Next Article in Journal
Economics of Harmful Invasive Species: A Review
Previous Article in Journal
Employing Measures of Heterogeneity and an Object-Based Approach to Extrapolate Tree Species Distribution Data
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Diversity of Secondary Metabolites in the Genus Silene L. (Caryophyllaceae)—Structures, Distribution, and Biological Properties

1
Institute of the Chemistry of Plant Substances AS RUz, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
2
Sorbonne Universités, Université Pierre et Marie Curie, IBPS-BIOSIPE, Case Courrier n°29, 7 Quai Saint Bernard F-75252, Paris cedex 05, France
3
Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
*
Author to whom correspondence should be addressed.
Diversity 2014, 6(3), 415-499; https://doi.org/10.3390/d6030415
Submission received: 21 May 2014 / Revised: 26 June 2014 / Accepted: 1 July 2014 / Published: 11 July 2014

Abstract

:
The genus Silene (family Caryophyllaceae) comprises more than 700 species, which are widely distributed in temperate zones of the Northern Hemisphere, but are also present in Africa and have been introduced in other continents. Silene produces a high diversity of secondary metabolites and many of them show interesting biological and pharmacological activities. More than 450 compounds have been isolated; important classes include phytoecdysteroids (which mimic insect molting hormones), triterpene saponins (with detergent properties), volatiles, other terpenoids and phenolics. This review focusses on the phytochemical diversity, distribution of Silene secondary metabolites and their biological activities.

1. Introduction

The genus Silene (family Caryophyllaceae) comprises more than 700 species (allocated in 39 sections) of annuals, biennials, and perennials which are mainly distributed in temperate zones of the Northern Hemisphere of Eurasia and America, but also in Africa [1,2]. Presently, the genus Silene includes several taxa which were formerly treated as different genera, such as Coronaria, Cucubalus, Lychnis, Melandrium, Petrocopsis, and Viscaria [1]. There are two major centers of diversity in Silene: one in the Mediterranean/Middle East and one in Central Asia. A few taxa have been introduced to other continents.
The genus consists mainly of herbaceous plants and, more rarely, small shrubs or subshrubs. The flowers have free petals, with each petal consisting of a usually visible limb that can be divided or entire, and a claw that is included within the synsepalous calyx. Silene has been placed in the tribe Sileneae and the subfamily Caryophylloideae. In molecular phylogenetic studies, the genus Silene clusters in two major clades of approximately equal size, which are tentatively classified as Silene subgenus Silene and Silene subgenus Behen (Moench) Bunge [3,4]. In the most recent taxonomic revision covering the entire genus, Silene has been divided into 44 sections, without any rank above that [5]. Common names of Silene are campion and catchfly. Red Campion (S. dioica), white Campion (S. latifolia, S. alba) and bladder Campion (S. vulgaris) are common wildflowers throughout Europe. Some species of Silene have served as important model plants for studies in ecology, genetics and evolution by famous scientists such as Charles Darwin, Gregor Mendel, Carl Correns, Herbert G. Baker, and Janis Antonovics [6]. Silene is an important model system for genetic studies on gynodioecy, dioecy, and polyploidy.
Silene also includes a number of cultivated species and widespread weeds [7]. S. acaulis, S. multifida and S. regia have been cultivated as ornamental plants because they produce beautiful flowers [8]. The roots of several species, such as S. latifolia, S. acaulis, S. kumaonensis, and S. conoidea which are rich in saponins with detergent properties, have been traditionally used as a soap substitute for washing clothes similar to other plants of the Caryophyllaceae [9,10]. The soap is obtained by simmering roots in hot water [11,12]. A few species are edible such as S. acaulis, S. cucubalis, and S. vulgaris [13,14,15,16]. Especially young shoots and the leaves of S. vulgaris are much appreciated in the traditional gastronomy of Turkey, Italy, Austria, and Spain [14]. A number of Silene species have been used in traditional medicine to treat inflammations, bronchitis, cold, and infections or as a diuretic, antipyretic, analgesic, and emetic [17,18,19,20,21,22,23,24]. Phytoecdysteroids mimic molting hormones of insects and are therefore of interest for chemical ecology and for applications of plant derived insecticides. Because of page restrictions, a thorough review of traditional uses of members of Silene or their pharmacology is out of scope of this review.
Silene produces a diversity of secondary metabolites, many of them are important for the plants as defence compounds against herbivores and microbes [25,26]. In this review, the secondary metabolites which have been isolated from the genus Silene are tabulated in detail; the review is based on an analysis of the relevant literature and data bases such as PubMed, Scifinder, and ScienceDirect. The diversity of structures of identified phytochemicals, their names and corresponding plant sources are summarized in Table 1 (below the main text).

2. Phytochemical Diversity

Phytochemical investigations of the genus Silene have led to the isolation of several phytoecdysteroids [27], triterpene saponins [28], terpenoids, benzenoids, flavonoids [29], anthocyanidins, N-containing compounds [30], sterols, and vitamins [31,32] (see Table 1). The abundance and widespread occurrence of triterpene saponins is a typical feature of the family Caryophyllaceae. Of special interest is the presence of phytoecdysteroids which mimic insect molting hormones and which strongly interfere with the metamorphosis of insects. The predominantly edysteroid positive genera of Silene, (including the former genera Coronaria, Lychnis and Petrocoptis) are in the Silenoideae [33,34,35]. Information on the phytochemistry of the genera Coronaria, Cucubalus, Lychnis, Melandrium, Petrocopsis, and Viscaria is not included, except if it was published under the merged genus Silene. A chemotaxonomical analysis of the data with view on the molecular phylogeny of Silene will be part of a subsequent publication.

3. Biological Properties

3.1. In Vitro Biological Activities

3.1.1. Antimicrobial and Antifungal Activities

Erturk et al. [8] extracted the apolar fractions from chloroform extract of S. multifida and tested for the antimicrobial activities against six bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae and Proteus vulgaris and one pathogenic fungus Candida albicans (0.5 mg/mL). All fractions of S. multifida showed activity against all tested bacteria. Only two fractions showed antifungal activity. The oil samples of S. vulgaris and S. cserei subsp. aeoniopsis were also screened against the several standard strains of bacteria and the yeast Candida using the microdilution method [36]. Both of these oils displayed the same activity profile, having notable antibacterial activity against the Gram-negative bacterium Klebsiella pneumoniae at a concentration of 4 g/mL and significant antifungal activity against Candida albicans (16 g/mL). Methanol extracts from three Silene species from Iran (S. gynodioca, S. spergulifolia and S. swertiifolia) were screened for their possible in vitro antibacterial activities by the disc diffusion method [37]. Results indicated that S. swertiifolia has a strong antibacterial activity against three Gram-positive and gram-negative bacteria, namely Haemophilus influenzae, Pseudomonas aeruginosa and Bacillus cereus, whereas S. spergulifolia showed a strong inhibition against Bacillus cereus. Bajpai et al. [38] examined the chemical composition of the essential oil isolated from S. armeria and tested the efficacy of essential oil (5 µL/mL, corresponding to 1000 ppm/disc) and different extracts (7.5 µL/mL, corresponding to 1500 ppm/disc) against a diverse range of food spoilage and food-borne pathogens (Bacillus subtilis ATCC6633, Listeria monocytogenes ATCC19166, Staphylococcus aureus KCTC1916, S. aureus ATCC6538, Pseudomonas aeruginosa KCTC2004, Salmonella typhimurium KCTC2515, Salmonella enteritidis KCTC2021, Escherichia coli O157-Human, E. coli ATCC8739, E. coli O57:H7 ATCC43888 and Enterobacter aerogenes KCTC2190). The results of this study suggested that the essential oil and leaf extracts derived from S. armeria could be used for the development of novel types of antibacterial agents to control food spoilage and food-borne pathogens.
We have studied the antimicrobial activity of different extracts and phytoecdysteroids from Silene plants towards pathogenic microorganisms [39]. Acinetobacter spec., Enterococcus faecalis, Klebsiella oxytoca, Pantoea agglomerans, Proteus rettgeri, Pseudomonas aeruginosa and Staphylococcus aureus strains were inhibited by the methanol extract of S. wallichiana (Minimal Inhibitory Concentration, MIC = 2.5 mg/mL), while Escherichia coli and Klebsiella pneumoniae were inhibited with a MIC = 1.25 mg/mL. The butanol extract of S. wallichiana showed activity against pathogenic bacteria Acinetobacter sp., E. coli, K. pneumoniae, P. agglomerans, P. aeruginosa and P. rettgeri, whereas chloroform extract inhibited only Citrobacter freundii, E. coli and P. aeruginosa (MIC = 1.25 mg/mL). The CHCl3 extract of S. brachuica inhibited growth of three Gram-negative (Enterococcus faecalis, Proteus rettgeri, and Pseudomonas aeruginosa) and one Gram-positive (Micrococcus luteus) bacterial strain. The CHCl3 extract of S. viridiflora was active against M. luteus, P. rettgeri, Klebsiella pneumoniae, and P. aeruginosa, whereas the extract of S. wallichiana exhibited activity against only pathogenic bacteria E. coli, M. luteus and P. aeruginosa [40]. Pure phytoecdysteroids (viticosterone E, 20-hydroxyecdysone-22-benzoate, 2-deoxy-20-hydroxyecdysone, 2-deoxyecdysone, 20-hydroxyecdysone and integristerone A) isolated from S. wallichiana exhibited very low activity against the bacteria [39]. Also a preliminary screening of the CHCl3 extract from the aerial part of S. guntensis exhibited antibacterial effects against Escherichia coli, P. aeruginosa, and Acinetobacter sp. [41]. From above-mentioned results we can conclude that the apolar fractions of Silene exhibit moderate activity against both Gram-positive and Gram-negative bacteria, and this activity may be attributed to a synergistic effect, due to the presence of phenols and some monoterpenoids in the apolar fraction.

3.1.2. Antiviral Activity

The lipophilic extracts of a S. vulgaris were tested against the DNA virus Herpes simplex (HSV) and RNA virus Parainfluenza (PI-3) using Madin-Darby bovine kidney and Vero cell lines [42]. The extracts exerted substantial antiviral effects against both viruses, as compared to acyclovir and oseltamivir. Some plants which have a high amount of palmitic acid were previously reported to have a powerful antiviral activity against H. simplex (HSV) and Parainfluenza viruses (PIV) [43]. However, no correlation was found between antiviral activity and fatty acid contents of the extracts.

3.1.3. Antioxidant Activity

Methanol extracts from three Silene species from Iran (S. gynodioca, S. spergulifolia and S. swertiifolia) were screened for their possible in vitro antioxidant activities by three complementary test systems, namely DPPH free radical-scavenging, metal chelating activity and β-carotene/linoleic acid oxidation [37]. Results showed that S. swertiifolia, which contains high amount of phenolics and flavonoids, exhibited the greatest antioxidant activity. The extracts of S. swertiifolia and S. spergulifolia showed a higher potency than ascorbic acid in scavenging of DPPH free radical. In the metal-chelating assay all extracts had a lower activity than ascorbic acid. In the β-carotene/linoleic acid system, oxidation of linoleic acid was effectively inhibited by the S. swertiifolia extract. The radical scavenging activity of the plant extracts decreased in the following order: ascorbic acid (IC50 = 0.13 mg/mL) > S. swertiifolia (IC50 = 0.13 mg/mL) > S. spergulifolia (IC50 = 0.21 mg/mL) > S. gynodioca (IC50 = 0.29 mg/mL).
Conforti et al. [44] studied the in vitro antioxidant activity of the hydroalcoholic extract from S. vulgaris. A very good correlation between radical scavenging activity and polyphenol content (for S. vulgaris 67.5 mg/g of extract) was found. Taskin and Bitis [45] reported that S. alba subsp. divaricata leaves have beneficial effects on ferrous chelating, DPPH radical-scavenging and ABTS radical cation scavenging abilities. This plant contained the highest phenolic compounds and may thus exert protection against oxidative damage. The radical scavenging ability of the extracts and phytoecdysteroids of S. guntensis were evaluated by us using the reaction with the stable DPPH radical [46]. In our experiments phytoecdysteroids were ineffective for DPPH radical scavenging activity (IC50 value > 100 µg/mL). Maximum scavenging activity of DPPH was observed with the water extract (IC50 68.90 μg/mL) of S. guntensis, followed by the activities of the butanol, methanol, and chloroform extracts with IC50 values of 69.12, 122.48, and 148.28 μg/mL, respectively. The activities of 20-hydroxyecdysone, 2-deoxy-20-hydroxyecdysone, and 2,3-diacetate-22-benzoate-20-hydroxyecdysone were 144.75, 157.29, and 291.38 μg/mL, respectively. However, we assume that the antioxidant effect of these extracts might be attributed to some co-eluting phenolic compounds and not to phytoecdysteroids, lipids etc.

3.1.4. Phagocytic Activity

Popov et al. [47] studied the effects of the polysaccharides from plants and callus of S. vulgaris (silenans) on uptake capacity and myeloperoxidase activity in the peripheral human neutrophils and monocytes and rat peritoneal macrophages in vitro. All polysaccharides (three silenans from the intact plant; pectic polysaccharides P1, P2 and P3) and two from the callus (acidic arabinogalactan C1 and pectin C2) enhanced uptake capacity at concentration of 15 mg/mL. The acidic arabinogalactan C1 was only found to stimulate lysosomal activity of the peripheral phagocytes. The effect of some polysaccharides was established in peritoneal resident macrophages. Pectins P1, P3 and C2 failed to enhance myeloperoxidase activity of the macrophages in calcium-free solution, whereas arabinogalactan C1 was independent of extracellular calcium. Polysaccharides studied failed to influence either complement receptor CR3- or scavenger receptor SR-mediated adhesion of the macrophages. The data obtained demonstrate that the S. vulgaris may be used as sources of immunoactive polysaccharides and that pectins and weakly acidic arabinogalactan seem to stimulate macrophages through different mechanisms. Complement receptor type 3 and scavenger receptor failed to mediate the cell activation induced by plant polysaccharides.

