Low-Hysteresis and Fast Response Time Humidity Sensors Using Suspended Functionalized Carbon Nanotubes
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Humidity Response
3.2. Response Time, Recovery Time, and Sensitivity
3.3. Temperature Study
3.4. Long-Term Stability
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56. [Google Scholar] [CrossRef]
- Cantalini, C.; Valentini, L.; Armentano, I.; Kenny, J.M.; Lozzi, L.; Santucci, S. Carbon nanotubes as new materials for gas sensing applications. J. Eur. Ceram. Soc. 2004, 24, 1405–1408. [Google Scholar] [CrossRef]
- Wang, Y.; Yeow, J.T.W. A Review of Carbon Nanotubes-Based Gas Sensors. J. Sens. 2009, 2009, 24. [Google Scholar] [CrossRef]
- Liang, Y.X.; Chen, Y.J.; Wang, T.H. Low-resistance gas sensors fabricated from multiwalled carbon nanotubes coated with a thin tin oxide layer. Appl. Phys. Lett. 2004, 85, 666–668. [Google Scholar] [CrossRef]
- Chen, W.P.; Zhao, Z.G.; Liu, X.W.; Zhang, Z.X.; Suo, C.G. A Capacitive Humidity Sensor Based on Multi-Wall Carbon Nanotubes (MWCNTs). Sensors 2009, 9, 7431–7444. [Google Scholar] [CrossRef] [PubMed]
- Snow, E.S.; Perkins, F.K.; Houser, E.J.; Badescu, S.C.; Reinecke, T.L. Chemical Detection with a Single-Walled Carbon Nanotube Capacitor. Science 2005, 307, 1942–1945. [Google Scholar] [CrossRef] [PubMed]
- Penza, M.; Rossi, R.; Alvisi, M.; Aversa, P.; Cassano, G.; Suriano, D.; Benetti, M.; Cannata, D.; Di Pietrantonio, F.; Verona, E. SAW Gas sensors with carbon nanotubes films. In Proceedings of the 2008 IEEE Ultrasonics Symposium, Beijing, China, 2–5 November 2008. [Google Scholar]
- Ma, Y.; Ma, S.; Wang, T.; Fang, W. Air-flow sensor and humidity sensor application to neonatal infant respiration monitoring. Sens. Actuators A Phys. 1995, 49, 47–50. [Google Scholar] [CrossRef]
- Farahani, H.; Wagiran, R.; Hamidon, M. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review. Sensors 2014, 14, 7881–7939. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.L.; Hu, C.G.; Fang, L.; Wang, S.X.; Tian, Y.S.; Pan, C.Y. Humidity Sensor Based on Multi-Walled Carbon Nanotube Thin Films. J. Nanomater. 2011, 2011, 5. [Google Scholar] [CrossRef]
- Tsai, J.T.; Lu, C.C.; Li, J.G. Fabrication of humidity sensors by multi-walled carbon nanotubes. J. Exp. Nanosci. 2010, 5, 302–309. [Google Scholar] [CrossRef]
- Tang, Q.Y.; Chan, Y.C.; Zhang, K. Fast response resistive humidity sensitivity of polyimide/multiwall carbon nanotube composite films. Sens. Actuators B Chem. 2011, 152, 99–106. [Google Scholar] [CrossRef]
- Liu, L.; Ye, X.; Wu, K.; Han, R.; Zhou, Z.; Cui, T. Humidity Sensitivity of Multi-Walled Carbon Nanotube Networks Deposited by Dielectrophoresis. Sensors 2009, 9, 1714–1721. [Google Scholar] [CrossRef] [PubMed]
- Yeow, J.T.W.; She, J.P.M. Carbon nanotube-enhanced capillary condensation for a capacitive humidity sensor. Nanotechnology 2006, 17, 5441. [Google Scholar] [CrossRef]
- Zhao, Z.G.; Liu, X.W.; Chen, W.P.; Li, T. Carbon nanotubes humidity sensor based on high testing frequencies. Sens. Actuators A Phys. 2011, 168, 10–13. [Google Scholar] [CrossRef]
- Mudimela, P.R.; Grigoras, K.; Anoshkin, I.V.; Varpula, A.; Ermolov, V.; Anisimov, A.S.; Nasibulin, A.G.; Novikov, S.; Kauppinen, E.I. Single-Walled Carbon Nanotube Network Field Effect Transistor as a Humidity Sensor. J. Sens. 2012, 2012, 7. [Google Scholar] [CrossRef]
- Chikkadi, K.; Muoth, M.; Liu, W.; Maiwald, V.; Hierold, C. Enhanced signal-to-noise ratio in pristine, suspended carbon nanotube gas sensors. Sens. Actuators B Chem. 2014, 196, 682–690. [Google Scholar] [CrossRef]
