Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc–Wen Hysteresis
Abstract
1. Introduction
2. Problem Formulation
3. Trajectory Tracking Design for Robotic Manipulators with Unknown Input Hysteresis
3.1. Control Method
3.2. Controller Design
3.3. Stability Analysis
4. Simulation Example
4.1. Fixed-Point Control Using the Proposed Adaptive Control
4.2. Tracking Control Using the Proposed Adaptive Control
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Siciliano, B.; Khatib, O. Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Lewis, F.L.; Dawson, D.M.; Abdallah, C.T. Robot Manipulator Control: Theory and Practice; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice-Hall: Englewood Cliffs, NJ, USA, 1991. [Google Scholar]
- Spong, M.W.; Vidyasagar, M. Robot Dynamics and Control; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Tran, D.T.; Truong, H.V.A.; Ahn, K.K. Adaptive Backstepping Sliding Mode Control Based RBFNN for a Hydraulic Manipulator Including Actuator Dynamics. Appl. Sci. 2019, 9, 1265. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Z.; Xie, S. Computing Resource Trading for Edge-Cloud-assisted Internet of Things. IEEE Trans. Ind. Inform. 2019, 15, 3661–3669. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, C.; Jiang, L.; Xie, S.; Zhang, Y. Intelligent Edge Computing for IoT-Based Energy Management in Smart Cities. IEEE Netw. 2019, 33, 111–117. [Google Scholar] [CrossRef]
- Yan, J.; Ban, H.; Luo, X.; Zhao, H.; Guan, X. Joint Localization and Tracking Design for AUV With Asynchronous Clocks and State Disturbances. IEEE Trans. Veh. Technol. 2019, 68, 4707–4720. [Google Scholar] [CrossRef]
- Vo, A.T.; Kang, H.J. An Adaptive Neural Non-Singular Fast-Terminal Sliding-Mode Control for Industrial Robotic Manipulators. Appl. Sci. 2018, 8, 2562. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, C.; Wen, C. Robust adaptive output control of uncertain nonlinear plants with unknown backlash nonlinearity. IEEE Trans. Autom. Control 2007, 52, 503–509. [Google Scholar] [CrossRef]
- Fu, M.; Xie, L. The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 2005, 50, 1698–1711. [Google Scholar]
- Fu, M.; Xie, L. Finite-Level Quantized Feedback Control for Linear Systems. IEEE Trans. Autom. Control 2009, 54, 1165–1170. [Google Scholar] [CrossRef]
- Hayakawa, T.; Ishii, H.; Tsumura, K. Adaptive quantized control for nonlinear uncertain systems. Syst. Control Lett. 2009, 58, 625–632. [Google Scholar] [CrossRef]
- Zhou, J.; Wen, C.; Yang, G. Adaptive backstepping stabilization of nonlinear uncertain systems with quantized input signal. IEEE Trans. Autom. Control 2014, 59, 460–464. [Google Scholar] [CrossRef]
- Chen, C.; Wen, C.; Liu, Z.; Xie, K.; Zhang, Y.; Chen, C.L.P. Adaptive Consensus of Nonlinear Multi-Agent Systems with Non-Identical Partially Unknown Control Directions and Bounded Modelling Errors. IEEE Trans. Autom. Control 2017, 62, 4654–4659. [Google Scholar] [CrossRef]
- Chen, C.; Xie, K.; Lewis, F.L.; Xie, S.; Davoudi, A. Fully Distributed Resilience for Adaptive Exponential Synchronization of Heterogeneous Multi-Agent Systems Against Actuator Faults. IEEE Trans. Autom. Control 2018. [Google Scholar] [CrossRef]
- Xie, K.; Chen, C.; Lewis, F.L.; Xie, S. Adaptive Asymptotic Neural Network Control of Nonlinear Systems With Unknown Actuator Quantization. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 6303–6312. [Google Scholar] [CrossRef]
- Chen, C.; Lewis, F.L.; Xie, S.; Modares, H.; Liu, Z.; Zuo, S.; Davoudi, A. Resilient adaptive and H∞ controls of multi-agent systems under sensor and actuator faults. Automatica 2019, 102, 19–26. [Google Scholar] [CrossRef]
- Cao, K.; Li, R. Modeling of Rate-Independent and Symmetric Hysteresis Based on Madelung’s Rules. Sensors 2019, 19, 352. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Zhou, J. Decentralized adaptive stabilization in the presence of unknown backlash-like hysteresis. Automatica 2007, 43, 426–440. [Google Scholar] [CrossRef]
- Zhou, J.; Wen, C.Y.; Li, T.S. Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity. IEEE Trans. Autom. Control 2012, 57, 2627–2633. [Google Scholar] [CrossRef]
- Lin, J.; Chiang, M. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control. Sensors 2016, 16, 1368. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wan, Y.; Luo, X.; Chen, C.; Hua, C.; Guan, X. Formation Control of Teleoperating Cyber-Physical System With Time Delay and Actuator Saturation. IEEE Trans. Control Syst. Technol. 2018, 26, 1458–1467. [Google Scholar] [CrossRef]
- Bai, X.; Cai, F.; Chen, P. Resistor-capacitor (RC) operator-based hysteresis model for magnetorheological (MR) dampers. Mech. Syst. Signal Process. 2019, 117, 157–169. [Google Scholar] [CrossRef]
- Chen, P.; Bai, X.; Qian, L.; Choi, S. An Approach for Hysteresis Modeling Based on Shape Function and Memory Mechanism. IEEE/ASME Trans. Mech. 2018, 23, 1270–1278. [Google Scholar] [CrossRef]
- Nussbaum, R.D. Some remarks on a conjecture in parameter adaptive control. Syst. Control Lett. 1983, 3, 243–246. [Google Scholar] [CrossRef]