3.1.5. Inhibition of Nitric Oxide (NO) Production

Conforti et al. [44] examined whether S. vulgaris can modulate the production of NO by the RAW 264.7 mouse macrophage cell line pre-treated with a hydroalcoholic extract (10–1000 μg/mL) prior to activation by bacterial lipopolysaccharide (LPS). The treatment of RAW 264.7 macrophages with LPS (1 μg/mL) for 24 h, induced NO production which can be quantified by utilising the chromogenic Griess reaction and measuring the accumulation of nitrite, a stable metabolite of NO. The beneficial effect of extracts on the quenching of inflammatory mediators in macrophages can be mediated through oxidative degradation of phagocytosis products, such as O2 and HOCl. S. vulgaris had a weak cytotoxicity (202 ± 2.6 μg/mL), while the reference drug indomethacin showed cytotoxicity with IC50 = 58 μg/mL.

3.1.6. Antitumor Activity

In our in vitro experiments pure compounds, such as phytoecdysteroid 2,3-diacetate-22-benzoate-20-hydroxyecdysone showed a moderate inhibition against HeLa and HepG-2 cells (IC50 values (127.97 ± 11.34 μM) and (106.76 ± 7.81 μM), respectively), while 2-deoxy-20-hydroxyecdysone inhibited MCF-7 cells at a concentration IC50 = 126.54 ± 12.09 μM [46]. Conforti et al. [44] reported that a hydroalcoholic extract from S. vulgaris showed a weak cytotoxicity against the murine monocytic macrophage cell line RAW 264.7 (IC50 = 712 μg/mL). Behzad et al. [48] also informed that S. ampulata, S. peduncularis plants showed no cytotoxic activity (IC50 > 100 μL/mL) against normal and cancer cell lines.
The triterpene saponins from the roots of S. fortunei were tested in an in vitro lymphocyte proliferation assay. The saponins, jenisseensosides C and D and their deacylated derivatives stimulated the proliferation of the Jurkat tumor cell lines (human T-cell leukaemia) at low concentrations (1 nM to 5 μM). At high concentrations (>10 μM), they inhibited the proliferation of the cells probably due to the induction of apoptosis [28]. These authors [49] reported that the trans- and cis-p-methoxycinnamoyl triterpene saponins jenisseensosides A to D (from S. jenisseensis and S. fortunei) increased the accumulation and cytotoxicity of the anticancer agent cisplatin in HT 29 (human colon tumor) cells.

3.2. In Vivo Biological Activities

3.2.1. Antitumor Activity

Zibareva [50] reported that the ecdysteroid-containing extract of S. viridiflora exerted antitumor activity in vivo, however investigations with individual phytoecdysteroids showed no effect [51]. Also, El-Mofti [52,53] reported that ecdysone was able to induce neoplastic lesions in toads and mice, a result which appears somewhat surprising when considering the very low doses of ecdysone used. The phytoecdysteroids cyasterone, polypodine B, and decumbesterone A showed potent antitumor activities in a mouse-skin model in vivo in a two-stage carcinogenesis trial, using 7,12-dimethylbenz[a]anthracene as initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as promoter [54]. However, Lagova and Valueva [55] reported that 20-hydroxyecdysone was mainly ineffective in preventing tumor growth in mice, but it stimulated the growth of mammary gland carcinomas. Because ecdysteroids structurally resemble sex hormones, they might indeed bind to steroid hormone receptors in mammals and stimulate the growth of hormone-dependent tumors. Binding studies performed so far for 20-hydroxyecdysone and a set of phytoecdysteroids [56,57] do not support this hypothesis, but they were not performed with all in vivo metabolites.

3.2.2. Immunomodulatory Activity

The total ecdysteroid preparation from S. viridiflora for immunostimulation in vivo was analyzed by Shakhmurova et al. [58]. The preparation (5 mg/kg) acts as an effective immunomodulator in normal mice and in mice with secondary immunodeficiency developed under irradiation, and with acute toxic hepatitis. The immunomodulating activity of total ecdysteroids from S. viridiflora is comparable with that of the known immunity stimulator T-activin, a polypeptide preparation from cattle thymus. Furthermore, Bushneva et al. [59] showed that pectic polysaccharide named silenan which was isolated from the aerial parts of S. vulgaris, possess immunomodulatory activity. Ghonime et al. [60] confirmed the immunomodulatory activity Silene species. Extracts from S. nocturna were examined for their immunomodulatory effect in Balb/c mice. Treatment (intraperitoneal injection) with five doses of the methanol extract enhanced the total white blood cells count (up to 1.2 × 104 cells/mm3). Bone marrow cell density also increased significantly after the administration of the extract. Furthermore, spleen weight of the treated groups was significantly increased as compared to controls. Two groups of mice were immunosuppressed with cyclophosphamide; the one which was pre-treated with S. nocturna extracts significantly restored their resistance against lethal infection with the predominantly granulocyte-dependant Candida albicans.

3.2.3. Adaptogen and Actoprotection Activity

The total ecdysteroid preparation from S. viridiflora (“Siverinol”) and S. brachuica (“Silekbin”) was analyzed for actoprotector and adaptogenic activity in vivo by several researchers [61,62,63,64]. Siverinol (oral intake doses ranged between 100 and 3000 mg/kg b.w. over 14 days) increased endurance (swimming tests) and reduced the recovery time (lactic acid recycling, regeneration of glycogen stores) after a severe physical load. Chronic exposure over 7–14 days resulted in a significant stimulation of erythropoiesis and increase of muscle size. Moreover, it reduced the stress effects of an extended physical exercise. The pharmacocorrective influence of Siverinol and Silekbin to biochemical mechanisms of dis-adaptation and basal processes of bioenergetics in the muscle tissue of the experimental animals was the base of actoprotector activity.

3.2.4. Hepatoprotection Activity

The effect of an oral administration of a 50% ethanol extract from S. aprica on acute liver injury was examined in rats intoxicated with carbon tetrachloride and acetaminophen [65]. The results indicated that S. aprica protected the liver intoxication as judged by morphological and biochemical observations. An increase in both lipid peroxidation and triglyceride concentrations occurred in the liver after carbon tetrachloride injection; S. aprica administration significantly reduced these changes. Also Shin et al. [66] reported that a S. takesimensis extract or a mixed extract with Melandrium firmum relieved fibrotic liver damage induced by carbon tetrachloride through inhibition of ALT and AST enzymes in the liver. The extracts inhibited hepatic fibrosis without affecting liver stromal cells by decreasing the amount of collagen, alpha-smooth muscle actin, and TGF-β inside the liver tissues.

3.2.5. Electrical Activity of the Heart

Golovko and Bushneva [21] studied the effect of silenan (a pectin polysaccharide from S. vulgaris), during development of arrhythmia and in disorders of cell-cell interactions in the zone of contact between the venous sinus and atrial cells. Electrical activity of myocardial cells was studied with spontaneously contracting strips from the sinoatrial area of Rana temporaria heart. Silenan corrected disorders in the conduction of action potentials between cells of the sinoatrial area of frog heart forming a functional syncytium. Recovery of action potential conduction in the sinoatrial cells was recorded in long-term experiments (>8 h). The effect of silenan mainly concerned the background of arrhythmic generation and impaired propagation of action potentials.

3.2.6. Insecticidal Activity

Phytoecdysteroids are analogues of insect molting hormones and sometimes their concentration in plants can reach 0.01%–3%. Even at ultralow concentrations they can affect insect development. For example, ecdysteroid 20-hydroxyecdysone at concentrations of 10−8 to 10−9 M initiates the transformations occurring in embryogenesis and during larval development with instant metamorphosis to the adult insect [67]. The potential insect deterrent activity of several Silene species, such as S. conoidea, S. ampulata and S. peduncularis, have been reported by several authors [48,68]. Chermenskaya et al. [69] reported that ethanol extracts of the aerial parts of S. sussamyrica showed substantial insecticidal activity, especially against western flower thrips larvae Frankliniella occidentalis Perg. (Thysanoptera: Thripidae). In this case we can assume this plant probably contained phytoecdysteroids and these compounds caused death of F. occidentalis larvae.