- Muoth, M.; Helbling, T.; Durrer, L.; Lee, S.W.; Roman, C.; Hierold, C. Hysteresis-free operation of suspended carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 589. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, S.; Gupta, A.A.; Izquierdo, R.; Nabki, F. Suspended Carbon Nanotubes for Humidity Sensing. Sensors 2018, 18, 1655. [Google Scholar] [CrossRef]
- Cao, J.; Wang, Q.; Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nat. Mater. 2005, 4, 745. [Google Scholar] [CrossRef][Green Version]
- Sapmaz, S.; Jarillo-Herrero, P.; Blanter, Y.M.; Dekker, C.; Van Der Zant, H.S.J. Tunneling in Suspended Carbon Nanotubes Assisted by Longitudinal Phonons. Phys. Rev. Lett. 2006, 96, 026801. [Google Scholar] [CrossRef]
- Jung, D.; Kim, J.; Lee, G.S. Enhanced humidity-sensing response of metal oxide coated carbon nanotube. Sens. Actuators A Phys. 2015, 223, 11–17. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, H.; Qing, Q.; Yang, Y.; Li, Q.; Liu, Z.; Guo, X.; Du, Z. Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2003, 107, 3712–3718. [Google Scholar] [CrossRef]
- Benchirouf, A.; Palaniyappan, S.; Ramalingame, R.; Raghunandan, P.; Jagemann, T.; Müller, C.; Hietschold, M.; Kanoun, O. Electrical properties of multi-walled carbon nanotubes/PEDOT:PSS nanocomposites thin films under temperature and humidity effects. Sens. Actuators B Chem. 2016, 224, 344–350. [Google Scholar] [CrossRef]
- Zhang, H.L.; Li, J.F.; Zhang, B.P.; Yao, K.F.; Liu, W.S.; Wang, H. Electrical and thermal properties of carbon nanotube bulk materials: Experimental studies for the 328-958 K temperature range. Phys. Rev. B 2007, 75, 205407. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, K.; Xu, R.; Jiang, D.; Luo, L.; Zhu, Z. Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor. Sens. Actuators A Phys. 2005, 120, 142–146. [Google Scholar] [CrossRef]
- Moraes, M.C.; Galeazzo, E.; Peres, H.E.; Ramirez-Fernandez, F.J.; Dantas, M.O. Development of Fast Response Humidity Sensors Based on Carbon Nanotubes. Available online: https://www.researchgate.net/profile/Michel_Dantas/publication/268742675_Development_of_Fast_Response_Humidity_Sensors_Based_on_Carbon_Nanotubes/links/54c7e8900cf289f0cece471d.pdf (accessed on 5 February 2019).
Publication | Sensing Material | Response Time (s) | Recovery Time (s) | Sensitivity Factor (%) |
---|---|---|---|---|
This work | Functionalized Single-walled CNTs | 12 | 47 | 172.9 |
Jung et al. [22] | Metal oxide coated CNTs | 30 | 25 | ~60 |
Cao et al. [10] | Functionalized Multiwalled CNTs | 50 | 140 | 124 |
Mudimela et al. [16] | Single-walled CNTs | 180 | 240 | N/A |
Zhang et al. [26] | Multiwalled CNTs | 60 | 70 | 80 |
Moraes et al. [27] | Functionalized Multiwalled CNTs | 3 | 90 | 135 |
Chen et al. [5] | Multiwalled CNTs | 16 | 8 | 29.9 |
Arunachalam et al. [19] | Single-walled CNTs | 290 | 510 | 246.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arunachalam, S.; Izquierdo, R.; Nabki, F. Low-Hysteresis and Fast Response Time Humidity Sensors Using Suspended Functionalized Carbon Nanotubes. Sensors 2019, 19, 680. https://doi.org/10.3390/s19030680
Arunachalam S, Izquierdo R, Nabki F. Low-Hysteresis and Fast Response Time Humidity Sensors Using Suspended Functionalized Carbon Nanotubes. Sensors. 2019; 19(3):680. https://doi.org/10.3390/s19030680
Chicago/Turabian StyleArunachalam, Shivaram, Ricardo Izquierdo, and Frederic Nabki. 2019. "Low-Hysteresis and Fast Response Time Humidity Sensors Using Suspended Functionalized Carbon Nanotubes" Sensors 19, no. 3: 680. https://doi.org/10.3390/s19030680
APA StyleArunachalam, S., Izquierdo, R., & Nabki, F. (2019). Low-Hysteresis and Fast Response Time Humidity Sensors Using Suspended Functionalized Carbon Nanotubes. Sensors, 19(3), 680. https://doi.org/10.3390/s19030680