diffusion-Layer Model. Talanta 1977, 24, 171–175. [Google Scholar] [CrossRef]
- Lewenstam, A. Non-Equilibrium Potentiometry—The Very Essence. J. Solid State Electrochem. 2011, 15, 15–22. [Google Scholar] [CrossRef]
- Karas, F.; Hnát, J.; Paidar, M.; Schauer, J.; Bouzek, K. Determination of the Ion-Exchange Capacity of Anion-Selective Membranes. Int. J. Hydrogen Energy 2014, 39, 5054–5062. [Google Scholar] [CrossRef]
- Morf, W.E. The Principles of Ion-Selective Electrodes and of Membrane Transport; Elsevier Science: Burlington, NJ, USA, 2012. [Google Scholar]
- Sata, T. Studies on Anion Exchange Membranes Having Permselectivity for Specific Anions in Electrodialysis—Effect of Hydrophilicity of Anion Exchange Membranes on Permselectivity of Anions. J. Membr. Sci. 2000, 167, 1–31. [Google Scholar] [CrossRef]
- Amel, A.; Gavish, N.; Zhu, L.; Dekel, D.R.; Hickner, M.A.; Ein-Eli, Y. Bicarbonate and Chloride Anion Transport in Anion Exchange Membranes. J. Membr. Sci. 2016, 514, 125–134. [Google Scholar] [CrossRef]
- Bezerra, M.A.; dos Santos, Q.O.; Santos, A.G.; Novaes, C.G.; Ferreira, S.L.C.; de Souza, V.S. Simplex Optimization: A Tutorial Approach and Recent Applications in Analytical Chemistry. Microchem. J. 2016, 124, 45–54. [Google Scholar] [CrossRef]
Mineral Water | |||||
Water Sample | Total mineral content [mg L−1] | HCO3− [mmol L−1] | Cl− [mmol L−1] | Br− [mmol L−1] | SO42− [mmol L−1] |
Jan | 821.5 | 8.6 | 1.2 | - | 0.52 |
Jozef | 2276.0 | 21.5 | 7.5 | - | - |
Slotwinka | 3931.2 | 49.1 | 0.45 | - | 0.04 |
Donat Mg | 13055.0 | 121.9 | 1.7 | - | 21.4 |
Franciszek | 16030.0 | 139.0 | 65.0 | 11.2 | 11.2 |
Cisowianka | 742.0 | 8.8 | - | - | - |
Staropolanka | 800.0 | 9.3 | 0.19 | - | 0.33 |
Kryniczanka | 2094.9 | 25.5 | 0.27 | - | 0.03 |
Samples | |||||
NaHCO3 [mmol L−1] | NaCl [mmol L−1] | ||||
1 | 100 | 10 | |||
2 | 50 | 10 | |||
3 | 25 | 10 | |||
4 | 100 | 100 | |||
5 | 50 | 100 | |||
6 | 25 | 100 |
Polystyrene Membrane | PVC Membrane | ||
---|---|---|---|
Interfering ion | |||
FPM | SSM | SSM | |
−0.44 ± 0.01 | −0.33 ± 0.08 | 0.72 ± 0.05 | |
0.65 ± 0.01 | 0.48 ± 0.01 | 1.08 ± 0.02 | |
0.65 ± 0.01 | 0.60 ± 0.05 | 2.45 ± 0.02 |
Series 1 | Series 2 | ||||
---|---|---|---|---|---|
No | HCO3− [mol L−1] | Cl− [mol L−1] | No | HCO3− [mol L−1] | Cl− [mol L−1] |
1.1 | 10−1 | 10−3 | 2.1 | 10−3 | 10−1 |
1.2 | 10−2 | 10−2 | 2.2 | 10−2 | 10−2 |
1.3 | 10−3 | 10−1 | 2.3 | 10−1 | 10−3 |