4. Conclusions

The genus Silene is known to be a source of biological active compounds. Phytochemical analysis of Silene demonstrated their richness in various compounds (>450 compounds have been isolated) belonging to different structural types, such as phytoecdysteroids, triterpene saponins, terpenoids, benzenoids, flavonoids, N-containing compounds, sterols, vitamins and others. The most prominent compounds in Silene species are the phytoecdysteroids, which have a similar chemical structure to molting hormones of insects. From data collected in this review, it is evident that the genus Silene comprises a wide range of pharmaceutically promising, interesting, and valuable plants. Some species of the genus Silene are used as ornamental plants and in folk medicine to treat inflammations, bronchitis, cold, and infections or as a diuretic, antipyretic, analgesic, emetic, etc. Many of the traditional uses have been validated by scientific research. It would be important for future studies to include the former genera Coronaria, Cucubalus, Lychnis, Melandrium, Petrocopsis, and Viscaria, which presently are partly included in the larger genus Silene [1].
The collected data provides a means to understand the latest developments in the pharmacology and phytochemistry of the genus Silene. Current pharmacological data is in many cases limited to studies on plant extracts and, hence, efforts are needed towards the isolation of biologically active compounds. Due to their various promising activities, further studies are warranted to be carried out on the drug development of Silene extracts and their constituents.
Table 1. Structures and Distribution of Secondary Metabolites in the Genus Silene.
Table 1. Structures and Distribution of Secondary Metabolites in the Genus Silene.
Triterpenoids
Phytoecdysteroids
Diversity 06 00415 i001
NameStructurePlant SourceReference
Substituents in Steroidal CoreSubstituents in Side-Chain
R1R2R3R4R5R6R7R8
BrahuisteroneHHOHOHHOHOHCH3S. brahuica Boiss[70]
2-Deoxy-20,26-dihydroxyecdysoneHHOHHOHOHOHCH2OHS. pseudotites Bess ex Reichenb[71,72]
22-Deoxy-20,26-dihydroxyecdysoneHOHOHHOHHOHCH2OHS. nutans L.[73,74]
2-DeoxyecdysoneHHOHHHOHOHCH3S. brahuica Boiss, S. claviformis Litv, S. fridvaldszkyana Hampe, S. gigantea L., S. graminifolia Otth, S. latifolia (Gilib) Aschers, S. otites (L.) Wibel, S. praemixta M Pop, S. pseudotites Bess ex Reichenb, S. repens Patrin, S. roemeri Friv, S. scabrifolia Kom, S. tomentella Schischk, S. wallichiana Klotsch[71,72,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98]
2-Deoxyecdysone-3-acetateHHOAcHHOHOHCH3S. scabrifolia Kom[99]
2-Deoxyecdysone-22-acetateHHOHHHOAcOHCH3S. brahuica Boiss, S. otites (L.) Wibel[74,100]
2-Deoxyecdysone-22-benzoateHHOHHHOBzOHCH3S. wallichiana Klotsch[85]
2-Deoxyecdysone-22-glucosideHHOHHHOGluOHCH3S. praemixta M Pop, S. pseudotites Bess ex Reichenb[71,72,98]
2-Deoxy-20-hydroxyecdysoneHHOHHOHOHOHCH3S. antirrhina L., S. brahuica Boiss, S. chlorifolia Smith, S. claviformis Litv, S. cretica L., S. disticha Willd, S. fridvaldszkyana Hampe, S. gigantea L., S. guntensis B Fredtsch, S. italica (L.) Pers, S. italica ssp. nemoralis, S. latifolia (Gilib) Aschers, S. linicola C.C.Gmelin., S. otites (L.) Wibel, S. portensis L., S. praemixta M Pop, S. pseudotites Bess ex Reichenb, S. repens Patrin, S. roemeri Friv, S. scabrifolia Kom, S. viridiflora L., S. wallichiana Klotsch[46,71,72,76,77,78,79,81,82,85,86,87,88,89,90,91,92,93,94,96,97,98,100,101,102,103,104,105,106,107,108,109,110,111,112,113]
2-Deoxy-20-hydroxyecdysone-3-acetateHHOAcHOHOHOHCH3S. otites (L.) Wibel, S. praemixta M Pop[114,115]
5α-2-Deoxy-20-hydroxyecdysone-3-acetateHHOAcH (α)OHOHOHCH3S. otites (L.) Wibel[114]
2-Deoxy-20-hydroxyecdysone-22-acetateHHOHHOHOAcOHCH3S. otites (L.) Wibel[74]
2-Deoxy-20-hydroxyecdysone-25-acetateHHOHHOHOHOAcCH3S. wallichiana Klotsch[116]
2-Deoxy-20-hydroxyecdysone-3-benzoateHHOBzHOHOHOHCH3S. wallichiana Klotsch[77]
2-Deoxy-20-hydroxyecdysone-22-benzoateHHOHHOHOBzOHCH3S. nutans L., S. otites (L.) Wibel, S. supina Bieb, S. tatarica (L.) Wild[74,81,91,101,117,118,119,120,121]
2-Deoxy-20-hydroxyecdysone-3-crotonateHHOCOC2H2CH3HOHOHOHCH3S. otites (L.) Wibel[114]
2-Deoxy-20-hydroxyecdysone-3,22-diacetateHHOAcHOHOAcOHCH3S. otites (L.) Wibel[114]
2-Deoxy-20-hydroxyecdysone-22-glucosideHHOHHOHO-β-d-GluOHCH3S. italica ssp. nemoralis[104]
2-Deoxy-20-hydroxyecdysone-25-glucosideHHOHHOHOHO-β-d-GluCH3S. gigantea L.[91,92,95]
2-Deoxyintegristerone AOHOHOHHOHOHOHCH3S. italica ssp. nemoralis, S. otites (L.) Wibel, S. pseudotites Bess ex Reichenb, S. viridiflora L.[74,102,105,112,122]
5α-2-Deoxyintegristerone AOHOHOHH (α)OHOHOHCH3S. italica ssp. nemoralis, S. pseudotites Bess ex Reichenb[72,110]
22-Deoxyintegristerone AOHOHOHHOHHOHCH3S. italica ssp nemoralis, S. nutans L.[74,105]
5α-22-Deoxyintegristerone AOHOHOHH (α)OHHOHCH3S. nutans L.[74]
2-Deoxypolypodine B-3-glucosideHHO-β-d-GluOHOHOHOHCH3S. pseudotites Bess ex Reichenb, S. viridiflora L.[71,72,123]
2-Deoxy-5,20,26-trihydroxyecdysoneHHOHOHOHOHOHCH2OHS. viridiflora L.[122]
20,26-Dihydroxyecdysone (Podecdysone C)HOHOHHOHOHOHCH2OHS. fridvaldszkyana Hampe, S. nutans L., S. otites (L.) Wibel., S. viridiflora L.[71,74,76,88,89,90,93,94,95,124]
20,26-Dihydroxyecdysone-2,22-diacetateHOAcOHHOHOAcOHCH2OHS. viridiflora L.[71,125]
20,26-Dihydroxyecdysone-3,22-diacetateHOHOAcHOHOAcOHCH2OHS. viridiflora L.[71,125]
EcdysoneHOHOHHHOHOHCH3S. cretica L., S. disticha Willd, S. echinata Otth, S. italica (L.) Pers., S. italica ssp. nemoralis, S. linicola C.C.Gmelin., S. otites (L.) Wibel, S. portensis L., S. praemixta M Pop, S. pseudotites Bess. ex Reichenb, S. radicosa Bois et Heldr[71,72,88,89,90,92,93,96,107,109,111,112,113,114,115]
Ecdysone-22-sulfateHOHOHHHOSO3HOHCH3S. brahuica Boiss[126]
EcdysterosideHOHO-α-d-Gal (1→6) α-d-GalHOHOHOHCH3S. tatarica (L.) Wild[127]
5α-20-HydroxyecdysoneHOHOHH (α)OHOHOHCH3S. italica ssp. nemoralis[110]
5α-20-Hydroxyecdysone-22-benzoateHOHOHH (α)OHOBzOHCH3S. scabrifolia Kom[128]
20-HydroxyecdysoneHOHOHHOHOHOHCH3S. acaulis (L.) Jacg, S. altaica Pers, S. ambigua Turcz, S. antirrhina L., S. apetala Willd, S. aprica Turel, S. armeria L., S. bashkirorum Janish, S. bellidifolia Juss. ex Jacq, S. bergiana Lindm, S. borystenica (Gruner) Walters, S. bourgeaui H. Christ, S. brachypoda Rouy, S. brahuica Boiss, S. burchelli Otth, S. campanulata, S. Watson, S. caramanica Boiss, S. catholica (L.) Aiton fil, S. caucasica Boiss, S. chamarensis Turcz, S. chlorantha Willd, S. chlorifolia Smith, S. ciliata Pourret, S. ciliata var graefteri (P), S. claviformis Litv, S. coeli-rosa (L.) Godron in Gren, S. colorata Poiret, S. colorata ssp. trichocalysina, S. coronaria (L.) Clairv, S. cretaceae Fisch, S. cretica L., S. damboldtiana Greuter et Melzh, S. densiflora (L.) Wib. Drurv, S. dioica (L.) Clairv, S. disticha Willd, S. echinata Otth, S. elegans L., S. fetissovii Lazkov, S. firma Siebold et Zucc, S. flavescens Waldst et Kit, S. foliosa Maxim, S. fridvaldszkyana Hampe, S. fruticosa L., S. fruticulosa (Pall.) Schishk, S. gallica L., S. gallica var. quiquivulnera (L.) Koch, S. gebleriana Schrenk, S. gigantea L., S. goulimyi Turrill, S. graefferi Guss, S. graminifolia Otth, S. guntensis B Fredtsch, S. hifacensis Rouy ex willk, S. holopetala Lebed, S. ichebogda Glub, S. incurvifolia Kar et Kir, S. italica (L.) Pers, S. italica[46,71,72,75,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,95,96,97,98,101,104,106,107,108,109,111,112,113,115,117,121,129,130,131,132,133,134,135,136,137,138,139,140]
20-HydroxyecdysoneHOHOHHOHOHOHCH3ssp. nemoralis, S. jenisseensis Willd, S. kungessana B Fedtsch, S. latifolia (Gilib) Aschers, S. linicola C.C.Gmelin, S. longicalycina Kom, S. longicilia (Brot) Otth, S. mellifera Boiss. et Reuter, S. melzheimeri Greuter, S. micropetala Lag, S. mollissima (L.) Pers, S. mongolica Maxim, S. multicaulis Guss, S. multiflora (Waldst et Kit) Pers, S. nemoralis Waldst et Kit, S. nutans L., S. obovata Schischk., S. odoratissima Bunge, S. oligantha Boiss, S. otites (L.) Wibel, S. otites var. parviflorus, S. paradoxa L., S. parnassica Boiss, S. patula Desf, S. portensis L., S. praemixta M Pop, S. pseudotites Bess. ex Reichenb, S. psevdovelutina Rothm, S. pygmaea Adams, S. quinquevulnera L., S. radicosa Bois et Heldr, S. regia, S. reichenbachii Vis, S. repens Patrin, S. roemeriFriv, S. rubella L., S. saxatilis Sims, S. saxifraga L., S. scabriflora Brot, S. scabrifolia Kom, S. schafta S.G.Gmel. ex Hohen, S. schischkinii (M Pop) Vved, S. schmuckeri Wettst, S. secundiflora Otth, S. sendtneri Boiss, S. sericea All, S. sieberi Fenzl, S. sobolevskajae Czer, S. supina Bieb, S. spergulifolia (Willd) Bieb, S. squamigera Boiss, S. stenophylla Ledeb, S. stylosa Bunge, S. sussamyrica Lazkov, S. tatarica (L.) Wild, S. thessalonica Boiss et Heldr, S. tomentella Schischk, S. turchaninova Lazkov, S. turgida L., S. uralensis (Rupr) Bocquet, S. viridiflora L., S. viscosa (L.) Pers, S. wallichiana Klotsch, S. wolgensis (Hornem) Otth, S. zawadskii Herbich[46,71,72,75,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,95,,96,97,98,101,104,106,107,108,109,111,112,113,115,117,121,129,130,131,132,133,134,135,136,137,138,139,140]
20-Hydroxyecdysone-2-acetateHOAcOHHOHOHOHCH3S. otites (L.) Wibel[102,112]
20-Hydroxyecdysone-3-acetateHOHOAcHOHOHOHCH3S. otites (L.) Wibel[102,112]
20-Hydroxyecdysone-22-acetateHOHOHHOHOAcOHCH3S. otites (L.) Wibel[74]
20-Hydroxyecdysone-20-benzoateHOHOHHOBzOHOHCH3S. tatarica (L.) Wild[141]
20-Hydroxyecdysone-22-benzoateHOHOHHOHOBzOHCH3S. otites (L.) Wibel, S. scabrifolia Kom, S. wallichiana Klotsch[74,83,142]
20-Hydroxyecdysone-22-benzoate-25-glucosideHOHOHHOHOBzO-β-d-GluCH3S. otites (L.) Wibel[74]
20-Hydroxyecdysone -2,3-diacetate-22-benzoateHOAcOAcHOHOBzOHCH3S. guntensis B Fredtsch[46]
20-Hydroxyecdysone-22,25-dibenzoateHOHOHHOHOBzOBzCH3S. scabrifolia Kom[142]
20-Hydroxyecdysone-3-glucosideHOHO-β-d-GluHOHOHOHCH3S. otites (L.) Wibel[103]
20-Hydroxyecdysone-25-glucosideHOHOHHOHOHO-β-d-GluCH3S. otites (L.) Wibel[74]
26-Hydroxyintegristerone AOHOHOHHOHOHOHCH2OHS. fridvaldszkyana Hampe[95]
26-Hydroxypolypodine BHOHOHOHOHOHOHCH2OHS. fridvaldszkyana Hampe, S. nutans L., S. viridiflora L.[71,74,95,108]
InokosteroneHOHOHHOHOHHCH2OHS. disticha Willd, S. pseudotites Bess. ex Reichenb, S. regia Sims[72,95,112]
Integristerone AOHOHOHHOHOHOHCH3S. brahuica Boiss., S. claviformis Litv,S. fridvaldszkyanaHampe, S. gigantea L., S. italica ssp. nemoralis, S. nutans L., S. otites (L.) Wibel, S. repens Patrin, S. scabrifolia Kom, S. supina Bieb, S. tatarica (L.) Wild, S. tomentella Schischk, S. viridiflora L., S. wallichiana Klotsch[74,77,78,79,80,81,83,86,87,92,95,104,108,112,135,143]
Integristerone A-25-acetateOHOHOHHOHOHOAcCH3S. brahuica Boiss[144]
Polypodine BHOHOHOHOHOHOHCH3S. altaica Pers, S. antirrhina L., S. brachypoda Rouy, S. brahuica Boiss, S. campanulata S. Watson, S. caramanica Boiss, S. catholica (L.) Aiton fil, S. caucasica Boiss, S. chlorifolia Smith, S. ciliata Pourret, S. cretica L., S. damboldtiana Greuter et Melzh, S. disticha Willd, S. echinata Otth, S. fridvaldszkyana Hampe, S. italica (L.) Pers, S. italica ssp. nemoralis, S. linicola C.C.Gmelin, S. mellifera Boiss et Reuter, S. nutans L., S. paradoxa L., S. parnassica Boiss, S. pseudotites Bess. ex Reichenb, S. radicosa Bois et Heldr, S. regia Sims, S. repens Patrin, S. roemeri Friv, S. schmuckeri Wettst, S. sendtneri Boiss, S. supina Bieb, S. tatarica (L.) Wild, S. tomentella Schischk, S. viridiflora L.[71,72,78,79,80,81,84,86,88,89,90,91,92,93,95,96,97,101,104,106,107,108,111,112,113,118,131,135]
Ponasterone AHOHOHHOHOHHCH3S. antirrhina L., S. brahuica Boiss, S. chlorifolia Smith, S. disticha Willd, S. echinata Otth, S. italica (L.) Pers, S. portensis L., S. pseudotites Bess. ex Reichenb, S. radicosa Bois et Heldr, S. regia Sims[50,71,72,88,89,90,92,94,96,106,111,112,113]
Sileneoside AHOHOHHOHO-α-d-GalOHCH3S. brahuica Boiss, S. nutans L., S. scabrifolia Kom, S. supina Bieb, S. tatarica (L.) Wild, S. viridiflora L.[95,108,112,135]
Sileneoside BHOHO-β-d-GalHOHO-β-d-GalOHCH3S. brahuica Boiss[136]
Sileneoside COHOHOHHOHO-α-d-GalOHCH3S. brahuica Boiss[137]
Sileneoside DHOHO-β-d-GalHOHOHOHCH3S. brahuica Boiss, S. scabrifolia Kom, S. supina Bieb, S. tatarica (L.) Wild, S. viridiflora L.[108,112,143,145]
Silenoside E (Blechnoside A)HHO-β-d-GluHHOHOHCH3S. brahuica Boiss[84]
5α-Silenoside EHHO-β-d-GluH (α)HOHOHCH3S. brahuica Boiss[146]
Sileneoside FHHO-β-d-GluOHHOHOHCH3S. brahuica Boiss[147]
Sileneoside GHOHO-α-d-GluHOHO-α-d-GalOHCH3S. brahuica Boiss[148]
Sileneoside HOHOHOHHOHO-α-d-GalOAcCH3S. brahuica Boiss[149]
TaxisteroneHOHOHHOHHOHCH3S. italica ssp. nemoralis, S. nutans L., S. viridiflora L.[104,150,151]
Tomentesterone AHHOHH (α)HOAcOBzCH3S. tomentella Schischk[80]
Tomentesterone BHHOHH (α)HOHOBzCH3S. tomentella Schischk[152]
Viticosterone EHOHOHHOHOHOAcCH3S. brahuica Boiss, S. linicola C.C.Gmelin, S. otites (L.) Wibel, S. praemixta M Pop, S. tomentella Schischk, S. wallichiana Klotsch[80,85,102,107,112,115,135]
Viticosterone E-22-benzoateHOHOHHOHOAcOAcCH3S. wallichiana Klotsch[104,153]
Diversity 06 00415 i002
NameR1R2R3R4R5R6R7R8Plant SourceReference
24(28)-Dehydromakisterone AHOHHHHCH3OHCH2S. fridvaldszkyana Hampe, S. italica ssp.nemoralis, S. otites (L.) Wibel, S. roemeri Friv[71,76,88,89,90,92,93,94,95,104,112]
2-Deoxy-21-hydroxyecdysoneHHHHHCH2OHHHS. otites (L.) Wibel, S. pseudotites Bess. ex Reichenb[102,112]
5α-2-Deoxy-21-hydroxyecdysoneHHH (α)HHCH2OHHHS. otites (L.) Wibel[102]
9α,20-DihydroxyecdysoneHOHHOH (α)HCH3OHHS. italica ssp. nemoralis[109,110]
9β,20-DihydroxyecdysoneHOHHOHHCH3OHHS. italica ssp. nemoralis[110]
Makisterone AHOHHHHCH3OHCH3S. otites (L.) Wibel[112]
NusilsteroneOHOHHHHCH3OHOHS. nutans L.[154]
TurkesteroneHOHHHOHCH3OHHS. linicola C. C. Gmelin[107]
Diversity 06 00415 i003
NameR1R2R3R4Plant SourceReference
2-Deoxy-20-hydroxyecdysone-20,22-acetonideHHOHCH3S. viridiflora L.[122]
5α-2-Deoxy-20-hydroxyecdysone-20,22-acetonideHH (α)OHCH3S. viridiflora L.[155]
2-Deoxy-5,20,26-trihydroxyecdysone-20,22-acetonideHOHOHCH2OHS. viridiflora L.[122]
20,26-Dihydroxyecdysone-20,22-acetonideOHHOHCH2OHS. viridiflora L.[122]
20-Hydroxyecdysone-20,22-acetonideOHHOHCH3S. scabrifolia Kom[156]
20-Hydroxyecdysone 20,22-acetonide-25-acetateOHHOAcCH3S. viridiflora L.[123]
5,20,26-Trihydroxyecdysone-20,22-acetonideOHOHOHCH2OHS. viridiflora L.[122]
20-Hydroxyecdysone-2,3-acetonideR1 = OH Diversity 06 00415 i004S. scabrifolia Kom[142]
20-Hydroxyecdysone-2,3-acetonide-22-benzoateR1 = OBzS. scabrifolia Kom[83,142]
5α-Dihydro rubrosteroneR1 = H (α) Diversity 06 00415 i005S. otites (L.) Wibel[103]
5β-Dihydro rubrosteroneR1 = HS. otites (L.) Wibel[103]
20, 22-Acetal isovaleric aldehyde-5β-cholest-7-en-2β,3β,14α,20R,22R,25-hexahydroxy-6-onR1 = H (α) Diversity 06 00415 i006S. claviformis Litv[87]
20,22-Acetal epiisovaleric aldehyde-5β-cholest-7-en-2β,3β,14α,20R,22R,25-hexahydroxy-6-onR1 = HS. claviformis Litv[87]
Dihydropoststerone Diversity 06 00415 i007S. otites (L.) Wibel[74]
Poststerone Diversity 06 00415 i008S. otites (L.) Wibel[74]
Poststerone Diversity 06 00415 i009S. otites (L.) Wibel[74]
Rubrosterone Diversity 06 00415 i010S. otites (L.) Wibel[74]
Makisterone C-2,3;20,22-diacetonide Diversity 06 00415 i011S. viridiflora L.[155]
Praemixisterone Diversity 06 00415 i012S. praemixta M Pop[134]
Sidisterone Diversity 06 00415 i013S. dioica (L.) Clairv, S. otites (L.) Wibel, S. pseudotites Bess.ex Reichenb[86,90,92,94,106,112,133]
Silenosterone Diversity 06 00415 i014S. praemixta M Pop[82]
Triterpene Saponins
Diversity 06 00415 i015
β-d-Galactopyranosyl-(1→2)-β-d-glucuronopyranosyl-3β-hydroxy-23-oxoolean-12-en-28-oic acid 28-O-β-d-xylopyranosyl(1→3)-β-d-xylopyranosyl(1→4)-α-l-rhamnopyranosyl (1→2)-β-d-fucopyranoside (Silenosides A)R1 = -β-d-GlcUAp-2←1-β-d-Galp
R2 = -β-d-Fucp-2←1-α-l-Rhap-4←1-β-d-Xylp-3←1-β-d-Xylp
S. vulgaris (Moench) Garcke (syn. S. inflata)[157]
3-O-{β-d-Galactopyranosyl-(1→2)-[β-d-xylopyranosyl]-(1→3)]-β-d- glucuronopyranosyl}-28-O-{β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)]-[3,4-di-O-acetyl-β-d-quinovopyranosyl-(1→4)]-β-d-fucopyranosyl] gypsogenin (Silenorubicunoside A) R1 = -β-d-GlcUAp- Diversity 06 00415 i016S. rubicunda Franch[158]
R2 = -β-d-Fucp- Diversity 06 00415 i017
3-O-{β-d-Galactopyranosyl-(1→2)-[β-d-xylopyranosyl]-(1→3)]-β-d- glucuronopyranosyl}-28-O-{β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-3,4-di-O-acetyl-β-d- fucopyranosyl] gypsogenin (Silenorubicunoside C) R1 = -β-d-GlcUAp- Diversity 06 00415 i018S. rubicunda Franch[158]
R2 = -(3,4-di-O-Ac)-β-d-Fucp-2←1-α-l-Rhap-4←1-β-d-Xylp
3-O-{β-d-Galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyrannosyl}-28-O-{β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)- α-l-rhamnopyranosyl-(l→2)-[3,4-di-O-acetyl-β-d-fucopyranosyl} gypsogenin (Glanduloside C) R1 = -β-d-GlcUAp- Diversity 06 00415 i019S. rubicunda Franch[158]
R2 = -(3,4-di-O-Ac)-β-d-Fucp-2←1-α-l-Rhap-4←1-β-d-Xylp-3←1-β-d-Xylp
Gypsogenin 3-O-β-xylopyranosyl-(1→3)-[β-galactopyranosyl-(1→2)]-β-glucuronopyranside R1 = -β-d-GlcUAp- Diversity 06 00415 i020S. cucubalus Wib[159]
R2 = H
Nutanoside R1 = -β-d-GlcUAp-3←1-β-d-Galp- Diversity 06 00415 i021S. nutans L.[160]
R2 = -α-l-Rhap- Diversity 06 00415 i022
Gypsogenin 3-O-glucuronide R1 = -β-d-GlcUAp, R2 = HS. vulgaris (Moench) Garcke[161]
Gypsogenin 3-O-glycoside R1 = -β-d-Glcp, R2 = HS. vulgaris (Moench) Garcke[161]
Diversity 06 00415 i023
3-O-[β-d-Galactopyranosyl-(1→2)-β-d-glucuronopyranosyl]- 28-O-[β-d-glucopyranosyl-(1→2)-α-l-rhamnopyranosyl-(1→2)-β-d-4-O-trans-p-methoxycinnamoyl- fucopyranosyl] quillaic acid(Jenisseensoside A)R1 = -β-d-GlcUAp-2←1-β-d-Galp

