A Novel Relative Position Estimation Method for Capsule Robot Moving in Gastrointestinal Tract
Abstract
1. Introduction
2. Absolute Position Estimation Method
3. The Relative Position Tracking Method
3.1. Moving States of the Robot
3.2. Segmentation Processing
3.3. Moving Distance
Algorithm 1 Distance calculation for the moving capsule. |
Input: Absolute position Output: Moving distance L
|
4. Experiments and Results
4.1. Static Model Experiments
4.2. Dynamic Phantom Experiments
4.3. Comparison
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Available online: http://www.who.int/zh/news-room/fact-sheets/detail/cancer/ (accessed on 12 September 2018).
- Levin, B.; Lieberman, D.A.; McFarland, B.; Smith, R.A.; Brooks, D.; Andrews, K.S.; Dash, C.; Giardiello, F.M.; Glick, S.; Levin, T.R.; et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: A joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J. Clin. 2008, 58, 130–160. [Google Scholar] [CrossRef] [PubMed]
- Valdastri, P.; Simi, M.; Webster, R.J., III. Advanced technologies for gastrointestinal endoscopy. Ann. Rev. Biomed. Eng. 2012, 14, 397–429. [Google Scholar] [CrossRef] [PubMed]
- Leung, B.H.; Poon, C.C.; Zhang, R.; Zheng, Y.L.; Chan, C.K.; Chiu, P.W.; Lau, J.Y.; Sung, J.J. A Therapeutic Wireless Capsule for Treatment of Gastrointestinal Haemorrhage by Balloon Tamponade Effect. IEEE Trans. Biomed. Eng. 2016, 64, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Rahimi, R.; Ochoa, M.; Pinal, R.; Ziaie, B. A smart capsule with GI-tract-location-specific payload release. IEEE Trans. Biomed. Eng. 2015, 62, 2289–2295. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Qiu, X.; Wang, J.; Meng, M.Q.H. Real-time tracking and navigation for magnetically manipulated untethered robot. IEEE Access 2016, 4, 7104–7110. [Google Scholar] [CrossRef]
- Keller, H.; Juloski, A.; Kawano, H.; Bechtold, M.; Kimura, A.; Takizawa, H.; Kuth, R. Method for navigation and control of a magnetically guided capsule endoscope in the human stomach. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 859–865. [Google Scholar]
- Winstone, B.; Melhuish, C.; Pipe, T.; Callaway, M.; Dogramadzi, S. Toward Bio-Inspired Tactile Sensing Capsule Endoscopy for Detection of Submucosal Tumors. IEEE Sens. J. 2017, 17, 848–857. [Google Scholar] [CrossRef]
- Mateen, H.; Basar, M.R.; Ahmed, A.U.; Ahmad, M.Y. Localization of Wireless Capsule Endoscope: A Systematic Review. IEEE Sens. J. 2017, 17, 1197–1206. [Google Scholar] [CrossRef]
- Nowicki, M.; Szewczyk, R. Determination of the Location and Magnetic Moment of Ferromagnetic Objects Based on the Analysis of Magnetovision Measurements. Sensors 2019, 19, 337. [Google Scholar] [CrossRef]
- Reza, A.W.; Yun, T.W.; Dimyati, K.; Tan, K.G.; Noordin, K.A. Deployment of a 3D tag tracking method utilising RFID. Int. J. Electron. 2012, 99, 557–573. [Google Scholar] [CrossRef]
- Tesoriero, R.; Gallud, J.A.; Lozano, M.D.; Penichet, V.M. Tracking autonomous entities using RFID technology. IEEE Trans. Consum. Electron. 2009, 55, 650–655. [Google Scholar] [CrossRef]
- Vitas, I.; Zrno, D.; Simunic, D.; Prasad, R. Innovative RF localization for wireless video capsule endoscopy. In Proceedings of the 2014 ITU Kaleidoscope Academic Conference: Living in A Converged World-impossible Without Standards, St. Petersburg, Russia, 3–5 June 2014. [Google Scholar]
