Single-Kernel FT-NIR Spectroscopy for Detecting Supersweet Corn (Zea mays L. Saccharata Sturt) Seed Viability with Multivariate Data Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Seed Selection and Deterioration Treatment
2.2. FT-NIR Spectroscopy Acquisition
2.3. Germination Test
2.4. Dataset and Model Verification
2.5. Spectral Data Preprocessing
2.6. Partial Least Squares Discriminant Analysis
3. Results and Discussion
3.1. Spectral Interpretation
3.2. Heat-Damaged Kernel Detection Models
3.3. Artificially Aged Kernel Detection Models
3.4. Comprehensive Discriminant Models
4. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Williams, M.M. Relationships among phenotypic traits of sweet corn and tolerance to crowding stress. Field Crop. Res. 2016, 185, 45–50. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, L.; Deng, Y.; Chi, J.; Zhang, Y.; Wei, Z.; Zhang, M. Phenolic content and antioxidant activity of eight representative sweet corn varieties grown in South China. Int. J. Food Prop. 2017, 20, 3043–3055. [Google Scholar] [CrossRef]
- Lee, S.S.; Yun, S.H.; Seo, J.M. Optimum harvest time for high quality seed production of sweet and super sweet corn hybrids. Korean J. Crop Sci. 2004, 49, 373–380. [Google Scholar]
- Wann, E.V. Seed vigor and respiration of maize kernels with different endosperm genotypes. J. Am. Soc. Hortic. Sci. 1980, 105, 31–34. [Google Scholar]
- Young, T.E.; Juvik, J.A.; Demason, D.A. Changes in carbohydrate composition and α-amylase expression during germination and seedling growth of starch-deficient endosperm mutants of maize. Plant Sci. 1997, 129, 175–189. [Google Scholar] [CrossRef]
- Zan, G.H.; Brewbaker, J.L. Seed quality of isogenic endosperm mutants in sweet corn. Maydica 1999, 44, 271–277. [Google Scholar]
- Lee, M.H. Seed deterioration response of different genes of sweet corn during long-term storage. Korean J. Crop Sci. 2001, 46, 317–320. [Google Scholar]
- He, L.; Burris, J.S. Respiration and carbohydrate metabolism during germination of sh2 and Sh2 sweet corn seed. Hortsci. A Publ. Am. Soc. Hortic. Sci. 1992, 27, 1306–1308. [Google Scholar]
- Singh, I.; Langyan, S.; Yadava, P. Sweet corn and corn-based sweeteners. Sugar Tech 2014, 16, 144–149. [Google Scholar] [CrossRef]
- Gupta, M.L.; George, D.L.; Parwata, I.G.M.A. Effect of harvest time and drying on supersweet corn seed quality. Seed Sci. Technol. 2005, 33, 167–176. [Google Scholar] [CrossRef]
- Lee, H.S.; Jeon, Y.A.; Lee, Y.Y.; Lee, G.A.; Raveendar, S.; Ma, K.H. Large-scale screening of intact tomato seeds for viability using near infrared reflectance spectroscopy (NIRS). Sustainability 2017, 9, 618. [Google Scholar] [CrossRef]
- International Seed Testing Association (ISTA). International Rules for Seed Testing, Chapter 5: The Germination Test; International Seed Testing Association: Bassersdorf, Switzerland, 1996. [Google Scholar]
- Cottrell, H.J. Tetrazolium Salt as a Seed Germination Indicator. Ann. Appl. Biol. 1948, 35, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Lohumi, S.; Lee, S.; Lee, H.; Cho, B.K. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [Google Scholar] [CrossRef]
- Norris, K.H.; Hart, J.R. Direct spectrophotometric determination of moisture content of grain and seeds. J. Near Infrared Spectrosc. 1965, 4, 19–25. [Google Scholar]