R2 = (4-O-E-p-methoxycinnamoyl-)-β-d-Fucp-2←1-α-l-Rhap-2←1-β-d-Glcp
S. jenisseensis Willd[162,163]
3-O-[β-d-Galactopyranosyl-(1→2)-β-d-glucuronopyranosyl]- 28-O-[β-d-glucopyranosyl-(1→2)-α-l-rhamnopyranosyl-(1→2)-β-d-4-O-cis-p-methoxycinnamoyl- fucopyranosyl] quillaic acid(Jenisseensoside B)R1 = -β-d-GlcUAp-2←1-β-d-Galp

R2 = (4-O-Z-p-methoxycinnamoyl-)-β-d-Fucp-2←1-α-l-Rhap-2←1-β-d-Glcp
S. jenisseensis Willd[162,163]
3-O-β-d-Galactopyranosyl-(1→2)-β-d-glucuronopyranosyl- 28-O-[{α-l-rhamnopyranosyl -(1→2)}-{4-O-trans-p-methoxycinnamoyl}-β-d-fucopyranosyl] quillaic acid (Jenisseensoside C)R1 = -β-d-GlcUAp-2←1-β-d-Galp

R2 = (4-O-E-p-methoxycinnamoyl-)-β-d-Fucp-2←1-α-l-Rhap
S. fortunei Wis, S. jenisseensis Willd[163,164]
3-O-β-d-Galactopyranosyl-(1→2)-β-d-glucuronopyranosyl- 28-O-[{α-l-rhamnopyranosyl -(1→2)}-{4-O-cis-p-methoxycinnamoyl}-β-d-fucopyranosyl] quillaic acid (Jenisseensoside D)R1 = -β-d-GlcUAp-2←1-β-d-Galp

R2 = (4-O-Z-p-methoxycinnamoyl-)-β-d-Fucp-2←1-α-l-Rhap
S. fortunei Wis, S. jenisseensis Willd[163,164]
3-O-[β-d-Galactopyranosyl-(1→2)-β-d-glucuronopyranosyl]quillaic acid-28-O-α-l-rhamnopyranosyl-(1→2)-3-O-acetyl-4-O-trans-p-methoxycinnamoyl β-d-fucopyranoside (Jenisseensoside E)R1 = -β-d-GlcUAp-2←1-β-d-Galp

R2 = (3-O-Ac-, 4-O-E-p-methoxycinnamoyl-)-β-d-Fucp-2←1-α-l-Rhap
S. fortunei Wis[28]
3-O-[β-d-Galactopyranosyl-(1→2)-β-d-glucuronopyranosyl]quillaic acid-28-O-α-l-rhamnopyranosyl-(1→2)-3-O-acetyl-4-O-cis-p-methoxycinnamoyl β-d-fucopyranoside (Jenisseensoside F)R1 = -β-d-GlcUAp-2←1-β-d-Galp

