Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion
Abstract
:1. Introduction

2. Experimental Section
2.1. Image Acquisition System and Measuring Set-Up
| Nozzle Orifice Size (μm) | Settings in Continuous Mode A (V)/f (kHz) | Actual Droplet Diameter (μm) ± Standard Deviation |
|---|---|---|
| 40 | 5.0/8.0 | 119.3 ± 2.6 |
| 50 | 5.0/8.0 | 164.6 ± 1.9 |
| 65 | 2.0/8.0 | 192.6 ± 1.3 |
| 65 | 5.0/8.0 | 222.9 ± 1.6 |
| 123 | 5.0/8.0 | 384.3 ± 0.8 |
| 261 | 5.0/8.0 | 489.7 ± 1.9 |
| 261 | 7.0/8.0 | 497.1 ± 2.0 |
2.2. Image Acquisition for Setting Up the In-Focus Droplet Criterion


2.3. Image Analysis for Developing the In-Focus Droplet Criterion
2.3.1. Image Pre-Processing
2.3.2. Image Segmentation
2.3.3. Droplet Sizing, Calculation of (Critical) In-Focus Parameter and In-Focus Droplet Criterion
- (a)
- Droplet sizing and calculation of the in-focus parameters


- (b)
- Calculation of critical in-focus parameters and the in-focus droplet criterion




| Actual Droplet Diameter (μm) | Infc (-) | FDZ (mm) |
|---|---|---|
| 119.3 | 3.95 | 2.1 |
| 164.6 | 4.62 | 2.6 |
| 192.6 | 5.50 | 3.2 |
| 222.9 | 6.05 | 3.7 |
| 384.3 | 8.55 | 4.1 |
| 489.7 | 10.30 | 5.0 |
| 497.1 | 10.30 | 5.0 |


3. Results and Discussion
3.1. Spray Droplet Characterization Using the In-Focus Droplet Criterion

| Nozzle Type | Nozzle | Pressure (kPa) | Spray Angle (°) | Nominal Flow Rate (L·min−1) |
|---|---|---|---|---|
| Hollow cone | Albuz a ATR orange | 600 | 80 | 1.08 |
| Hollow cone | Albuz a ATR red | 800 | 80 | 1.73 |
| Standard flat fan | TeeJet b XR 110 01 | 400 | 110 | 0.45 |
| Standard flat fan | TeeJet b XR 110 04 | 400 | 110 | 1.82 |
| Air inclusion flat fan | TeeJet b AI 110 04 | 400 | 110 | 1.82 |





