UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film
Abstract
1. Introduction
2. Experimental
2.1. Preparation of the ZnO Film
2.2. Characterizations
2.3. Fabrication and Gas Sensing Measurements
3. Results and Discussion
3.1. Structure and Morphology of the As-Prepared Material
3.2. Sensing Properties
4. Conclusions
Supplementary Materials
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, S.; Bang, S.; Park, J.; Park, S.; Jeong, W.; Jeon, H. The effect of oxygen remote plasma reatment on ZnO TFTs fabricated by atomic layer deposition. Phys. Status Solidi 2010, 207, 1845–1849. [Google Scholar] [CrossRef]
- Da Silva, L.F.; M’Peko, J.-C.; Catto, A.C.; Bernardini, S.; Mastelaro, V.R.; Aguir, K.; Ribeiro, C.; Longo, E. UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature. Sens. Actuators B Chem. 2017, 240, 573–579. [Google Scholar] [CrossRef]
- Joshi, N.; da Silvac, L.F.; Jadhav, H.S.; Shimizu, F.M.; Suman, P.H.; M’Peko, J.-C.; Orlandi, M.O.; Seo, J.G.; Mastelaro, V.R.; Oliveira, O.N., Jr. Yolk-shelled ZnCo2O4 microspheres: Surface properties and gas sensing application. Sens. Actuators B Chem. 2018, 257, 906–915. [Google Scholar] [CrossRef]
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposite—A review. Progress Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Kant, S.; Pathania, D.; Singh, P.; Dhiman, P.; Kumar, A. Removal of malachite green and methylene blue by Fe0.01Ni0.01Zn0.98/O Polycrylamide nanocomposite using coupled absorption and Photocatalysis. Appl. Catal. B Environ. 2014, 147, 340–352. [Google Scholar] [CrossRef]
- Zhao, M.G.; Wang, X.C.; Ning, L.L.; Jia, J.F.; Li, X.J.; Cao, L.L. Electrospun Cu-doped ZnO nanofibers for H2S sensing. Sens. Actuators B Chem. 2011, 156, 588–592. [Google Scholar] [CrossRef]
- Arnold, S.P.; Prokes, S.K.; Perkins, F.K.; Zaghloul, M.E. Design and performance of a simple room-temperature Ga2O3 nanowire gas sensor. Appl. Phys. Lett. 2009, 95, 103102. [Google Scholar] [CrossRef]
- Choi, Y.J.; Hwang, I.S.; Park, J.G.; Choi, K.J.; Park, J.H.; Lee, J.H. Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 2008, 19, 095508. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.Z.; Xiao, Z.M.; Teh, K.S.; Han, Z.B.; Luo, G.X.; Shi, C.; Sun, D.H.; Zhao, J.B.; Lin, L.W. High-throughput rod-induced electrospinning. J. Phys. D Appl. Phys. 2016, 49, 365302. [Google Scholar] [CrossRef]
- Fan, S.W.; Srivastava, A.K.; Dravid, V.P. Nanopatterned Poly-crystalline ZnO for room temperature gas sensing. Sens. Actuators B Chem. 2010, 144, 159–163. [Google Scholar] [CrossRef]
- Fan, S.W.; Srivastava, A.K.; Dravid, V.P. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 2009, 95, 142106. [Google Scholar] [CrossRef]
- Camagni, P.; Faglia, G.; Galinetto, P.; Perego, C.; Samoggia, G.; Sberveglieri, G. Photo-sensitivity activation of SnO2 thin film gas sensors at room temperature. Sens. Actuators B Chem. 1996, 31, 99–103. [Google Scholar] [CrossRef]
- Pradesa, J.D.; Diaz, R.J.; Ramirezb, F.H.; Barth, S.; Cireraa, A.; Rodriguez, A.R.; Mathurc, S.; Morante, J.R. Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sens. Actuators B Chem. 2009, 140, 337–341. [Google Scholar] [CrossRef]
- Giberti, A.; Malagu, C.; Guidi, V. WO3 sensing properties enhanced by UV illumination: an evidence of surface effect. Sens. Actuators B Chem. 2012, 165, 59–61. [Google Scholar] [CrossRef]
- Kuang, Q.; Lao, C.S.; Li, Z.; Liu, Y.Z.; Xie, Z.X.; Zheng, L.S.; Wang, Z.L. Enhancing the photon and gas sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. J. Phys. Chem. C 2008, 112, 11539–11544. [Google Scholar] [CrossRef]
- Wang, C.Y.; Cimalla, V.; Kups, T.; Rohlig, C.C.; Stauden, T.; Ambacher, O. Integration of In2O3 nanoparticle based ozone sensors with GaInN/GaN light emitting diodes. Appl. Phys. Lett. 2007, 91, 103509. [Google Scholar] [CrossRef]