R2 = (3-O-Ac-, 4-O-Z-p-methoxycinnamoyl-)-β-d-Fucp-2←1-α-l-Rhap
S. fortunei Wis[28]
3-O-[β-d-Galactopyranosyl-(1→2)-β-d-glucuronopyranosyl] quillaic acid-28-O-[α-l-arabinopyranosyl-(1→2)-α-l-arabinopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)]-[6-O-acetyl-β-d-glucopyranosyl-(1→3)]-4-O-acetyl-β-d-fucopyranosideR1 = -β-d-GlcUAp-2←1-β-d-GalpS. fortunei Wis[28]
R2 = 4-O-Ac-β-d-Fucp- Diversity 06 00415 i024
3-O-[β-d-Galactopyranosyl-(1→2)-β-d-glucuronopyranosyl]-28-O-[[α-l-arabinopyranosyl-(1→2)-α-l-arabinopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→3)]-4-O-acetyl-β-d-fucopyranosyl] quillaic acidR1 = -β-d-GlcUAp-2←1-β-d-GalpS. fortunei Wis[164]
R2 = 4-O-Ac-β-d-Fucp- Diversity 06 00415 i025
3-O-β-d-Galactopyranosyl(1→2)-β-d-glucuronopyranosyl-3β,16α-dihydroxy-23-oxoolean-12-en-28-oic acid 28-O-β-d-xylopyranosyl(1→4)-[β-d-glucopyranosyl(1→2)]-α-l-rhamnopyranosyl (1→2)-β-d-fucopyranoside(Silenosides B)R1 = -β-d-GlcUAp-2←1-β-d-GalpS. vulgaris (Moench) Garcke[157]
R2 = -β-d-Fucp-2←1-α-l-Rhap- Diversity 06 00415 i026
3-O-α-l-Arabinopyranosyl(1→3)-[β-d-galactopyranosyl (1→2)]-β-d-glucuronopyranosyl-3β,16α-dihydroxy-23-oxoolean-12-en-28-oic acid 28-O-β-d-xylopyranosyl(1→4)-[β-d-glucopyranosyl(1→2)]-α-l-rhamnopyranosyl (1→2)-β-d-fucopyranoside (Silenosides C) R1 = -β-d-GlcUAp- Diversity 06 00415 i027S. vulgaris (Moench) Garcke[157]
R2 = -β-d-Fucp-2←1-α-l-Rhap- Diversity 06 00415 i028
3-O-{β-d-Galactopyranosyl-(1→2)-[β-d-xylopyranosyl]-(1→3)]-β-d- glucuronopyranosyl}-28-O-{β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)]-[4,6-di-O-acetyl-β-d-glycopyranosyl-(1→3)]-4-O-acetyl-β-d-fucopyranosyl] quillaic acid (Silenorubicunoside B) R1 = -β-d-GlcUAp- Diversity 06 00415 i029S. rubicunda Franch[158]
R2 = (4-O-Ac)-β-d-Fucp- Diversity 06 00415 i030
3-O-β-d-Galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyrannosyl}-28-O-{β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(l→2)-[6-O-acetyl-β-d-glycopyranosyl-(1→3)]-4-O-acetyl -β-d-fucopyranosyl}quillaic acid R1 = -β-d-GlcUAp- Diversity 06 00415 i031S. rubicunda Franch[158]
R2 = (4-O-Ac)-β-d-Fucp- Diversity 06 00415 i032
3-O-{β-d-Galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyrannosyl}-28-O-{β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(l→2)-[3,4-di-O-acetyl-β-d-quinovopyranosyl-(1→4)]-β-d-fucopyranosyl}quillaic acid (Pachystegioside A) R1 = -β-d-GlcUAp- Diversity 06 00415 i033S. rubicunda Franch[158]
R2 = -β-d-Fucp- Diversity 06 00415 i034
Quillaic acid 3-O-β-xylopyranosyl-(1→3)-[β-galactopyranosyl-(1→2)]-β-glucuronopyranside R1 = -β-d-GlcUAp- Diversity 06 00415 i035S. cucubalus Wib[159]
R2 = H
Quillaic acid 3-O-glucuronide R1 = -β-d-GlcUAp
R2 = H
S. vulgaris (Moench) Garcke[161]
3-O-β-d-Xylopyranosyl-(1→3)-β-d-galactopyranosyl-(1→2)-β-d-glucuronopyranosyl quillaic acid 28-O-β-l-rhamnopyranosyl-(1→2)-[4-methoxycinnamoyl-(3)]-4-O-acetyl-β-d-fucopyranoside(Silenoside) R1 = -β-d-GlcUAp- Diversity 06 00415 i036S. szechuensis F.N. Williams[165]
R2 = (4-O-Ac)-β-d-Fucp- Diversity 06 00415 i037
3-O-β-d-Galactopyranosyl(1→2)] [β-d-xylopyranosyl (1→3)]-6-O-butyl-β-d-glucuronopyranosyl quillaic acid 28-O-[α-l-rhamnopyranosyl(1→2)]-3-O-acetyl-4-O-[(E)-4-methoxycinnamoyl]-β-d- fucopyranosyl ester (Visciduloside A) R1 = 6-O-Bu-β-d-GlcUAp- Diversity 06 00415 i038S. viscidula Franch[166]
R2 = 3-O-Ac-4-O-(E)-methoxycynnamoyl-β-d-Fucp-2←1-α-l-Rhap
3-O-β-d-Galactopyranosyl(1→2)] [β-d-xylopyranosyl (1→3)]-6-O-butyl-β-d-glucuronopyranosyl quillaic acid 28-O-[α-l-rhamnopyranosyl(1→2)]-3-O-acetyl-4-O-[(Z)-4-methoxycinnamoyl]-β-d- fucopyranosyl ester (Visciduloside B) R1 = 6-O-Bu-β-d-GlcUAp- Diversity 06 00415 i039S. viscidula Franch[166]
R2 = 3-O-Ac-4-O-(Z)-4-methoxycynnamoyl-β-d-Fucp-2←1-α-l-Rhap
3β,16α-Dihydroxyolean-12-en-23α,28β-dioic acid 28-O-{[α-d-mannopyranosyl-(1→4)][α-d-galactopyranosyl-(1→6)]-β-d-glycopyranosyl-(1→3)}[β-d-6-O-((3R)-3-hydroxy-3-methylglutaryl)glucopyranosyl-(1→6)-β-d-glucopyranoside (Silenoviscoside D)R1 = HS. viscidula Franch[166]
R2 = -β-d-Glcp- Diversity 06 00415 i040
3-O-[β-d-Galactopyranosyl(1→2)] [β-d-xylopyranosyl (1→3)]-[6-O-methyl-β-d-glucuronopyranosyl] quillaic acid 28-O-[α-l-rhamnopyranosyl(1→2)]-[3-O-acetyl-4-O-(E)-para-methoxycinnamoyl-β-d-fucopyranosyl]ester (Sinocrassuloside VIII) R1 = 6-O-Me-β-d-GlcUAp- Diversity 06 00415 i041S. viscidula Franch[166]
R2 = 3-O-Ac-4-O-(E)-p-methoxycynnamoyl-β-d-Fucp-2←1-α-l-Rhap
3-O-[β-d-Galactopyranosyl(1→2)] [β-d-xylopyranosyl (1→3)]-[6-O-methyl-β-d-glucuronopyranosyl] quillaic acid 28-O-[α-l-rhamnopyranosyl(1→2)]-[3-O-acetyl-4-O-(Z)-para-methoxycinnamoyl-β-d-fucopyranosyl]ester (Sinocrassuloside IX) R1 = 6-O-Me-β-d-GlcUAp- Diversity 06 00415 i042S. viscidula Franch[166]
R2 = 3-O-Ac-4-O-(Z)-p-methoxycynnamoyl-β-d-Fucp-2←1-α-l-Rhap
3-O-{β-d-Galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyrannosyl}-28-O-{α-l-rhamnopyranosyl-(l→2)-4-O-(E)-p-methoxycinnamoyl-β-d-fucopyranosyl}quillaic acid (Sinocrassuloside X) R1 = β-d-GlcUAp- Diversity 06 00415 i043S. rubicunda Franch[158]
R2 = 4-O-(E)-p-methoxycynnamoyl-β-d-Fucp-2←1-α-l-Rhap
3-O-β-d-Galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosyl quillaic acid 28-O-β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→4)-[2′′-O-acetyl-β-d-quinovopyranosyl-(1→2)]-3′-O-acetyl-β-d-fucopyranoside (Rubicunoside A) R1 = β-d-GlcUAp- Diversity 06 00415 i044S. rubicunda Franch[167]
R2 = (3-O-Ac)-β-d-Fucp- Diversity 06 00415 i045
3-O-[β-d-Galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosyl quillaic acid 28-O-β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→4)-[β-d-glucopyranosyl-(1→4′)-β-d-quinovopyranosyl-(1→2)]-3′-O-acetyl-β-d-fucopyranoside (Rubicunoside B) R1 = -β-d-GlcUAp- Diversity 06 00415 i046S. rubicunda Franch[167]
R2 = -(3-O-Ac)-β-d-Fucp- Diversity 06 00415 i047
3-O-β-d-Galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosyl quillaic acid 28-O-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→4)-[4′′-O-acetyl-β-d-glucopyranosyl-(1→2)]-β-d-fucopyranoside (Rubicunoside C) R1 = -β-d-GlcUAp- Diversity 06 00415 i048S. rubicunda Franch[167]
R2 = -β-d-Fucp- Diversity 06 00415 i049
3-O-β-d-Galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-[6′-O-n-butyl]-β-d-glucuronopyranosyl quillaic acid 28-O-β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→4)-[2′′-O-acetyl-β-d-quinovopyranosyl-(1→2)]-3′-O-acetyl-β-d-fucopyranoside (Rubicunoside D) R1 = -(6-O-n-Bu)-β-d-GlcUAp- Diversity 06 00415 i050S. rubicunda Franch[167]
R2 =-(3-O-Ac)-β-d-Fucp- Diversity 06 00415 i051
3-O-{β-d-Galactopyranosyl(1→2) [β-d-xylopyranosyl (1→3)]-β-d-glucuronopyranosyl} quillaic acid 28-O-{β-d-xylopyranosyl- (1→3)- β-d-xylopyranosyl- (1→4)-α-l-rhamnopyranosyl(1→2)-[ β-d-quinovopyranosyl- (1→4)]-β-d-fucopyranosyl} ester R1 = -β-d-GlcUAp- Diversity 06 00415 i052S. rubicunda Franch[168]
R2 = -β-d-Fucp- Diversity 06 00415 i053
3-O-[β-d-Galactopyranosyl(1→2)] [β-d-xylopyranosyl (1→3)]-β-d-glucuronopyranosyl quillaic acid 28-O-{[β-d-xylopyranosyl- (1→4)- α-l-rhamnopyranosyl(1→2)} [β-d-glycopyranosyl- (1→3)]-4-O-acetyl-β-d-fucopyranosyl} ester R1 = -β-d-GlcUAp- Diversity 06 00415 i054S. rubicunda Franch[168]
R2 = -4-O-acetyl- β-d-Fucp- Diversity 06 00415 i055
Diversity 06 00415 i056
23-O-[β-d-Glucuronopyranosyl-(1→2)-β-d-glycopyranosyl]-28-O-{β-d-glucopyranosyl-(1→3)-[α-d-galactopyranosyl-(1→6)-β-d-glycopyranosyl-(1→6)]-β-d-glucopyranosyl} gypsogenic acid (Silenorubicunoside D)R1 = -β-d-Glcp-2←1-β-d-GlcUApS. rubicunda Franch[158]
R2 = -β-d-Glcp- Diversity 06 00415 i057
3β-Hydroxy-16,23-dioxo-28-nor-17α-18β-olean-12-ene (Villosagenin I) Diversity 06 00415 i058S. villosa Forssk[169]
3β-Hydroxy-16,23-dioxo-28-norolean-17-ene (Villosagenin II) Diversity 06 00415 i059S. villosa Forssk[169]
Oleanolic acid Diversity 06 00415 i060S. succulenta Forssk[170]
Sterols
Campesterol Diversity 06 00415 i061S. brahuica Boiss[171]
Cycloartenol Diversity 06 00415 i062S. cucubalus Wibel[172]
22-Dihydrospinasterol Diversity 06 00415 i063S. cucubalus Wibel[172]
Sitosterol Diversity 06 00415 i064S. brahuica Boiss, S. viridiflora L.[31,171]
Diversity 06 00415 i269
α-SpinasterolR = HS. conoidea L., S. cucubalus Wibel[9,172]
α-SpinasterolglucosideR = O-β-d-GluS. conoidea L., S. jenisseensis Willd[9,140]
Stigmasterol Diversity 06 00415 i065S. brahuica Boiss, S. viridiflora L.[31,171]
Phenolic Phytochemicals
Flavonoids
Diversity 06 00415 i066
ApigeninR1 = R2 = R3 = HS. saxatilis Sims[173]
Apigenin-6,8-di-C-glucopyranoside (vicenin 2)R1 = H R2 = R3 = β-d-GlcpS. boissieri Panjut, S. chlorantha Willd, S. commutata Guss, S. cyri Schischk, S. foliosa Maxim, S. graminifolia Otth, S. jenissensis Willd, S. italic (L.) Pers, S. macrostyla, S. nutans L., S. saxatilis Sims, S. wolgensis (Hornem) Otth[29,173]
Schaftoside (8-α-l-Arabinopyranosyl-6-β-d-glucopyranosylapigenin)R1 = H R2 = β-d-Glcp R3 = α-l-ArapS. schafta S.G.Gmel. ex Hohen[174]
Vitexin (8-Glucosylapigenin)R1 = R2 = H R3 = β-d-GlcpS. alba (Miller) Krause, S. armeria L., S. boissieri Panjut, S. brachuica Boiss, S. bupleuroides L., S. chlorantha Willd, S. chlorifolia Smith, S. commutata Guss, S. compacta Fisch. ex Hornem, S. cretacea Fisch. ex Spreng, S. cubanensis, S. cyri Schischk, S. diclinis (Lag) M. Lainz, S. foliosa Maxim, S. graminifolia Otth, S. jenissensis Willd, S. italica (L.) Pers, S. macrostyla, S. multifida (Adams) Rohrb, S. nutans L., S. polaris (Kleopow) Holub, S. repens Patrin, S.saxatilis Sims, S. supina M. Bieb, S. turgida L., S. wolgensis (Hornem) Otth[29,173,175,176]
Vitexin-2-O"-glucosideR1 = R2 = H R3 = β-d-Glcp-2←1-β-d-GlcpS. alba (Miller) Krause[175]
Isovitexin-2-O"-glucosideR1 = R3 = H R2 = β-d-Glcp-2←1-β-d-GlcpS. alba (Miller) Krause[175]
Isovitexin (saponaretin, homovitexin)R1 = R3 = H R2 = β-d-GlcpS. alba (Miller) Krause, S. armeria L., S. boissieri Panjut, S. brachuica Boiss, S. bupleuroides L., S. chlorantha Willd, S. chlorifolia Smith, S. commutata Guss, S. compacta Fisch. ex Hornem, S. cretacea Fisch. ex Spreng, S. cubanensis, S. cyri Schischk, S. diclinis (Lag) M.Lainz, S. dioica (L.) Clairv, S. foliosa Maxim, S. graminifolia Otth, S. jenissensis Willd, S. italica (L.) Pers, S. macrostyla, S. multifida (Adams) Rohrb, S. nutans L., S. polaris (Kleopow) Holub, S. repens Patrin, S. supina M. Bieb, S. turgida L., S. wolgensis (Hornem) Otth[29,175,176,177]
Vitexin 4''-α-l-RhamnopyranosylR1 = R2 = H
R3 = β-d-Glcp-4←1-α-l-Rhap
S. conoidea L.[17]
Isosaponarin (Isovitexin 4'-β-d-glucopyranoside)R1 = R2 = β-d-Glcp
R3 = H
S. armeria L., S. bupleuroides L., S. chlorifolia Smith, S. compacta Fisch. ex Hornem, S. cretacea Fisch. ex Spreng, S. cubanensis, S. polaris (Kleopow) Holub[29]
Vicenin 1R1 = H
R2 = β-d-Xylp R3 = β-d-Glcp
S. boissieri Panjut, S. chlorantha Willd, S. commutata Guss, S. cyri Schischk, S. foliosa Maxim, S. graminifolia Otth, S. jenissensis Willd, S. italica (L.) Pers, S. macrostyla, S. nutans L., S. wolgensis (Hornem) Otth[29]
Vicenin 3R1 = H
R2 = β-d-Glcp R3 = β-d-Xylp
S. boissieri Panjut, S. chlorantha Willd, S. commutata Guss, S. cyri Schischk, S. foliosa Maxim, S. graminifolia Otth, S. jenissensis Willd, S. italica (L.) Pers, S. macrostyla, S. nutans L., S. wolgensis (Hornem) Otth[29]
NeovitexinR1 = R2 = H
R3 = α-l-Glcp
Silene sp.[29]
Isoneovitexin(tautomer of neovitexin)Silene sp.[29]
Vicenin their mono-, di-glucosides S. boissieri Panjut, S.chlorantha Willd, S.commutata Guss, S.cyri Schischk, S.foliosa Maxim, S.graminifolia Otth, S.jenissensis Willd, S.italica (L.) Pers, S. macrostyla, S.nutans L., S.wolgensis (Hornem) Otth[29]
Vitexin their mono-, di-glucosides S. brachuica Boiss, S. multifida (Adams) Rohrb, S. repens Patrin, S. supina M. Bieb, S. turgida L.[29]
Diversity 06 00415 i067
8(4''-O-α-l-rhamnopyranosyl)-C-β-d-glucopyranosyldiosmetinR1 = β-d-Glcp-4←1-α-l-Rhap
R2 = OH, R3 = Me
S. conoidea L.[9]
8(4''-O-α-l-rhamnopyranosyl)-C-β-d-glucopyranosylapigeninR1 = β-d-Glcp-4←1-α-l-Rhap
R2 = H, R3 = H
S. conoidea L.[9]
Diversity 06 00415 i068
OrientinR1 = R3 = H R2 = β-d-GlcpS. armeria L., S. boissieri Panjut, S. bupleuroides L., S. chlorantha Willd, S. chlorifolia Smith, S. commutata Guss, S. compacta Fisch. ex Hornem, S. cretacea Fisch. ex Spreng, S. cubanensis, S. cyri Schischk, S. foliosa Maxim, S. graminifolia Otth, S. jenissensis Willd, S. italica (L.) Pers, S. macrostyla, S. nutans L., S. polaris (Kleopow) Holub, S. saxatilis Sims, S. vulgaris (Moench) Garcke, S. wolgensis (Hornem) Otth[29,173,176]
Homoorientin (isoorientin)(their 8a, 6a, 6b isomers)R1 = R2 = H R3 = β-d-GlcpS. armeria L., S. boissieri Panjut, S. bupleuroides L., S. chlorantha Willd, S. chlorifolia Smith, S. commutata Guss, S. compacta Fisch. ex Hornem, S. cretacea Fisch. ex Spreng, S. cubanensis, S. cyri Schischk, S. italic (L.) Pers, S. littorea Brot, S. foliosa Maxim, S. graminifolia Otth, S. jenissensis Willd, S. italica (L.) Pers, S. macrostyla, S. nutans L., S. polaris (Kleopow) Holub, S. saxatilis Sims, S. viscariopsis Bornm, S. vulgaris (Moench) Garcke, S. wolgensis (Hornem) Otth[29,173,176,177]
Orientin- 4'-Me ether, 4''-α-l-rhamnopyranosylR1 = Me R2 = β-d-Glcp-4←1-α-l-Rha R3 = HS. conoidea L.[17]
AdoniverniteR1 = R3 = H R2 = β-d-Glcp-2←1-β-d-XylpS. armeria L., S. bupleuroides L., S. chlorifolia Smith, S. compacta Fisch. ex Hornem, S. cretacea Fisch. ex Spreng, S. cubanensis, S. polaris (Kleopow) Holub[29]
HomoadoniverniteR1 = R2 = H R3 = β-d-Glcp-2←1-β-d-XylpS. armeria L., S. bupleuroides L., S. chlorifolia Smith, S. compacta Fisch. ex Hornem, S. cretacea Fisch. ex Spreng, S. cubanensis, S. polaris (Kleopow) Holub[29]
Diversity 06 00415 i069
KaempferolR = HS. diclinis (Lag) M Lainz, S. littorea Brot[176]
QuercetinR = OHS. littorea Brot[176]
Anthocyanins
Diversity 06 00415 i070
Cyanidin-3-O-rhamnosyl glucosideR = -β-d-Glcp-RhapS. armeria L.[177]
Cyanidin-3-O-glucosideR = -β-d-GlcpS. armeria L.[177]
Cyanidin-3-rhamnosyl(1→6)-glucoside-5-glucosideR = -Glcp-5←1-Glcp-6←1-RhapS. dioica (L.) Clairv[178]
Cyanidin-3-(4-caffeoylrhamnosyl(1→6)-glucoside)-5-glucosideR = -Glcp-5←1-Glcp-6←1-Rhap-4←O-caffeoylS. dioica (L.) Clairv[178]
Phenols, Phenolic Acids and Phenylpropanoids
Acetophenone Diversity 06 00415 i071S. armeria L., S. otites (L.) Wibel[179,180,181]
Benzaldehyde Diversity 06 00415 i072S. alpestris Jacq, S. armeria L., S. chlorantha (Willd) Ehrh, S. coeli-rosa (L.) Godron, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. gallica L., S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. maritima (Homem) With, S. nutans L., S. otites (L.) Wib, S. pendula L., S. saxifraga L., S. sericea All, S. subconica Friv, S. succulenta Forssk, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[30,180,181,182,183,184,185]