- Agelet, L.E.; Hurburgh, C.R. Limitations and current applications of near infrared spectroscopy for single seed analysis. Talanta 2014, 121, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wang, Q.G.; Zhu, Q.B.; Qin, J.W.; Huang, G. Review of seed quality and safety tests using optical sensing technologies. Seed Sci. Technol. 2015, 43, 337–366. [Google Scholar] [CrossRef]
- Rahman, A.; Cho, B.K. Assessment of seed quality using non-destructive measurement techniques: A review. Seed Sci. Res. 2016, 26, 285–305. [Google Scholar] [CrossRef]
- Min, T.G.; Kang, W.S. Nondestructive classification between normal and artificially aged corn (Zea mays L.) seeds using near infrared spectroscopy. Korean J. Crop Sci. 2008, 53, 314–319. [Google Scholar]
- Agelet, L.E.; Ellis, D.D.; Duvick, S.; Goggi, A.S.; Hurburgh, C.R.; Gardner, C.A. Feasibility of near infrared spectroscopy for analyzing corn kernel damage and viability of soybean and corn kernels. J. Cereal Sci. 2012, 55, 160–165. [Google Scholar] [CrossRef]
- Ambrose, A.; Kandpal, L.M.; Kim, M.S.; Lee, W.H.; Cho, B.K. High speed measurement of corn seed viability using hyperspectral imaging. Infrared Phys. Technol. 2016, 75, 173–179. [Google Scholar] [CrossRef]
- Ambrose, A.; Lohumi, S.; Lee, W.H.; Cho, B.K. Comparative nondestructive measurement of corn seed viability using Fourier Transform near-infrared (FT-NIR) and Raman spectroscopy. Sens. Actuators B Chem. 2016, 224, 500–506. [Google Scholar] [CrossRef]
- Jia, S.; Yang, L.; An, D.; Liu, Z.; Yan, Y.; Li, S.; Zhang, X.; Zhu, D.; Gu, J. Feasibility of analyzing frost-damaged and non-viable maize kernels based on near infrared spectroscopy and chemometrics. J. Cereal Sci. 2016, 69, 145–150. [Google Scholar] [CrossRef]
- Kusumaningrum, D.; Lee, H.; Lohumi, S.; Mo, C.; Kim, M.S.; Cho, B.K. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy. J. Sci. Food Agric. 2017, in press. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.K.; Cho, B.K.; Kang, J.S.; Lee, K.J. Study on non-destructive sorting technique for lettuce seed using fourier transform near-infrared spectrometer. J. Agric. Sci. 2012, 39, 111–116. [Google Scholar]
- Kim, G.; Kim, G.H.; Ahn, C.K.; Yoo, Y.; Cho, B.K. Mid-infrared lifetime imaging for viability evaluation of lettuce seeds based on time-dependent thermal decay characterization. Sensors 2013, 13, 2986–2996. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.K.; Mo, C.Y.; Kang, J.S.; Cho, B.K. Nondestructive classification of viable and non-viable radish (Raphanus sativus L.) seeds using hyperspectral reflectance imaging. J. Biosyst. Eng. 2012, 37, 411–419. [Google Scholar] [CrossRef]
- Shrestha, S.; Knapič, M.; Žibrat, U.; Deleuran, L.C.; Gislum, R. Single seed near-infrared hyperspectral imaging in determining tomato (Solanum lycopersicum L.) seed quality in association with multivariate data analysis. Sens. Actuators B Chem. 2016, 237, 1027–1034. [Google Scholar]
- Mo, C.; Kim, G.; Lee, K.; Kim, M.S.; Cho, B.K.; Lim, J.; Kang, S. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging. Sensors 2014, 14, 7489–7504. [Google Scholar] [PubMed]