- Shinar, R.; Zhou, Z.Q.; Choudhury, B.; Shinar, J. Structurally integrated organic light emitting device-based sensors for gas phase and dissolved oxygen. Anal. Chim. Acta 2006, 568, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.B.; Liu, F.M.; Zhong, T.G.; Xu, J.; Zhang, Y.Q.; Lu, G.Y. Effectsof UV light illumination on the gas sensing properties of ZnO–SnO2 thick film sensor. Sens. Lett. 2011, 9, 824–827. [Google Scholar] [CrossRef]
- Tamvakos, A.; Calestani, D.; Tamvakos, D.; Mosca, R.; Pullini, D.; Pruna, A. Effect of grain-size on the ethanol vapor sensing properties of room-temperature sputtered ZnO thin films. Microchim. Acta 2015, 182, 1991–1999. [Google Scholar] [CrossRef]
- Chen, J.T.; Yan, X.B.; Liu, W.W.; Xue, Q.J. The ethanol sensing property of magnetron sputtered ZnO thin films modified by Ag ion implantation. Sens. Actuators B Chem. 2011, 160, 1499–1503. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Karthick, K.; Dhivya, P.; Sridharan, M. Low power deposition of high quality hexagonal ZnO film grown on Al2O3 (0001) sapphire by dc sputtering. Ceram. Int. 2013, 39, 5681–5687. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.G.; Wang, J.; Tang, Z.A. UV activated hollow ZnO microspheres for selective ethanol sensors at low temperatures. Sens. Actuators B Chem. 2016, 232, 158–164. [Google Scholar] [CrossRef]
- De Lacy Costello, B.P.J.; Ewen, R.J.; Ratcliffe, N.M.; Richards, M. Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles. Sens. Actuators B Chem. 2008, 134, 945–952. [Google Scholar] [CrossRef]
- Alenezi, M.R.; Alshammari, A.S.; Jayawardena, K.D.G.I.; Beliatis, M.J.; Henley, S.J.; Silva, S.R.P. Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors. J. Phys. Chem. C 2013, 117, 17850–17858. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Li, Y.; Chai, X.; Hu, Z.; Deng, Y. UV-light-activated ZnO fibers for organic gas sensing at room temperature. J. Phys. Chem. C 2010, 114, 1293–1298. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Xie, C.; Wu, J.; Zeng, D.; Liao, Y. A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature. Ceram. Int. 2012, 38, 503–509. [Google Scholar] [CrossRef]
- Wongrat, E.; Chanlek, N.; Chueaiarrom, C.; Samransuksamer, B.; Hongsith, N.; Choopun, S. Low temperature ethanol response Enhancement of ZnO nanostructures sensor decorated with gold nanoparticles exposed to UV illumination. Sens. Actuators A Phys. 2016, 251, 188–197. [Google Scholar] [CrossRef]
- Lin, C.H.; Chang, S.J.; Chen, W.S.; Hsueh, T.J. Transparent ZnO-nanowire-based device for UV light detection and ethanol gas sensing on c-Si solar cell. RSC Adv. 2016, 6, 11146–11150. [Google Scholar] [CrossRef]
Nanostructure of ZnO | UV Wavelength (nm)/Energy | Working Temperature (°C) | Ethanol (ppm) | Response | Detection Limit (ppm) | Reference |
---|---|---|---|---|---|---|
ZnO-SnO2 nanoparticles | 380/60 mW/cm2 | 250 | 1000 | 23 (Ra/Rg) | 100 | [19] |
ZnO nanoparticles | 400/2.2 mW/cm2 | RT | 100 | 1.6 (△I/Ia) | 10 | [23] |
ZnO nanodisk | 365/1.6 mW/cm2 | RT | 200 | 0.3 (△I/Ia) | 20 | [24] |
ZnO nanofiber | 365/8 W/cm2 | RT | 60 | 0.8 (△I/Ia) | 10 | [25] |
ZnO porous film | 365/3.6 mW/cm2 | - | 100 | 1.5 (△I/Ia) | 30 | [26] |
ZnO:AuNPs | 254/4.1 mW/cm2 | 125 | 1000 | 6.3 (Ra/Rg) | 100 | [27] |
ZnO nanowire | 365/100 mW/cm2 | 53 | 100 | 1.2 (△R/Ra) | 50 | [28] |
ZnO film | 365/0.5 W/cm2 | 170 | 100 | 163 (Ra/Rg) | 0.1 | This work |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Du, Y.; Wang, Q.; Zhang, H.; Geng, Y.; Li, X.; Tian, X. UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film. Sensors 2018, 18, 50. https://doi.org/10.3390/s18010050
Huang J, Du Y, Wang Q, Zhang H, Geng Y, Li X, Tian X. UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film. Sensors. 2018; 18(1):50. https://doi.org/10.3390/s18010050
Chicago/Turabian StyleHuang, Jinyu, Yu Du, Quan Wang, Hao Zhang, Youfu Geng, Xuejin Li, and Xiaoqing Tian. 2018. "UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film" Sensors 18, no. 1: 50. https://doi.org/10.3390/s18010050
APA StyleHuang, J., Du, Y., Wang, Q., Zhang, H., Geng, Y., Li, X., & Tian, X. (2018). UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film. Sensors, 18(1), 50. https://doi.org/10.3390/s18010050