- Diamantis, K.; Dermitzakis, A.; Hopgood, J.R.; Sboros, V. Super-resolved ultrasound echo spectra with simultaneous localization using parametric statistical estimation. IEEE Access 2018, 6, 14188–14203. [Google Scholar] [CrossRef]
- Diamantis, K.; Anderson, T.; Jensen, J.A.; Dalgarno, P.A.; Sboros, V. Development of Super-resolution Sharpness-based Axial Localization for Ultrasound Imaging. IEEE Access 2019, 7, 6297–6309. [Google Scholar] [CrossRef]
- Costamagna, G.; Shah, S.K.; Riccioni, M.E.; Foschia, F.; Mutignani, M.; Perri, V.; Vecchioli, A.; Brizi, M.G.; Picciocchi, A.; Marano, P. A prospective trial comparing small bowel radiographs and video capsule endoscopy for suspected small bowel disease. Gastroenterology 2002, 123, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Song, E.; Liu, H.; Zhu, J.; Hung, C.C. Laparoscopic Image-Guided System Based on Multispectral Imaging for the Ureter Detection. IEEE Access 2019, 7, 3800–3809. [Google Scholar] [CrossRef]
- Song, S.; Qiu, X.; Liu, W.; Meng, M.Q.H. An Improved 6-D Pose Detection Method Based on Opposing-Magnet Pair System and Constraint Multiple Magnets Tracking Algorithm. IEEE Sens. J. 2017, 17, 6752–6759. [Google Scholar] [CrossRef]
- Qiu, X.; Song, S.; Meng, M.Q.H. A novel 6-D pose detection method using opposing-magnet pair system. IEEE Sens. J. 2017, 17, 2642–2643. [Google Scholar] [CrossRef]
- Dai, H.; Song, S.; Zeng, X.; Su, S.; Lin, M.; Meng, M.Q.H. 6-D electromagnetic tracking approach using uniaxial transmitting coil and tri-axial magneto-resistive sensor. IEEE Sens. J. 2018, 18, 1178–1186. [Google Scholar] [CrossRef]
- Song, S.; Li, B.; Qiao, W.; Hu, C.; Ren, H.; Yu, H.; Zhang, Q.; Meng, M.Q.H.; Xu, G. 6-D magnetic localization and orientation method for an annular magnet based on a closed-form analytical model. IEEE Trans. Magn. 2014, 50, 1–11. [Google Scholar] [CrossRef]
- Yanus, R.; Vedenev, M.; Drozhzhina, V.; Reutov, Y.Y. Use of magnetic pole-finding probe in surgical extraction of magnetic foreign bodies. Biomed. Eng. 1967, 1, 231–234. [Google Scholar] [CrossRef][Green Version]
- Kasmi, Z.; Norrdine, A.; Blankenbach, J. Towards a decentralized magnetic indoor positioning system. Sensors 2015, 15, 30319–30339. [Google Scholar] [CrossRef]
- Su, S.; Zeng, X.; Song, S.; Lin, M.; Dai, H.; Yang, W.; Hu, C. Positioning Accuracy Improvement of Automated Guided Vehicles Based on a Novel Magnetic Tracking Approach. IEEE Intell. Transp. Syst. Mag. 2018. [Google Scholar] [CrossRef]
- Mitterer, T.; Gietler, H.; Faller, L.M.; Zangl, H. Artificial Landmarks for Trusted Localization of Autonomous Vehicles Based on Magnetic Sensors. Sensors 2019, 19, 813. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Hu, C.; Meng, M.Q.H. Multiple Objects Positioning and Identification Method Based on Magnetic Localization System. IEEE Trans. Magn. 2016, 52, 1. [Google Scholar] [CrossRef]
- Hu, C.; Ren, Y.; You, X.; Yang, W.; Song, S.; Xiang, S.; He, X.; Zhang, Z.; Meng, M. Locating Intra-Body Capsule Object by Three-Magnet Sensing System. IEEE Sens. J. 2016, 16, 5167–5176. [Google Scholar] [CrossRef]
- Turan, M.; Almalioglu, Y.; Araujo, H.; Konukoglu, E.; Sitti, M. Deep endovo: A recurrent convolutional neural network (rcnn) based visual odometry approach for endoscopic capsule robots. Neurocomputing 2018, 275, 1861–1870. [Google Scholar] [CrossRef]
- Turan, M.; Almalioglu, Y.; Gilbert, H.; Sari, A.E.; Soylu, U.; Sitti, M. Endo-VMFuseNet: deep visual-magnetic sensor fusion approach for uncalibrated, unsynchronized and asymmetric endoscopic capsule robot localization data. arXiv 2017, arXiv:1709.06041. [Google Scholar]