- Seo, Y.W.; Ahn, C.K.; Lee, H.; Park, E.; Mo, C.; Cho, B.K. Non-destructive sorting techniques for viable pepper (Capsicum annuum L.) seeds using Fourier Transform near-infrared and Raman spectroscopy. J. Biosyst. Eng. 2016, 41, 51–59. [Google Scholar]
- Lohumi, S.; Mo, C.; Kang, J.S.; Hong, S.J.; Cho, B.K. Nondestructive evaluation for the viability of watermelon (Citrullus lanatus) seeds using Fourier Transform near infrared spectroscopy. J. Biosyst. Eng. 2013, 38, 312–317. [Google Scholar] [CrossRef]
- Bae, H.; Seo, Y.W.; Yong, K.D.; Lohumi, S.; Park, E.; Cho, B.K. Development of non-destructive sorting technique for viability of watermelon seed by using hyperspectral image processing. J. Korean Soc. Nondestruct. Test. 2016, 36, 35–44. [Google Scholar] [CrossRef]
- Kandpal, L.M.; Lohumi, S.; Kim, M.S.; Kang, J.S.; Cho, B.K. Near-Infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds. Sens. Actuators B Chem. 2016, 229, 534–544. [Google Scholar] [CrossRef]
- Zhang, S.T.; Liang, K.Q.; Zhang, D.H.; Liang, Y.F.; Su, J.H. Breeding of yellow-white supersweet corn Huameitian NO. 8. Guangdong Agric. Sci. 2010, 37, 30–31. (In Chinese) [Google Scholar]
- Qu, X.L.; Liang, K.Q.; Zhang, D.H.; Liang, Y.F.; Zhang, S.T.; Rong, J.X. The parental character and high-yield production technique of supersweet corn Huameitian NO. 8. Bull. Agric. Sci. Technol. 2015, 11, 174–176. (In Chinese) [Google Scholar]
- Wang, D.; Dowell, F.E.; Chung, D.S. Assessment of heat-damaged wheat kernels using near-infrared spectroscopy. Cereal Chem. 2001, 78, 625–628. [Google Scholar] [CrossRef]
- Manley, M.; Williams, P.; Nilsson, D.; Geladi, P. Near infrared hyperspectral imaging for the evaluation of endosperm texture in whole yellow maize (Zea maize L.) kernels. J. Agric. Food Chem. 2009, 57, 8761–8769. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Papa, E.; Gramatica, P. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chem. Res. Toxicol. 2006, 19, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Tigabu, M.; Odén, P.C. Discrimination of viable and empty seeds of Pinus patula Schiede & Deppe with near-infrared spectroscopy. New For. 2003, 25, 163–176. [Google Scholar]
- Hourant, P.; Baeten, V.; Morales, M.T.; Meurens, M.; Aparicio, R. Oil and fat classification by selected bands of near-iInfrared spectroscopy. Appl. Spectrosc. 2000, 54, 1168–1174. [Google Scholar] [CrossRef]
- Aenugu, H.P.R.; Kumar, D.S.; Srisudharson, N.P.; Ghosh, S.S.; Banji, D. Near infrared spectroscopy—An overview. Int. J. ChemTech. Res. 2011, 3, 825–836. [Google Scholar]
- Basavarajappa, B.S.; Shetty, H.S.; Prakash, H.S. Membrane deterioration and other biochemical-changes, associated with accelerated aging of maize seeds. Seed Sci. Technol. 1991, 19, 279–286. [Google Scholar]
- Lohumi, S.; Lee, S.; Cho, B.K. Optimal variable selection for Fourier transform infrared spectroscopy analysis of starch-adulterated garlic powder. Sens. Actuators B Chem. 2015, 216, 622–628. [Google Scholar] [CrossRef]
a LVs | b PC | c PV | ||||||
---|---|---|---|---|---|---|---|---|
Viable | Nonviable | Total | Viable | Nonviable | Total | |||
Embryo | Raw | 10 | 75/75 | 75/75 | 100% | 24/25 | 24/25 | 96.0% |
Normalization | 10 | 75/75 | 75/75 | 100% | 24/25 | 24/25 | 96.0% | |
