Responses of a Resistive Soot Sensor to Different Mono-Disperse Soot Aerosols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-up Overview
2.2. Resistive Soot Sensor
2.3. Soot Generation
2.4. Electrostatic Classification by a DMA
2.5. Aerodynamic Classification by an AAC
2.6. Experimental Protocol
3. Results and Discussion
3.1. Response to an Electrostatically Classified Aerosol
3.2. Response to an Aerodynamically Classified Aerosol
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sassi, A.; Rohart, E.; Belot, G. Post-traitement des émissions polluantes des moteurs thermiques à combustion interne-Moteurs à allumage par compression. Available online: https://www.techniques-ingenieur.fr/base-documentaire/mecanique-th7/combustion-dans-les-moteurs-thermiques-et-environnement-42166210/post-traitement-des-emissions-polluantes-des-moteurs-thermiques-a-combustion-interne-bm2509/ (accessed on 8 February 2019).
- Walker, A.P. Controlling Particulate Emissions from Diesel Vehicles. Top. Catal. 2004, 28. [Google Scholar] [CrossRef]
- Masoudi, M.; Sappok, A.G. Soot (PM) Sensors. Available online: https://dieselnet.com/tech/sensors_soot.php (accessed on 6 February 2019).
- Fischerauer, G.; Förster, M.; Moos, R. Sensing the soot load in automotive diesel particulate filters by microwave methods. Meas. Sci. Technol. 2010, 21, 35108. [Google Scholar] [CrossRef]
- Ntziachristos, L.; Fragkiadoulakis, P.; Samaras, Z.; Janka, K.; Tikkanen, J. Exhaust Particle Sensor for OBD Application. In SAE 2011 World Congress & Exhibition; APR. 12, 2011; SAE Technical Paper: Warrendale, PA, USA, 2011. [Google Scholar]
- Maricq, M.M.; Bilby, D. The impact of voltage and flow on the electrostatic soot sensor and the implications for its use as a diesel particulate filter monitor. J. Aerosol Sci. 2018, 124, 41–53. [Google Scholar] [CrossRef]
- Kamimoto, T. A review of soot sensors considered for on-board diagnostics application. Int. J. Engine Res. 2016. [Google Scholar] [CrossRef]
- Hagen, G.; Feistkorn, C.; Wiegartner, S.; Heinrich, A.; Bruggemann, D.; Moos, R. Conductometric soot sensor for automotive exhausts: Initial studies. Sensors 2010, 10, 1589–1598. [Google Scholar] [CrossRef] [PubMed]
- Grob, B.; Schmid, J.; Ivleva, N.P.; Niessner, R. Conductivity for soot sensing: Possibilities and limitations. Anal. Chem. 2012, 84, 3586–3592. [Google Scholar] [CrossRef] [PubMed]
- Brunel, O.; Duault, F.; Lavy, J.; Creff, Y. Youssef. Smart Soot Sensor for Particulate Filter OBD. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 2013, 6, 307–327. [Google Scholar] [CrossRef]
- Feulner, M.; Hagen, G.; Muller, A.; Schott, A.; Zollner, C.; Bruggemann, D.; Moos, R. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines. Sensors 2015, 15, 28796–28806. [Google Scholar] [CrossRef] [Green Version]
- Kittelson, D.B.; Pui, D.Y.H.; Moon, K.C. Electrostatic Collection of Diesel Particles; SAE Technical Paper; SAE Technical Paper: Warrendale, PA, USA, 1986. [Google Scholar]
- Jung, H.; Kittelson, D.B. Measurement of Electrical Charge on Diesel Particles. Aerosol Sci. Technol. 2005, 39, 1129–1135. [Google Scholar] [CrossRef] [Green Version]
- Grondin, D.; Westermann, A.; Breuil, P.; Viricelle, J.; Vernoux, P. Influence of key parameters on the response of a resistive soot sensor. Sens. Actuators B Chem. 2016, 236, 1036–1043. [Google Scholar] [CrossRef] [Green Version]
- Grondin, D. Développement d’un capteur de suie pour application automobile: Etude des paramètres clés affectant sa réponse. Ph.D. Thesis, Ecole des Mines de Saint-Etienne, Saint-Etienne, France, 2017. (In French). [Google Scholar]
- Malik, A.; Abdulhamid, H.; Pagels, J.; Rissler, J.; Lindskog, M.; Nilsson, P.; Bjorklund, R.; Jozsa, P.; Visser, J.; Spetz, A.; et al. A Potential Soot Mass Determination Method from Resistivity Measurement of Thermophoretically Deposited Soot. Aerosol Sci. Technol. 2011, 45, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Hagen, G.; Spannbauer, C.; Feulner, M.; Kita, J.; Müller, A.; Moos, R. Conductometric Soot Sensors: Internally Caused Thermophoresis as an Important Undesired Side Effect. Sensors 2018, 18, 3531. [Google Scholar] [CrossRef] [PubMed]