Vertex | E0 [mV] | S [mV/log a] | |
---|---|---|---|
1 | 29.3 | −58.1 | 3.02 |
2 | 29.3 + 1 · 0.1 | −58.1 | 3.02 |
3 | 29.3 + 0.5 · 0.1 | −58.1 + 0.87 · 0.1 | 3.02 |
4 | 29.3 + 0.5 · 0.1 | −58.1 + 0.29 · 0.1 | 3.02 + 0.82 · 0.1 |
Sample | Determined Bicarbonate [mmol L−1] | Relative Error* [%] | Determined Bicarbonate [mmol L−1] | Relative Error* [%] | N-E Equation Relative error [%] | Potentiometric Titration [mmol L−1] |
---|---|---|---|---|---|---|
Simplex, 1 day | Simplex, 10 days | - | ||||
1 | 100.7 ± 3.3 | 0.7 | 97.7 ± 4.0 | 2.3 | 10.8 | |
2 | 49.6 ± 4.7 | 0.8 | 50.7 ± 3.8 | 1.4 | 29.9 | |
3 | 25.9 ± 0.7 | 3.6 | 25.5 ± 0.1 | 2.0 | 59.0 | |
4 | 100.6 ± 1.3 | 0.6 | 102.2 ± 5.7 | 2.2 | 156.5 | |
5 | 49.3 ± 5.2 | 1.4 | 50.9 ± 4.6 | 1.8 | 217.9 | |
6 | 23.9 ± 4.5 | 4.4 | 22.6 ± 3.0 | 9.6 | 326.2 | |
Jan | 8.5 ± 0.9 | 1.2 | 8.7 ± 1.1 | 1.2 | 20.2 | 8.3 ± 0.3 |
Jozef | 21.0 ± 3.2 | 2.3 | 21.4 ± 2.8 | 0.5 | 57.5 | 20.5 ± 1.4 |
Slotwinka | 48.2 ± 5.6 | 1.8 | 47.1 ± 0.9 | 4.1 | 5.4 | 46.0 ± 0.7 |
Donat Mg | 123.0 ± 7.5 | 0.9 | 123.7 ± 0.6 | 1.5 | 10.2 | 122.5 ± 3.5 |
Franciszek | 142.6 ± 0.8 | 2.6 | 143.8 ± 2.5 | 3.5 | 66.4 | 139.8 ± 3.2 |
Cisowianka | 8.9 ± 0.7 | 1.1 | 8.8 ± 0.5 | 0.0 | 6.9 | 8.8 ± 0.4 |
Staropolanka | 10.1 ± 1.3 | 8.6 | 10.8 ± 0.7 | 16.1 | 19.8 | 10.5 ± 0.2 |
Kryniczanka | 24.5 ± 0.2 | 3.9 | 23.8 ± 0.1 | 6.7 | 1.4 | 24.9 ± 2.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabrowska, S.; Migdalski, J.; Lewenstam, A. A Breakthrough Application of a Cross-Linked Polystyrene Anion-Exchange Membrane for a Hydrogencarbonate Ion-Selective Electrode. Sensors 2019, 19, 1268. https://doi.org/10.3390/s19061268
Dabrowska S, Migdalski J, Lewenstam A. A Breakthrough Application of a Cross-Linked Polystyrene Anion-Exchange Membrane for a Hydrogencarbonate Ion-Selective Electrode. Sensors. 2019; 19(6):1268. https://doi.org/10.3390/s19061268
Chicago/Turabian StyleDabrowska, Sylwia, Jan Migdalski, and Andrzej Lewenstam. 2019. "A Breakthrough Application of a Cross-Linked Polystyrene Anion-Exchange Membrane for a Hydrogencarbonate Ion-Selective Electrode" Sensors 19, no. 6: 1268. https://doi.org/10.3390/s19061268
APA StyleDabrowska, S., Migdalski, J., & Lewenstam, A. (2019). A Breakthrough Application of a Cross-Linked Polystyrene Anion-Exchange Membrane for a Hydrogencarbonate Ion-Selective Electrode. Sensors, 19(6), 1268. https://doi.org/10.3390/s19061268