3.2. Spray Quality Parameters
3.3. Spray Droplet Size Distribution

3.4. Spray Droplet Velocity Distribution

3.5. Comparison between Imaging and PDPA Measuring Technique


4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
| Nomenclature Abbreviation | Description |
| A | Amplitude |
| d | Droplet diameter |
| DOF | Depth-of-field |
| f | Frequency |
| FOV | Field of view |
| FDZ | Focused droplet zone |
| gradedge | Gray level gradient at the edge |
| HS | High speed |
| Iback | Gray level of the image background |
| Idroplet | Droplet gray level |
| Infc | Critical in-focus parameter |
| Inf | In-focus parameter |
| NMD | Number median droplet |
| NMV | Number median velocity |
| PDPA | Phase Doppler Particle Analyzer |
| PSF | Point spread function |
References
- Azimi, A.H.; Carpenter, T.G.; Reichard, D.L. Nozzle spray distribution for pesticide application. Trans. ASAE 1985, 28, 1410–1414. [Google Scholar] [CrossRef]
- Zhu, H.; Rowland, D.L.; Dorner, R.C.; Sorensen, R.B. Influence of plant structure, orifice size and nozzle inclination on spray penetration into peanut canopy. Trans. ASAE 2002, 45, 1285–1301. [Google Scholar]
- Foqué, D.; Nuyttens, D. Effects of nozzle type and spray angle on spray deposition in ivy pot plants. Pest Manag. Sci. 2011, 67, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, M.J. Introduction to Particle Technology, 2nd ed.; John Wilery and Sons Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Nuyttens, D. Drift from Field Crop Sprayers: The Influence of Spray Application Technology Determined Using Indirect and Direct Drift Assessment Means. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2007. [Google Scholar]
- Nuyttens, D.; De Schampheleire, M.; Verboven, P.; Brusselman, E.; Dekeyser, D. Droplet Size and Velocity Characteristics of Agricultural Sprays. Trans. ASAE 2009, 52, 1471–1480. [Google Scholar] [CrossRef]
- Stainier, C.; Destain, M.F.; Schiffers, B.; Lebeau, F. Droplet size spectra and drift effect of two phenmedipham formulations and four adjuvants mixtures. Crop Prot. 2006, 25, 1238–1243. [Google Scholar] [CrossRef]
- Teske, M.E.; Thistle, H.W.; Hewitt, A.J.; Kirk, I.W. Conversion of droplet size distributions from PMS Optical Array Probe to Malvern Laser Diffraction. At. Sprays 2002, 12, 267–281. [Google Scholar] [CrossRef]
- Hijazi, B.; Decourselle, T.; Vulgarakis Minov, S.; Nuyttens, D.; Cointault, F.; Pieters, J.G.; Vangeyte, J. The Use of High-Speed Imaging System for Applications in Precision Agriculture. In New Technologies: Trends, Innovations and Research; Constantin, V., Ed.; Intech: England, UK, 2012. [Google Scholar]
- Lecuona, A.; Sosa, P.A.; Rodriguez, P.A.; Zequeira, R.I. Volumetric characterization of dispersed two-phase flows by digital image analysis. Meas. Sci. Technol. 2000, 11, 1152–1161. [Google Scholar] [CrossRef]
- Graßmann, A.; Peters, F. Size measurement of very small spherical particles by Mie Scattering Imaging (MSI). Part. Part. Syst. Charact. 2004, 21, 379–389. [Google Scholar] [CrossRef]
- Bachalo, D.W. Dual beam light-scatter interferometry. Appl. Opt. 1980, 19, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Kannaiyan, K.; Sadr, R. Effect of fuel properties on spray characteristics of alternative jet fuels using global sizing velocimetry. At. Sprays 2014, 24, 575–597. [Google Scholar] [CrossRef]
- Ju, D.; Shrimpton, J.S.; Hearn, A. A Multi-Thresholding Algorithm for Sizing out of Focus Particles. Part. Part. Syst. Charact. 2012, 29, 78–92. [Google Scholar] [CrossRef]
- Berg, T.; Deppe, J.; Michaelis, D.; Voges, H.; Wissel, S. Comparison of Particle Size and Velocity Investigations in Sprays Carried out by Means of Different Measurement Techniques; ICLASS: Kyoto, Japan, 2006. [Google Scholar]
- Chigier, N. Optical Imaging of Sprays. Prog. Energy Combust. Sci. 1991, 17, 211–262. [Google Scholar] [CrossRef]
- Kashdan, J.T.; Shrimpton, J.S.; Whybrew, A. A digital image analysis technique for quantitative characterisation of high-speed sprays. Opt. Lasers Eng. 2007, 45, 106–115. [Google Scholar] [CrossRef]
- Kim, K.S.; Kim, S.S. Drop sizing and depth-of-field correction in TV imaging. At. Sprays 1994, 4, 65–78. [Google Scholar] [CrossRef]