- Ochs, T.; Schittenhelm, H.; Genssle, A.; Kamp, B. Particulate Matter Sensor for On Board Diagnostics (OBD) of Diesel Particulate Filters (DPF). SAE Int. J. Fuels Lubr. 2010, 3, 61–69. [Google Scholar] [CrossRef]
- Husted, H.; Roth, G.; Nelson, S.; Hocken, L.; Fulks, G.; Racine, D. Sensing of Particulate Matter for On-Board Diagnosis of Particulate Filters. SAE Int. J. Engines 2012, 5, 235–247. [Google Scholar] [CrossRef]
- Reynaud, A.; Leblanc, M.; Zinola, S.; Breuil, P.; Viricelle, J.P. Soot Particle Classifications in the Context of a Resistive Sensor Study. Proceedings 2018, 2, 987. [Google Scholar] [CrossRef]
- Millet, C.-N.; Abassi, H.; Lavy, J. Projet CICLAMEN 2. Capteur de Particules Pour échappement Moteur; internal report; IFP Energies Nouvelles: Solaize, France, 2013; Unpublished. (In French) [Google Scholar]
- Moore, R.; Ziemba, L.D.; Dutcher, D.; Beyersdorf, A.J.; Chan, K.; Crumeyrolle, S.; Raymond, T.M.; Thornhill, K.L.; Winstead, E.L.; Anderson, E.B. Mapping the Operation of the Miniature Combustion Aerosol Standard (Mini-CAST) Soot Generator. Aerosol Sci. Technol. 2014, 48, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.D.; Cocker, D.R.; Miller, J.W.; Norbeck, J.M. Emission Rates of Particulate Matter and Elemental and Organic Carbon from In-Use Diesel Engines. Environ. Sci. Technol. 2004, 38, 2544–2550. [Google Scholar] [CrossRef] [PubMed]
- McMurry, P.H.; Wang, X.; Park, K.; Ehara, K. The Relationship between Mass and Mobility for Atmospheric Particles: A New Technique for Measuring Particle Density. Aerosol Sci. Technol. 2002, 36, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.Y.H.; Pui, D.Y.H. Electrical neutralization of aerosols. J. Aerosol Sci 1974, 5, 465–472. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology. Properties, Behaviour, and Measurement of Airborne Particles, 2nd ed.; Wiley: Chichester, NY, USA, 1999. [Google Scholar]
- Aerodynamic Aerosol Classifier AAC User Manual, Version 1.10; User Interface Software v1.100; PC Tools; Cambustion: Cambridge, UK, 2016.
- Sediako, A.; Soong, C.; Howe, J.-Y.; Kholghy, M.R.; Thomson, M.J. Real-time observation of soot aggregate oxidation in an Environmental Transmission Electron Microscope. Proc. Combust. Inst. 2015, 36, 841–851. [Google Scholar] [CrossRef]
- Sharma, H.N.; Pahalagedara, L.; Joshi, A.; Suib, S.L.; Mhadeshwar, A.B. Experimental Study of Carbon Black and Diesel Engine Soot Oxidation Kinetics Using Thermogravimetric Analysis. Energy Fuels 2012, 26, 5613–5625. [Google Scholar] [CrossRef]
- Fragkiadoulakis, P.; Geivanidis, S.; Samaras, Z. Modeling a resistive soot sensor by particle deposition mechanisms. J. Aerosol Sci. 2018, 123, 76–90. [Google Scholar] [CrossRef]
- Teike, G.; Dietzel, M.; Michaelis, B.; Schomburg, H.; Sommerfeld, M. Multiscale Lattice–Boltzmann Approach for Electrophoretic Particle Deposition. Aerosol Sci. Technol. 2012, 46, 451–464. [Google Scholar] [CrossRef] [Green Version]
da [nm] | Rs [-] | Δ [nm] | C [part./cm3] |
---|---|---|---|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynaud, A.; Leblanc, M.; Zinola, S.; Breuil, P.; Viricelle, J.-P. Responses of a Resistive Soot Sensor to Different Mono-Disperse Soot Aerosols. Sensors 2019, 19, 705. https://doi.org/10.3390/s19030705
Reynaud A, Leblanc M, Zinola S, Breuil P, Viricelle J-P. Responses of a Resistive Soot Sensor to Different Mono-Disperse Soot Aerosols. Sensors. 2019; 19(3):705. https://doi.org/10.3390/s19030705
Chicago/Turabian StyleReynaud, Adrien, Mickaël Leblanc, Stéphane Zinola, Philippe Breuil, and Jean-Paul Viricelle. 2019. "Responses of a Resistive Soot Sensor to Different Mono-Disperse Soot Aerosols" Sensors 19, no. 3: 705. https://doi.org/10.3390/s19030705
APA StyleReynaud, A., Leblanc, M., Zinola, S., Breuil, P., & Viricelle, J.-P. (2019). Responses of a Resistive Soot Sensor to Different Mono-Disperse Soot Aerosols. Sensors, 19(3), 705. https://doi.org/10.3390/s19030705