Benzenacetaldehyde Diversity 06 00415 i073S. chlorantha (Willd) Ehrh, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. otites (L.) Wib, S. sericea All, S. subconica Friv, S. succulenta Forssk, S. viscosa (L.) Pers[183]
Benzene acetic acid Diversity 06 00415 i074S. armeria L.[179]
Benzenepropanal Diversity 06 00415 i075S. latifolia Poiret[30]
Benzenepropanol Diversity 06 00415 i076S. latifolia Poiret, S. nutans L., S. vulgaris (Moench) Garcke[30,185]
Benzenepropyl acetate Diversity 06 00415 i077S. latifolia Poiret[30]
Benzoin acid Diversity 06 00415 i078S. armeria L.[38,179]
Benzyl acetate Diversity 06 00415 i079S. chlorantha (Willd) Ehrh, S. coeli-rosa (L.) Godron, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. dioica (L.) Clairv, S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L., S. otites (L.) Wib, S. saxifraga L., S. sericea All, S. subconica Friv, S. succulenta Forssk, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[30,180,183,184,185]
Benzyl alcohol Diversity 06 00415 i080S. armeria L., S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. italica (L.) Pers, S. latifolia Poiret, S. maritima (Homem) With, S. nutans L., S. otites (L.) Wib, S. sericea All, S. subconica Friv, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[30,179,180,181,183,184,185]
Benzyl benzoate Diversity 06 00415 i081S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. flos-jovis (L.) Greut and Burd, S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill.) Greut. and Burd, S. maritima (Homem) With, S. nutans L., S. otites (L.) Wib, S. saxifraga L., S. sericea All, S. subconica Friv, S. succulenta Forssk, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[30,183,184,185]
Benzyl isobutanoate Diversity 06 00415 i082S. latifolia Poiret[30]
Benzyl 3-methylbutanoate Diversity 06 00415 i083S. flos-jovis (L.) Greut and Burd, S. viscaria (L.) Jessen[184]
n-Butyl benzoate Diversity 06 00415 i084S. flos-jovis (L.) Greut and Burd[184]
(E)-Cinnamaldehyde Diversity 06 00415 i085S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L.[30,183,185]
(E)-Cinnamic acetate Diversity 06 00415 i086S. latifolia ssp. alba (Mill) Greut and Burd, S. nutans L.[30,185]
(E)-Cinnamyl alcohol Diversity 06 00415 i087S. latifolia ssp. alba (Mill) Greut and Burd, S. nutans L.[30,185]
Coumaran Diversity 06 00415 i088S. armeria L.[38]
Coumarin Diversity 06 00415 i089S. armeria L.[179]
p-Cresol Diversity 06 00415 i090S. dichotoma Ehrh. ssp. racemosa Chowdh (Otth) Graeb[183]
p-Cymene Diversity 06 00415 i091S. gallica L.[184]
1,2-Dimethoxybenzene Diversity 06 00415 i092S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. subconica Friv, S. succulenta Forssk, S. viscaria (L.) Jessen, S. viscosa (L.) Pers[30,183,184]
1,4-Dimethoxybenzene Diversity 06 00415 i093S. rupestris L.[184]
1,4-Diethylbenzene Diversity 06 00415 i094S. flos-jovis (L.) Greut and Burd, S. gallica L., S. pendula L.[184]
1,2-Dimethylbenzene Diversity 06 00415 i095S. alpestris Jacq, S. armeria L., S. chlorantha (Willd) Ehrh, S. coeli-rosa (L.) Godron, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. gallica L., S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L., S. pendula L., S. saxifraga L., S. sericea All, S. subconica Friv, S. succulenta Forssk, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[183,184]
Dimethyl salicylate Diversity 06 00415 i096S. alpestris Jacq, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. latifolia Poiret[30,184]
Ethenyl benzene Diversity 06 00415 i097S. coeli-rosa (L.) Godron, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. gallica L., S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L., S. otites (L.) Wib., S. pendula L., S. saxifraga L., S. sericea All, S. subconica Friv, S. succulenta Forssk, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[183,184]
Ethyltoluene Diversity 06 00415 i098S. dioica (L.) Clairv[184]
Eugenol Diversity 06 00415 i099S. armeria L.[38,179]
(Z)-3-Hexenyl benzoate Diversity 06 00415 i100S. nutans L., S. rupestris L.[184,185]
(E)-Isoeugenol Diversity 06 00415 i101S. latifolia Poiret[30]
2-Methoxyphenol Diversity 06 00415 i102S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. sericea All, S. subconica Friv, S. succulenta Forssk, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[30,183]
4-Methoxyphenol Diversity 06 00415 i103S. flos-jovis (L.) Greut and Burd[184]
2-Methyl benzaldehyde Diversity 06 00415 i104S. latifolia Poiret[30]
Methyl benzoate Diversity 06 00415 i105S. alpestris Jacq, S. chlorantha (Willd) Ehrh, S. coeli-rosa (L.) Godron, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L., S. otites (L.) Wib, S. pendula L., S. rupestris L., S. saxifraga L., S. sericea All, S. subconica Friv, S. succulenta Forssk, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[30,183,184]
Methyl eugenol Diversity 06 00415 i106S. latifolia Poiret[30]
Methyl 2-methoxybenzoate Diversity 06 00415 i107S. maritima (Homem) With[185]
Methyl salicylate Diversity 06 00415 i108S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. maritima (Homem) With, S. nutans L., S. otites (L.) Wibel, S. saxifraga L., S. sericea All, S. subconica Friv, S. succulenta Forssk, S. vallesia L., S. viscosa (L.) Pers[30,180,181,183,184,185]
Phenol Diversity 06 00415 i109S. armeria L.[38]
Phenyl acetaldehyde Diversity 06 00415 i110S. armeria L., S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. latifolia Poiret, S. otites (L.) Wibel[30,180,181,184]
Phenyl acetate Diversity 06 00415 i111S. coeli-rosa (L.) Godron, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. pendula L., S. viscaria (L.) Jessen[183,184]
Phenyl benzoate Diversity 06 00415 i112S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. viscaria (L.) Jessen[184]
2-Phenylethanol Diversity 06 00415 i113S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. maritima (Homem) With, S. otites (L.) Wibel, S. saxifraga L., S. subconica Friv, S. vulgaris (Moench) Garcke[30,180,181,183,185]
2-Phenylethyl acetate Diversity 06 00415 i114S. viscaria (L.) Jessen[184]
3-Phenylpropanal Diversity 06 00415 i115S. armeria L.[179]
3-Phenylpropyl acetate Diversity 06 00415 i116S. nutans L.[185]
Propylbenzene Diversity 06 00415 i117S. alpestris Jacq, S. armeria L., S. coeli-rosa (L.) Godron, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. gallica L., S. pendula L., S. viscaria (L.) Jessen[184]
1,2,3-Trimethylbenzene Diversity 06 00415 i118S. armeria L., S. chlorantha (Willd) Ehrh, S. coeli-rosa (L.) Godron, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. gallica L., S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L., S. pendula L., S. saxifraga L., S. sericea All, S. subconica Friv, S. succulenta Forssk, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[183,184]
Terpenoids
Camphene Diversity 06 00415 i119S. alpestris Jacq, S. coeli-rosa (L.) Godron, S. dioica (L.) Clairv, S. gallica L.[184]
Camphor Diversity 06 00415 i120S. alpestris Jacq, S. chlorantha (Willd) Ehrh, S. coeli-rosa (L.) Godron, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. gallica L., S. pendula L.[183,184]
δ-3-Carene Diversity 06 00415 i121S. otites (L.) Wibel[180]
(Z)-Carveole Diversity 06 00415 i122S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb[183]
Carvone Diversity 06 00415 i123S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. vulgaris (Moench) Garcke ssp. vulgaris[183]
1,8-Cineole Diversity 06 00415 i124S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. sericea All, S. subconica Friv, S. vallesia L., S. vulgaris (Moench) Garcke ssp. vulgaris[183]
5-Ethenyldihydro-5-methyl-2(3H)-furanone Diversity 06 00415 i125S. maritima (Homem) With[185]
Eucalyptol Diversity 06 00415 i126S. alpestris Jacq, S. coeli-rosa (L.) Godron, S. dioica (L.) Clairv, S. gallica L., S. pendula L., S. viscaria (L.) Jessen[184]
Fenchyl acetate Diversity 06 00415 i127S. chlorantha (Willd) Ehrh[183]
Geranyl acetone Diversity 06 00415 i128S. nutans L.[185]
1-Hydroxylinalool Diversity 06 00415 i129S. otites (L.) Wibel[181]
Hotrienol Diversity 06 00415 i130S. otites (L.) Wibel[181]
Lilac acetate A, C Diversity 06 00415 i131S. maritima Withering, S. vulgaris (Moench) Garcke[185]
Lilac alcohol (2R, 2'S, 5'S) Diversity 06 00415 i132S. alba L., S. latifolia Poiret, S. otites (L.) Wibel, S. vulgaris (Moench) Garcke[30,181,186]
Lilac alcohol (2S, 2'S, 5'S) Diversity 06 00415 i133S. alba L., S. latifolia Poiret, S. otites (L.) Wibel, S. vulgaris (Moench) Garcke[30,181,186]
Lilac alcohol (2S, 2'R, 5'R) Diversity 06 00415 i134S. latifolia Poiret, S. vulgaris (Moench) Garcke[30,181,186]
Lilac alcohol (2R, 2'R, 5'R) Diversity 06 00415 i135S. latifolia Poiret[30,181]
Lilac alcohol (2R, 2'S, 5'R) Diversity 06 00415 i136S. latifolia Poiret, S. vulgaris (Moench) Garcke[30,181,186]
Lilac alcohol (2S, 2'S, 5'R) Diversity 06 00415 i137S. latifolia Poiret[30,181]
Lilac alcohol (2R, 2'R, 5'S) Diversity 06 00415 i138S. alba L., S. latifolia Poiret, S. otites (L.) Wibel[30,181,186]
Lilac alcohol (2S, 2'R, 5'S) Diversity 06 00415 i139S. alba L., S. latifolia Poiret, S. vulgaris (Moench) Garcke[30,181,186]
Lilac alcohol A, B, C, D Diversity 06 00415 i140S. maritima (Homem) With, S. vulgaris (Moench) Garcke[185]
Lilac alcohol formate Diversity 06 00415 i141S. latifolia Poiret[30]
Lilac aldehyde A S. flos-cuculi (L.) Greut and Burd, S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. maritima (Homem) With, S. otites (L.) Wib, S. subconica Friv, S. vallesia L., S. viscaria (L.) Jessen, S. vulgaris (Moench) Garcke ssp. vulgaris[183,184,185]
Lilac aldehyde B S. flos-cuculi (L.) Greut and Burd, S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. maritima (Homem) With, S. nutans L., S. otites (L.) Wib, S. subconica Friv, S. vallesia L., S. viscaria (L.) Jessen, S. vulgaris (Moench) Garcke ssp. vulgaris[183,184,185]
Lilac aldehyde C S. maritima (Homem) With, S. vulgaris (Moench) Garcke[185]
Lilac aldehyde DS. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. maritima (Homem) With, S. otites (L.) Wib, S. sericea All, S. subconica Friv, S. vulgaris (Moench) Garcke ssp. vulgaris[183,185]
Lilac aldehyde (2S, 2'S, 5'S) Diversity 06 00415 i142S. alba L., S. latifolia Poiret, S. otites (L.) Wibel, S. vulgaris (Moench) Garcke[30,181,186]
Lilac aldehyde (2R, 2'S, 5'S) Diversity 06 00415 i143S. alba L., S. latifolia Poiret, S. otites (L.) Wibel, S. vulgaris (Moench) Garcke[30,181,186]
Lilac aldehyde (2R, 2'R, 5'R) Diversity 06 00415 i144S. latifolia Poiret, S. vulgaris (Moench) Garcke[30,181,186]
Lilac aldehyde (2S, 2'R, 5'R) Diversity 06 00415 i145S. latifolia Poiret, S. vulgaris (Moench) Garcke[30,181,186]
Lilac aldehyde (2S, 2'S, 5'R) Diversity 06 00415 i146S. latifolia Poiret, S. vulgaris (Moench) Garcke[30,181,186]
Lilac aldehyde (2R, 2'S, 5'R) Diversity 06 00415 i147S. latifolia Poiret, S. vulgaris (Moench) Garcke[30,181,186]
Lilac aldehyde (2S, 2'R, 5'S) Diversity 06 00415 i148S. alba L., S. latifolia Poiret, S. otites (L.) Wibel, S. vulgaris (Moench) Garcke[30,181,186]
Lilac aldehyde (2R, 2'R, 5'S) Diversity 06 00415 i149S. alba L., S. latifolia Poiret, S. otites (L.) Wibel, S. vulgaris (Moench) Garcke[30,181,186]
D-Limonene Diversity 06 00415 i150S. alpestris Jacq, S. armeria L., S. chlorantha (Willd) Ehrh, S. coeli-rosa (L.) Godron, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. gallica L., S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. maritima (Homem) With, S. nutans L., S. otites (L.) Wib, S. pendula L., S. rupestris L., S. sericea All, S. subconica Friv, S. succulenta Forssk, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[181,182,183,184,185]
Linalool Diversity 06 00415 i151S. armeria L., S. chlorantha (Willd) Ehrh, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. flos-cuculi (L.) Greut and Burd, S. gallica L., S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L., S. otites (L.) Wib, S. rupestris L., S. sericea All, S. succulenta Forssk, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers[38,179,181,182,183,184,186]
(E)-Linalool oxide furanoid Diversity 06 00415 i152S. maritima (Homem) With, S. otites (L.) Wibel[181,185]
(Z)-Linalool oxide furanoid Diversity 06 00415 i153S. chlorantha (Willd) Ehrh, S. italica (L.) Pers, S. otites (L.) Wibel, S. viscaria (L.) Jessen[181,183,184]
(E)-Linalool oxide pyranoid Diversity 06 00415 i154S. otites (L.) Wibel[180,181]
(Z)-Linalool oxide pyranoid Diversity 06 00415 i155S. otites (L.) Wibel[180,181]
Linalyl acetate Diversity 06 00415 i156S. flos-cuculi (L.) Greut and Burd[182]
6-Methyl-5-hepten-2-one Diversity 06 00415 i157S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L., S. vallesia L.[183]
β-Myrcene Diversity 06 00415 i158S. armeria L., S. chlorantha (Willd) Ehrh, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. italica (L.) Pers, S. latifolia Poiret, S. nutans L., S. sericea All, S. vallesia L., S. viscosa (L.) Pers[30,38,179,183]
Myrtenol Diversity 06 00415 i159S. armeria L., S. otites (L.) Wibel[38,179,180]
(E)-β-Ocimene Diversity 06 00415 i160S. alpestris Jacq, S. chlorantha (Willd) Ehrh, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. dioica (L.) Clairv, S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L., S. otites (L.) Wib, S. pendula L., S. saxifraga L., S. sericea All, S. subconica Friv, S. succulenta Forssk, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[30,181,183,184,185]
(Z)-β-Ocimene Diversity 06 00415 i161S. nutans L., S. otites (L.) Wibel, S. vulgaris (Moench) Garcke ssp. vulgaris[180,185]
(E)-Ocimene epoxide Diversity 06 00415 i162S. nutans L.[185]
(E)-Ocimenol Diversity 06 00415 i163S. nutans L.[185]
(Z)-Ocimenol Diversity 06 00415 i164S. nutans L.[185]
α-Phellandrene Diversity 06 00415 i165S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. subconica Friv, S. vulgaris (Moench) Garcke ssp. vulgaris[183,185]
α-Pinene Diversity 06 00415 i166S. alpestris Jacq, S. armeria L., S. chlorantha (Willd) Ehrh, S. coeli-rosa (L.) Godron, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd., S. gallica L., S. italica (L.) Pers, S. latifolia Poiret, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L., S. otites (L.) Wibel, S. pendula L., S. rupestris L., S. saxifraga L., S. sericea All, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[30,180,181,183,184]
β-Pinene Diversity 06 00415 i167S. alpestris Jacq, S. armeria L., S. coeli-rosa (L.) Godron, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. gallica L., S. italica (L.) Pers, S. latifolia Poiret, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. otites (L.) Wibel, S. pendula L., S. viscaria (L.) Jessen[30,180,181,183,184]
γ-Terpinene Diversity 06 00415 i168S. coeli-rosa (L.) Godron, S. gallica L.[184]