MSC (mean) | 9 | 75/75 | 75/75 | 100% | 25/25 | 24/25 | 98.0% | |
S-G 1st | 5 | 72/75 | 75/75 | 98.0% | 24/25 | 22/25 | 92.0% | |
S-G 2nd | 6 | 75/75 | 75/75 | 100% | 25/25 | 23/25 | 96.0% | |
Endosperm | Raw | 10 | 75/75 | 73/75 | 98.7% | 24/25 | 25/25 | 98.0% |
Normalization | 10 | 75/75 | 74/75 | 99.3% | 24/25 | 25/25 | 98.0% | |
MSC (mean) | 9 | 75/75 | 74/75 | 99.3% | 24/25 | 25/25 | 98.0% | |
S-G 1st | 4 | 74/75 | 75/75 | 99.3% | 25/25 | 24/25 | 98.0% | |
S-G 2nd | 4 | 75/75 | 74/75 | 99.3% | 24/25 | 24/25 | 96.0% |
LVs | PC | PV | ||||||
---|---|---|---|---|---|---|---|---|
Viable | Nonviable | Total | Viable | Nonviable | Total | |||
Embryo | Raw | 7 | 73/75 | 73/75 | 97.3% | 24/25 | 24/25 | 96.0% |
Normalization | 7 | 74/75 | 73/75 | 98.0% | 24/25 | 24/25 | 96.0% | |
MSC (mean) | 6 | 75/75 | 74/75 | 99.3% | 24/25 | 24/25 | 96.0% | |
S-G 1st | 4 | 75/75 | 75/75 | 100% | 25/25 | 24/25 | 98.0% | |
S-G 2nd | 3 | 74/75 | 73/75 | 98.0% | 25/25 | 24/25 | 98.0% | |
Endosperm | Raw | 8 | 74/75 | 74/75 | 98.7% | 25/25 | 22/25 | 94.0% |
Normalization | 8 | 74/75 | 73/75 | 98.0% | 25/25 | 22/25 | 94.0% | |
MSC (mean) | 7 | 74/75 | 73/75 | 98.0% | 24/25 | 22/25 | 92.0% | |
S-G 1st | 6 | 74/75 | 75/75 | 99.3% | 25/25 | 22/25 | 94.0% | |
S-G 2nd | 5 | 75/75 | 74/75 | 99.3% | 24/25 | 21/25 | 90.0% |
LVs | PC | PV | ||||||
---|---|---|---|---|---|---|---|---|
Viable | Nonviable | Total | Viable | Nonviable | Total | |||
Embryo | Raw | 18 | 73/75 | 150/150 | 99.1% | 23/25 | 47/50 | 93.3% |
Normalization | 18 | 72/75 | 150/150 | 98.7% | 23/25 | 47/50 | 93.3% | |
MSC (mean) | 17 | 72/75 | 150/150 | 98.7% | 23/25 | 47/50 | 93.3% | |
S-G 1st | 11 | 75/75 | 149/150 | 99.6% | 25/25 | 49/50 | 98.7% | |
S-G 2nd | 9 | 74/75 | 147/150 | 98.2% | 24/25 | 47/50 | 94.7% | |
Endosperm | Raw | 13 | 74/75 | 147/150 | 98.2% | 24/25 | 49/50 | 97.3% |
Normalization | 13 | 74/75 | 146/150 | 97.8% | 24/25 | 49/50 | 97.3% | |
MSC (mean) | 12 | 74/75 | 147/150 | 98.2% | 24/25 | 48/50 | 96.0% | |
S-G 1st | 9 | 74/75 | 148/150 | 98.7% | 25/25 | 49/50 | 98.7% | |
S-G 2nd | 9 | 75/75 | 148/150 | 99.1% | 22/25 | 46/50 | 90.7% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, G.; Lü, E.; Lu, H.; Xu, S.; Zeng, F.; Shui, Q. Single-Kernel FT-NIR Spectroscopy for Detecting Supersweet Corn (Zea mays L. Saccharata Sturt) Seed Viability with Multivariate Data Analysis. Sensors 2018, 18, 1010. https://doi.org/10.3390/s18041010
Qiu G, Lü E, Lu H, Xu S, Zeng F, Shui Q. Single-Kernel FT-NIR Spectroscopy for Detecting Supersweet Corn (Zea mays L. Saccharata Sturt) Seed Viability with Multivariate Data Analysis. Sensors. 2018; 18(4):1010. https://doi.org/10.3390/s18041010
Chicago/Turabian StyleQiu, Guangjun, Enli Lü, Huazhong Lu, Sai Xu, Fanguo Zeng, and Qin Shui. 2018. "Single-Kernel FT-NIR Spectroscopy for Detecting Supersweet Corn (Zea mays L. Saccharata Sturt) Seed Viability with Multivariate Data Analysis" Sensors 18, no. 4: 1010. https://doi.org/10.3390/s18041010
APA StyleQiu, G., Lü, E., Lu, H., Xu, S., Zeng, F., & Shui, Q. (2018). Single-Kernel FT-NIR Spectroscopy for Detecting Supersweet Corn (Zea mays L. Saccharata Sturt) Seed Viability with Multivariate Data Analysis. Sensors, 18(4), 1010. https://doi.org/10.3390/s18041010