- Malot, H.; Blaisot, J.B. Droplet size distribution and sphericity measurements of low-density sprays through image analysis. Part. Part. Syst. Charact. 2000, 17, 146–158. [Google Scholar] [CrossRef]
- Vulgarakis Minov, S.; Cointault, F.; Vangeyte, J.; Pieters, J.G.; Nuyttens, D. Development of High-Speed Image Acquisition Systems for Spray Characterization Based on Single-Droplet Experiments. Trans. ASABE 2015, 58, 27–37. [Google Scholar]
- Vulgarakis Minov, S. Integration of Imaging Techniques for the Quantitative Characterization of Pesticide Sprays. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2015. [Google Scholar]
- Vulgarakis Minov, S.; Cointault, F.; Vangeyte, J.; Pieters, J.G.; Nuyttens, D. Droplet generation and characterization using piezoelectric droplet generator and high speed imaging techniques. Crop Prot. 2015, 69, 18–27. [Google Scholar] [CrossRef]
- Castanet, G.; Dunand, P.; Caballina, O.; Lemoine, F. High-speed shadow imagery to characterize the size and velocity of the secondary droplets produced by drop impacts onto a heated surface. Exp. Fluids 2013, 54, 1489–1506. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using Matlab; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Dong, X.; Zhu, H.; Yang, X. Three-Dimensional Imaging system for Analyses of Dynamic Droplet Impaction and Deposit Formation on Leaves. Trans. ASABE 2013, 56, 1641–1651. [Google Scholar]
- Canny, J.A. Computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1983, 8, 679–698. [Google Scholar]
- Yule, A.J. Large-Scale Structure in the mixing layer of a round jet. J. Fluid Mech. 1978, 89, 413–432. [Google Scholar] [CrossRef]
- Lee, S.; Kim, Y. Sizing of spray particles using image processing technique. KSME Int. J. 2004, 18, 879–894. [Google Scholar]
- Lee, C.; Wu, C.H.; Hoopes, J.A. Simultaneous particle size and concentration measurements using a back-lighted particle imaging system. Flow Meas. Instrum. 2009, 20, 189–199. [Google Scholar] [CrossRef]
- Huang, K.Y.; Ye, Y.T. A Novel Machine Vision System on the Inspection of Micro-Spray Nozzle. Sensors 2015, 15, 15326–15338. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.J.; Lee, S.J. A new two-frame particle tracking algorithm using match probability. Exp. Fluids 1996, 22, 23–32. [Google Scholar] [CrossRef]
- Hislop, E.C. Can we achieve optimum pesticide deposits? Asp. Appl. Biol. 1987, 14, 153–172. [Google Scholar]
- Cawood, P.N.; Robinson, T.H.; Whittaker, S. An Investigation of Alternative Application Techniques for the Control of Black-Grass. Brighton Crop Prot. Conf. Weeds 1995, 2, 521–528. [Google Scholar]
- Nuyttens, D.; De Schampheleire, M.; Baetens, K.; Brusselman, E.; Dekeyser, D.; Verboven, P. Drift from field crop sprayers using an integrated approach: Results from a five-year study. Trans. ASABE 2011, 54, 403–408. [Google Scholar] [CrossRef]
- Butler Ellis, M.C.; Tuck, C.R.; Miller, P.C.H. The effect of some adjuvants on sprays produced by agricultural flat fan nozzles. Crop Prot. 1997, 16, 41–50. [Google Scholar] [CrossRef]
- Nuyttens, D.; Baetens, K.; De Schampheleire, M.; Sonck, B. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst. Eng. 2007, 97, 333–345. [Google Scholar] [CrossRef]
- Dekeyser, D.; Duga, A.T.; Verboven, P.; Hendrickx, N.; Nuyttens, D. Assessment of orchard sprayers using laboratory experiments and CFD modelling. Biosyst. Eng. 2013, 114, 157–169. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minov, S.V.; Cointault, F.; Vangeyte, J.; Pieters, J.G.; Nuyttens, D. Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion. Sensors 2016, 16, 218. https://doi.org/10.3390/s16020218
Minov SV, Cointault F, Vangeyte J, Pieters JG, Nuyttens D. Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion. Sensors. 2016; 16(2):218. https://doi.org/10.3390/s16020218
Chicago/Turabian StyleMinov, Sofija Vulgarakis, Frédéric Cointault, Jürgen Vangeyte, Jan G Pieters, and David Nuyttens. 2016. "Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion" Sensors 16, no. 2: 218. https://doi.org/10.3390/s16020218
APA StyleMinov, S. V., Cointault, F., Vangeyte, J., Pieters, J. G., & Nuyttens, D. (2016). Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion. Sensors, 16(2), 218. https://doi.org/10.3390/s16020218