α-Terpineole Diversity 06 00415 i169S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. maritima (Homem) With, S. saxifraga L., S. vallesia L., S. vulgaris (Moench) Garcke[183,185]
α-Terpinyl acetate Diversity 06 00415 i170S. flos-cuculi (L.) Greut and Burd[182]
α-Thujene Diversity 06 00415 i171S. coeli-rosa (L.) Godron, S. gallica L.[184]
Thujone Diversity 06 00415 i172S. alpestris Jacq[184]
2,2,6-Trimethyl-2-vinyl-5-ketotetrahydropyran Diversity 06 00415 i173S. otites (L.) Wibel[181]
Sesquiterpenes
α-(Z)-Bergamotene Diversity 06 00415 i174S. latifolia Poiret[30]
α-(E)-Bergamotene Diversity 06 00415 i175S. latifolia Poiret[30]
β-Bourbonene Diversity 06 00415 i176S. flos-cuculi (L.) Greut and Burd, S. rupestris L., S. vallesia L.[183,184]
δ-Cadinene Diversity 06 00415 i177S. latifolia Poiret, S. vallesia L.[30,183]
γ-Cadinene Diversity 06 00415 i178S. vallesia L.[183]
α-Caryophyllene Diversity 06 00415 i179S. vallesia L.[183]
β-Caryophyllene Diversity 06 00415 i180S. chlorantha (Willd) Ehrh, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. dioica (L.) Clairv, S. gallica L., S. latifolia Poiret, S. otites (L.) Wibel, S. pendula L., S. rupestris L., S. saxifraga L., S. sericea All, S. subconica Friv, S. succulenta Forssk, S. vallesia L.[30,181,183,184]
Caryophyllene oxide Diversity 06 00415 i181S. armeria L.[179]
β-Cedrene Diversity 06 00415 i182S. vallesia L.[183]
α-Copaene Diversity 06 00415 i183S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. gallica L., S. pendula L., S. vallesia L.[183,184]
Dendrolasin Diversity 06 00415 i184S. latifolia Poiret[30]
7-epi-α-Selinene Diversity 06 00415 i185S. latifolia Poiret[30]
α-Farnesene Diversity 06 00415 i186S. coeli-rosa (L.) Godron, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. italica (L.) Pers, S. latifolia Poiret, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L., S. sericea All, S. succulenta Forssk, S. vallesia L.[30,183,184,185]
β-Farnesene Diversity 06 00415 i187S. gallica L.[184]
Farnesol Diversity 06 00415 i188S. armeria L.[38,179]
Geranyl isovalerate Diversity 06 00415 i189S. otites (L.) Wibel[181]
Germacrene D Diversity 06 00415 i190S. rupestris L.[184]
α-Humelene Diversity 06 00415 i191S. armeria L.[38,179]
Longicyclene Diversity 06 00415 i192S. latifolia Poiret[30]
α-Longipinene Diversity 06 00415 i193S. latifolia Poiret[30]
6-Methyl-5-hepten-2-one Diversity 06 00415 i194S. dioica (L.) Clairv, S. nutans L., S. rupestris L.[184,185]
α-Muurolene Diversity 06 00415 i195S. vallesia L.[183]
γ-Muurolene Diversity 06 00415 i196S. italica (L.) Pers, S. sericea All, S. vallesia L., S. vulgaris (Moench) Garcke ssp. vulgaris[183]
(E)-Nerolidol Diversity 06 00415 i197S. latifolia Poiret[30]
α-Selinene Diversity 06 00415 i198S. latifolia Poiret[30]
Other Volatiles
Acetamide Diversity 06 00415 i199S. armeria L.[38]
Acrylamide Diversity 06 00415 i200S. armeria L.[38]
Butanoic acid Diversity 06 00415 i201S. armeria L.[179]
2-Butanone Diversity 06 00415 i202S. armeria L.[179]
α-Butene Diversity 06 00415 i203S. armeria L.[38,179]
β-Butene Diversity 06 00415 i204S. armeria L.[38,179]
(Z)-Jasmone Diversity 06 00415 i205S. armeria L.[38,179]
Cyclopentane Diversity 06 00415 i206S. armeria L.[38]
Cyclopentane oxide Diversity 06 00415 i207S. armeria L.[179]
5,6-Dihydro-4H-cyclopenta-furan Diversity 06 00415 i208S. armeria L.[38]
Isovaleric acid Diversity 06 00415 i209S. armeria L.[38,179]
Methylamine Diversity 06 00415 i210S. armeria L.[38]
Methylcyclopropane Diversity 06 00415 i211S. armeria L.[179]
Naphthalene Diversity 06 00415 i212S. armeria L., S. alpestris Jacq, S. coeli-rosa (L.) Godron, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. gallica L., S. viscaria (L.) Jessen[179,184]
1-Nitroso-pyrrlidine Diversity 06 00415 i213S. armeria L.[38]
O-Nitrostyrene Diversity 06 00415 i214S. armeria L.[38]
1,8-Nonadiene Diversity 06 00415 i215S. armeria L.[38,179]
Pentylfuran Diversity 06 00415 i216S. armeria L.[179]
Propanoic acid Diversity 06 00415 i217S. armeria L.[38,179]
Pyrrolidine Diversity 06 00415 i218S. armeria L.[179]
Tetrazole Diversity 06 00415 i219S. armeria L.[38,179]
Tropilidin Diversity 06 00415 i220S. armeria L.[38]
Free Fatty Acids and Their Derivatives (*-traces)
Diversity 06 00415 i221
Caprylic (8:0)n = 4S. cserei Baumg subsp. aeoniopsis*, S. vulgaris (Moench) Garcke[36]
Capric (10:0)n = 6S. brahuica Boiss, S. guntensis B Fedtsch, S. viridiflora L., S. wallichiana Klotsch[40,41,171]
Lauric (12:0)n = 8S. brahuica Boiss, S. cserei Baumg subsp. aeoniopsis*, S. guntensis B Fedtsch., S. viridiflora L., S. vulgaris (Moench) Garcke*, S. wallichiana Klotsch[40,41,171]
Myristic (14:0)n = 10S. brahuica Boiss, S. cserei Baumg subsp. aeoniopsis, S. guntensis B Fedtsch, S. viridiflora L., S. vulgaris (Moench) Garcke, S. vulgaris subsp. Macrocarpa, S. wallichiana Klotsch[36,40,41,171,187]
Pentadecylic (15:0)n = 11S. brahuica Boiss, S. cserei Baumg subsp. aeoniopsis, S. guntensis B Fedtsch, S. viridiflora L., S. vulgaris (Moench) Garcke, S. vulgaris subsp. Macrocarpa, S. wallichiana Klotsch[36,40,41,187]
Palmitic (16:0)n = 12S. brahuica Boiss, S. cserei Baumg subsp. aeoniopsis, S. guntensis B Fedtsch, S. viridiflora L., S. vulgaris (Moench) Garcke, S. vulgaris subsp. Macrocarpa, S. wallichiana Klotsch[16,36,40,41,42,171,187]
Margaric (17:0)n = 13S. guntensis B Fedtsch, S. vulgaris subsp. Macrocarpa[41,187]
Stearic (18:0)n = 14S. brahuica Boiss, S. cserei Baumg subsp. aeoniopsis, S. guntensis B Fedtsch, S. viridiflora L., S. vulgaris (Moench) Garcke, S. vulgaris subsp. Macrocarpa, S. wallichiana Klotsch[16,36,40,41,42,171,187]
Arachidic (20:0)n = 16S. brahuica Boiss, S. cserei Baumg subsp. aeoniopsis, S. guntensis B Fedtsch., S. viridiflora L., S. vulgaris (Moench) Garcke, S. vulgaris subsp. Macrocarpa, S. wallichiana Klotsch[36,40,41,42,187]
Heneicosylic (21:0)n = 17S. brahuica Boiss, S. guntensis B Fedtsch., S. viridiflora L., S. wallichiana Klotsch[40,41]
Behenic (22:0)n = 18S. brahuica Boiss, S. cserei Baumg subsp. aeoniopsis, S. guntensis B Fedtsch, S. viridiflora L., S. vulgaris (Moench) Garcke, S. wallichiana Klotsch[36,40,41]
Tricosylic (23:0)n = 19S. brahuica Boiss, S. guntensis B Fedtsch, S. vulgaris subsp. Macrocarpa, S. viridiflora L., S. wallichiana Klotsch[40,41,187]
Lignoceric (24:0)n = 20S. brahuica Boiss, S. cserei Baumg subsp. aeoniopsis*, S. guntensis B Fedtsch, S. viridiflora L., S. vulgaris (Moench) Garcke*, S. vulgaris subsp. Macrocarpa, S. wallichiana Klotsch[36,40,41,42,187]
Pentacosylic (25:0)n = 21S. cserei Baumg subsp. aeoniopsis, S. guntensis B Fedtsch, S. vulgaris (Moench) Garcke*[36,41]
Cerotic (26:0)n = 22S. guntensis B Fedtsch, S. vulgaris (Moench) Garcke[41,42]
Diversity 06 00415 i222
Palmitoleic (16:1)n = 2S. brahuica Boiss, S. cserei Baumg subsp. aeoniopsis, S. guntensis B Fedtsch., S. viridiflora L., S. vulgaris (Moench) Garcke, S. vulgaris subsp. Macrocarpa, S. wallichiana Klotsch[36,40,41,42,171,187]
Oleic (18:1)n = 4S. brahuica Boiss, S. cserei Baumg subsp. aeoniopsis, S. guntensis B Fedtsch, S. viridiflora L., S. vulgaris (Moench) Garcke, S. vulgaris subsp. Macrocarpa, S. wallichiana Klotsch[16,36,40,41,171,187]
Sapienic (16:1) Diversity 06 00415 i223S. cserei Baumg subsp. aeoniopsis, S. vulgaris (Moench) Garcke*[36]
Heptadecenoic (17:1) Diversity 06 00415 i224S. vulgaris subsp. Macrocarpa[187]
Erucic (22:1) Diversity 06 00415 i225S. vulgaris (Moench) Garcke[16]
Eicosenoic (20:1) Diversity 06 00415 i226S. cserei Baumg subsp. aeoniopsis*, S. vulgaris (Moench) Garcke[36]
Elaidic (18:1) Diversity 06 00415 i227S. cserei Baumg subsp. aeoniopsis*, S. vulgaris (Moench) Garcke*[36]
Linoleic (18:2) Diversity 06 00415 i228S. brahuica Boiss, S. cserei Baumg subsp. aeoniopsis, S. guntensis B Fedtsch, S. viridiflora L., S. vulgaris (Moench) Garcke, S. vulgaris subsp. Macrocarpa, S. wallichiana Klotsch[16,36,40,41,42,44,171,187]
Linolenic (18:3) Diversity 06 00415 i229S. brahuica Boiss, S. cserei Baumg subsp. aeoniopsis, S. guntensis B Fedtsch, S. viridiflora L., S. vulgaris (Moench) Garcke, S. vulgaris subsp. Macrocarpa, S. wallichiana Klotsch[16,36,40,41,44,171,187]
3,6-Octadecadiynoic Diversity 06 00415 i230S. armeria L.[38]
Parinaric (18:4) Diversity 06 00415 i231S. vulgaris subsp. Macrocarpa[187]
Diversity 06 00415 i232
n-Decanaln = 6S. alpestris Jacq, S. chlorantha (Willd) Ehrh, S. coeli-rosa (L.) Godron, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. gallica L., S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L., S. otites (L.) Wib, S. pendula L., S. rupestris L., S. saxifraga L., S. sericea All, S. subconica Friv, S. succulenta Forssk, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[183,184]
n-Heptanaln = 3S. alpestris Jacq, S. armeria L., S. chlorantha (Willd) Ehrh, S. coeli-rosa (L.) Godron, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. gallica L., S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[183,184]
n-Hexanaln = 2S. alpestris Jacq, S. armeria L., S. coeli-rosa (L.) Godron, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd., S. gallica L., S. pendula L., S. viscaria (L.) Jessen[184]
n-Nonanaln = 5S. alpestris Jacq, S. armeria L., S. chlorantha (Willd) Ehrh, S. coeli-rosa (L.) Godron, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. gallica L., S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd., S. nutans L., S. otites (L.) Wib, S. pendula L., S. rupestris L., S. saxifraga L., S. sericea All, S. subconica Friv, S. succulenta Forssk, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. vulgaris[183,184]
n-Octanaln = 4S. alpestris Jacq, S. armeria L., S. chlorantha (Willd) Ehrh, S. coeli-rosa (L.) Godron, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. flos-jovis (L.) Greut and Burd, S. gallica L., S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L., S. otites (L.) Wib, S. pendula L., S. rupestris L., S. saxifraga L., S. sericea All, S. subconica Friv, S. succulenta Forssk, S. vallesia L., S. viscaria (L.) Jessen, S. viscosa (L.) Pers, S. vulgaris (Moench) Garcke ssp. Vulgaris[183,184]
Diversity 06 00415 i233
Heptadecanen = 15S. flos-cuculi (L.) Greut and Burd[182]
n-Octanen = 6S. alpestris Jacq, S. dioica (L.) Clairv, S. viscaria (L.) Jessen[184]
Pentadecanen = 13S. flos-cuculi (L.) Greut and Burd[182]
(E)-4,8-Dimethyl 1,3,7 nonatriene Diversity 06 00415 i234S. otites (L.) Wibel[181]
2-Heptanone Diversity 06 00415 i235S. flos-cuculi (L.) Greut and Burd, S. viscaria (L.) Jessen[184]
n-Heptyl acetate Diversity 06 00415 i236S. alpestris Jacq, S. viscaria (L.) Jessen[184]
Hexanol Diversity 06 00415 i237S. otites (L.) Wibel[181]
2-Hexenol acetate Diversity 06 00415 i238S. latifolia Poiret[30]
(E)-3-Hexen-1-ol Diversity 06 00415 i239S. otites (L.) Wibel[181]
(Z)-3-Hexen-1-ol Diversity 06 00415 i240S. armeria L., S. latifolia Poiret, S. nutans L., S. otites (L.) Wibel, S. rupestris L., S. sericea All, S. vallesia L., S. vulgaris (Moench) Garcke[30,181,183,184,185]
(Z)-3-Hexen-1-ol acetate Diversity 06 00415 i241S. alpestris Jacq, S. armeria L., S. coeli-rosa (L.) Godron, S. flos-cuculi (L.) Greut and Burd, S. gallica L., S. pendula L., S. viscaria (L.) Jessen[184]
(E)-2-Hexenyl acetate Diversity 06 00415 i242S. otites (L.) Wibel[181]
(Z)-3-Hexenyl acetate Diversity 06 00415 i243S. chlorantha (Willd) Ehrh, S. dichotoma Ehrh ssp. racemosa Chowdh (Otth) Graeb, S. flos-cuculi (L.) Greut and Burd, S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L., S. otites (L.) Wib, S. saxifraga L., S. sericea All, S. subconica Friv, S. vallesia L., S. viscosa (L.) Pers[30,181,182,183]
(Z)-3-Hexenyl butyrate Diversity 06 00415 i244S. otites (L.) Wibel[181]
n-Hexyl acetate Diversity 06 00415 i245S. alpestris Jacq, S. armeria L., S. coeli-rosa (L.) Godron, S. otites (L.) Wibel, S. rupestris L., S. viscaria (L.) Jessen[181,184]
3-Methylbutyl acetate Diversity 06 00415 i246S. nutans L.[185]
4-Oxoisophorone Diversity 06 00415 i247S. latifolia Poiret[30]
n-Pentylacetate Diversity 06 00415 i248S. viscaria (L.) Jessen[184]
1,14-Tetradecanediol Diversity 06 00415 i268n = 12S. flos-cuculi (L.) Greut and Burd[182]
Diversity 06 00415 i249
Gallicaside AR1 = R2 = Ac, R3 = HS. gallica L.[188]
Gallicaside CR1 = R3 = Ac, R2 = HS. gallica L.[188]
Gallicaside FR1 = R2 = H, R3 = AcS. gallica L.[188]
Diversity 06 00415 i250
Gallicaside BR1 = R2 = Ac, R3 = HS. gallica L.[188]
Gallicaside DR1 = R3 = Ac, R2 = HS. gallica L.[188]
Gallicaside ER1 = Ac, R2 = R3 = HS. gallica L.[188]
Gallicaside GR1 = R2 = H, R3 = AcS. gallica L.[188]
Gallicaside HR1 = R2 = R3 = HS. gallica L.[188]
Gallicaside I Diversity 06 00415 i251S. gallica L.[188]
Gallicaside J Diversity 06 00415 i252S. gallica L.[188]
Various Structures
Vitamin C (ascorbic acid) Diversity 06 00415 i253S. vulgaris subsp. macrocarpa[189]
Vitamin K1 (pylloquinone) Diversity 06 00415 i267n = 3S. vulgaris subsp. macrocarpa[189]
Diversity 06 00415 i254
α-TocopherolR1 = R2 = R3 = CH3 n = 3S. viridiflora L., S. vulgaris subsp. macrocarpa, S. vulgaris (Moench) Garcke [31,189,190]
β-TocopherolR1 = R3 = CH3 R2 = H n = 3S. vulgaris (Moench) Garcke[190]
γ-TocopherolR1 = R2 = CH3 R3 = H n = 3S. vulgaris (Moench) Garcke[190]
δ-TocopherolR1 = R2 = R3 = H n = 3S. vulgaris subsp. macrocarpa, S. vulgaris (Moench) Garcke[189,190]
n-Acetyl-4(H)-pyridine Diversity 06 00415 i255S. alpestris Jacq, S. armeria L., S. dioica (L.) Clairv, S. flos-cuculi (L.) Greut and Burd, S. viscaria (L.) Jessen[184]
Benzonitrile Diversity 06 00415 i256S. armeria L., S. dioica (L.) Clairv[184]
2-Methylbutyraldoxime Diversity 06 00415 i257S. chlorantha (Willd) Ehrh, S. italica (L.) Pers, S. latifolia Poiret ssp. alba (Mill) Greut and Burd, S. nutans L., S. vallesia L., S. vulgaris (Moench) Garcke ssp. vulgaris[183,185]
3-Methylbutyraldoxime Diversity 06 00415 i258S. chlorantha (Willd) Ehrh, S. italica (L.) Pers, S. latifolia Poiret, S. nutans L., S. otites L., S. vallesia L.[30,180,181,183,185]
Indole Diversity 06 00415 i259S. latifolia Poiret, S. nutans L.[30,185]
Silenin A(Cyclo-(Pro-Leu-Ser-Phe-Pro-Tyr-Leu-Val)) Diversity 06 00415 i260S. szechuensis Williams[19]
Silenin B(Cyclo-(Pro-Leu-Ser-Phe-Pro-Tyr-Leu-Val)) Diversity 06 00415 i261S. szechuensis Williams[19]
Silenin C
(Cyclo-(Pro-Leu-Ser-Phe-Pro-Tyr-Leu-Val))
Diversity 06 00415 i262S. szechuensis Williams[19]
SilenanA (1→4)-α-d-galacturonanS. vulgaris (Moench) Garcke[191]
2-[6'-(O-trans-cinnamoyl)-β-d-glucopyranosyloxy)]-3-methyl-4H-pyran-4-one Diversity 06 00415 i263S.vulgaris (Moench) Garcke[192]
Conoidene (2,2'-(1,3-butadiene-1,4-diyl) bis[3-methoxy-5-(2-propen-1-yl) furan) Diversity 06 00415 i264S. conoidea L.[9]
Lutein Diversity 06 00415 i265S. vulgaris subsp. macrocarpa[189]
β-Carotene Diversity 06 00415 i266S. vulgaris subsp. macrocarpa[189]