- Turan, M.; Ornek, E.P.; Ibrahimli, N.; Giracoglu, C.; Almalioglu, Y.; Yanik, M.F.; Sitti, M. Unsupervised odometry and depth learning for endoscopic capsule robots. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1801–1807. [Google Scholar]
- Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland, 2014; pp. 834–849. [Google Scholar]
- Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef]
- Turan, M.; Almalioglu, Y.; Araujo, H.; Konukoglu, E.; Sitti, M. A non-rigid map fusion-based rgb-depth slam method for endoscopic capsule robots. arXiv 2017, arXiv:1705.05444. [Google Scholar]
- Song, S.; Hu, C.; Li, B.; Li, X.; Meng, M.Q.H. An electromagnetic localization and orientation method based on rotating magnetic dipole. IEEE Trans. Magn. 2013, 49, 1274–1277. [Google Scholar] [CrossRef]
- Gao, M.; Hu, C.; Chen, Z.; Zhang, H.; Liu, S. Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope. IEEE Trans. Biomed. Eng. 2010, 57, 2891–2902. [Google Scholar]
- Natali, C.D.; Beccani, M.; Valdastri, P. Real-Time Pose Detection for Magnetic Medical Devices. IEEE Trans. Magn. 2013, 49, 3524–3527. [Google Scholar] [CrossRef]
- Turan, M.; Almalioglu, Y.; Ornek, E.P.; Araujo, H.; Yanik, M.F.; Sitti, M. Magnetic-visual sensor fusion-based dense 3d reconstruction and localization for endoscopic capsule robots. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1283–1289. [Google Scholar]
Item | (mm) | (mm) | (mm) | (mm) | (mm) | Ground Truth (mm) |
---|---|---|---|---|---|---|
Experiment 1 | 386 | 382 | 385 | 386 | 383 | 380 |
Experiment 2 | 639 | 635 | 634 | 637 | 632 | 639 |
Experiment 3 | 785 | 776 | 777 | 776 | 782 | 760 |
Experiment 4 | 717 | 708 | 711 | 703 | 694 | 701 |
GI model | 677 | 669 | 668 | 653 | 665 | 665 |
Item | Average Error | Max Error |
---|---|---|
Experiment 1 | 1.16% | 1.58% |
Experiment 2 | 0.56% | 1.1% |
Experiment 3 | 2.53% | 3.3% |
Experiment 4 | 1.20% | 2.28% |
GI model | 0.93% | 1.8% |
Final | 1.27% | 3.3% |
Methods | Error Rate |
---|---|
Proposed method in static environment | 1.27% |
Proposed method in dynamic phantom | 5.7% |
Large-scale direct monocular (LSD) SLAM [31] | around 14.0% |
Oriented fast and rotated brief (ORB) SLAM [32] | around 13.2% |
Magnetic localization [29] | around 6.8% |
Visual localization [33] | around 6.5% |
Fusion by deep visual and magnetic [37] | around 4.3% |
Unsupervised visual Odometry and Depth Learning [30] | around 6.2% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Shi, Q.; Song, S.; Hu, C.; Meng, M.Q.-H. A Novel Relative Position Estimation Method for Capsule Robot Moving in Gastrointestinal Tract. Sensors 2019, 19, 2746. https://doi.org/10.3390/s19122746
Wang M, Shi Q, Song S, Hu C, Meng MQ-H. A Novel Relative Position Estimation Method for Capsule Robot Moving in Gastrointestinal Tract. Sensors. 2019; 19(12):2746. https://doi.org/10.3390/s19122746
Chicago/Turabian StyleWang, Min, Qinyuan Shi, Shuang Song, Chao Hu, and Max Q.-H. Meng. 2019. "A Novel Relative Position Estimation Method for Capsule Robot Moving in Gastrointestinal Tract" Sensors 19, no. 12: 2746. https://doi.org/10.3390/s19122746
APA StyleWang, M., Shi, Q., Song, S., Hu, C., & Meng, M. Q.-H. (2019). A Novel Relative Position Estimation Method for Capsule Robot Moving in Gastrointestinal Tract. Sensors, 19(12), 2746. https://doi.org/10.3390/s19122746