- Mårtensson, B. Remarks on adaptive stabilization of first order non-linear systems. Syst. Control Lett. 1990, 14, 1–7. [Google Scholar] [CrossRef]
- Ge, S.S.; Wang, J. Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems. IEEE Trans. Neural Netw. 2002, 13, 1409–1419. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z. Adaptive control of non-linear systems with unknown virtual control coefficients. Int. J. Adapt. Control Signal Process. 2000, 14, 505–517. [Google Scholar] [CrossRef]
- Ye, X.; Jiang, J. Adaptive nonlinear design without a priori knowledge of control directions. IEEE Trans. Autom. Control 1998, 43, 1617–1621. [Google Scholar]
- Zhang, Y.; Wen, C.Y.; Soh, Y.C. Adaptive backstepping control design for systems with unknown high-frequency gain. IEEE Trans. Autom. Control 2000, 45, 2350–2354. [Google Scholar] [CrossRef]
- Ge, S.S.; Wang, J. Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients. IEEE Trans. Autom. Control 2003, 48, 1463–1469. [Google Scholar]
- Kim, B.; Park, B.S. Robust Control for the Segway with Unknown Control Coefficient and Model Uncertainties. Sensors 2016, 16, 1000. [Google Scholar] [CrossRef]
- Ye, X. Decentralized adaptive regulation with unknown high-frequency-gain signs. IEEE Trans. Autom. Control 1999, 44, 2072–2076. [Google Scholar]
- Ge, S.S.; Hong, F.; Lee, T.H. Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Trans. Syst. Man Cybern. B Cybern. 2004, 34, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Ye, X. Decentralized adaptive stabilization of large-scale nonlinear time-delay systems with unknown high-frequency-gain signs. IEEE Trans. Autom. Control 2011, 56, 1473–1478. [Google Scholar] [CrossRef]
- Chen, W.S.; Li, X.B.; Ren, W.; Wen, C.Y. Adaptive Consensus of Multi-Agent Systems With Unknown Identical Control Directions Based on A Novel Nussbaum-Type Function. IEEE Trans. Autom. Control 2014, 59, 1887–1892. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Z.; Zhang, Y.; Chen, C.L.P.; Xie, S. Saturated Nussbaum Function based Approach for Robotic Systems with Unknown Actuator Nonlinearities. IEEE Trans. Cybern. 2016, 46, 2311–2322. [Google Scholar] [CrossRef]
- Yan, J.; Li, X.; Luo, X.; Guan, X. Virtual-Lattice Based Intrusion Detection Algorithm over Actuator-Assisted Underwater Wireless Sensor Networks. Sensors 2017, 17, 1168. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, Z.; Xie, K.; Zhang, Y.; Chen, C.P. Asymptotic adaptive control of nonlinear systems with elimination of overparametrization in a Nussbaum-like design. Automatica 2018, 98, 277–284. [Google Scholar] [CrossRef]
- Ikhouane, F.; MañOsa, V.; Rodellar, J. Adaptive control of a hysteretic structural system. Automatica 2005, 41, 225–231. [Google Scholar] [CrossRef]
- Chen, C.; Wen, C.; Liu, Z.; Xie, K.; Zhang, Y.; Chen, C.P. Adaptive asymptotic control of multivariable systems based on a one-parameter estimation approach. Automatica 2017, 83, 124–132. [Google Scholar] [CrossRef]
- Xie, S.; Yang, L.; Yang, J.M.; Zhou, G.; Xiang, Y. Time-Frequency Approach to Underdetermined Blind Source Separation. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 306–316. [Google Scholar] [CrossRef]
- Zhou, G.; Cichocki, A.; Zhang, Y.; Mandic, D.P. Group Component Analysis for Multiblock Data: Common and Individual Feature Extraction. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 2426–2439. [Google Scholar] [CrossRef]
- He, Z.; Cichocki, A.; Xie, S.; Choi, K. Detecting the Number of Clusters in n-Way Probabilistic Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2006–2021. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Xie, S.; Zdunek, R.; Zhou, G.; Cichocki, A. Symmetric Nonnegative Matrix Factorization: Algorithms and Applications to Probabilistic Clustering. IEEE Trans. Neural Netw. 2011, 22, 2117–2131. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Zhao, Q.; Zhang, Y.; Adali, T.; Xie, S.; Cichocki, A. Linked Component Analysis From Matrices to High-Order Tensors: Applications to Biomedical Data. Proc. IEEE 2016, 104, 310–331. [Google Scholar] [CrossRef]
- Zhou, G.; Cichocki, A.; Xie, S. Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation. IEEE Trans. Signal Process. 2012, 60, 2928–2940. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Y.; Yang, Z.; Xie, S. Under-Determined Convolutive Blind Source Separation Combining Density-Based Clustering and Sparse Reconstruction in Time-Frequency Domain. IEEE Trans. Circuits Syst. I Regul. Pap. 2019. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, K.; Lai, Y.; Li, W. Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc–Wen Hysteresis. Sensors 2019, 19, 2776. https://doi.org/10.3390/s19122776
Xie K, Lai Y, Li W. Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc–Wen Hysteresis. Sensors. 2019; 19(12):2776. https://doi.org/10.3390/s19122776
Chicago/Turabian StyleXie, Kan, Yue Lai, and Weijun Li. 2019. "Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc–Wen Hysteresis" Sensors 19, no. 12: 2776. https://doi.org/10.3390/s19122776
APA StyleXie, K., Lai, Y., & Li, W. (2019). Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc–Wen Hysteresis. Sensors, 19(12), 2776. https://doi.org/10.3390/s19122776