Acknowledgements

We would particularly like to express our gratitude to Mohamed L. Ashour for his help in collecting references for this paper.

Author Contributions

Nilufar Mamadalieva collected the information and drafted the manuscript which was interpreted and edited by Michael Wink. Rene Lafont conducted the biological part of the manuscript. All authors read and finally approved the final review.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Mabberley, D. The Plant-Book; Cambridge University Press: Cambridge, New York, NY, USA, 2008; p. 1040. [Google Scholar]
  2. Greuter, W. Silene (Caryophyllaceae) in Greece: A subgeneric and sectional classification. Taxon 1995, 44, 543–581. [Google Scholar] [CrossRef]
  3. Oxelman, B.; Lide’n, M.; Rabeler, R.K.; Popp, M. A revised generic classification of the tribe Sileneae (Caryophyllaceae). Nord. J. Bot. 2001, 20, 515–518. [Google Scholar]
  4. Popp, M.; Oxelman, B. Evolution of an RNA polymerase gene family in Silene (Caryophyllaceae)-incomplete concerted evolution and topological congruence among paralogues. Syst. Biol. 2004, 53, 914–932. [Google Scholar] [CrossRef]
  5. Chowdhuri, P.K. Studies in the genus Silene. Notes Royal Bot. Gard. Edinburgh 1957, 22, 221–279. [Google Scholar]
  6. Bernasconi, G.; Antonovics, J.; Biere, A.; Charlesworth, D.; Delph, L.; Filatov, D.; Giraud, T.; Hood, M.; Marais, G.; McCauley, D. Silene as a model system in ecology and evolution. Heredity 2009, 103, 5–14. [Google Scholar] [CrossRef]
  7. Eggens, F.; Popp, M.; Nepokroeff, M.; Wagner, W.L.; Oxelman, B. The origin and number of introductions of the Hawaiian endemic Silene species (Caryophyllaceae). Am. J. Bot. 2007, 94, 210–218. [Google Scholar] [CrossRef]
  8. Erturk, O.; Kati, H.; Yayli, N.; Demirbag, Z. Antimicrobial properties of Silene multifida (Adams) Rohrb plant extract. Turk. J. Biol. 2006, 30, 17–21. [Google Scholar]
  9. Ahmad, V.; Ali, Z.; Ali, M.; Zahid, M. Chemical constituents of Silene conoidea. Fitoterapia 1998, 69, 406–408. [Google Scholar]
  10. Nasir, E.; Ali, S. Flora of Pakistan; Pakistan Agricultural Research Council: Pakistan, South Asia, 1986; pp. 1–187. [Google Scholar]
  11. Usher, G. A Dictionary of Plants Used by Man; Wiley-VCH Verlag GmbH: London, UK, 1975; p. 294. [Google Scholar]
  12. Uphof, J.C.Th. Dictionary of Economic Plants, 2nd edition; Verlag von J. Cramer: Lehre, Germany, 1968; p. 591. [Google Scholar]
  13. Lyndon, F.M.; Kinsey, A.C.; Rollins, R.C. Edible wild plants of Eastern North America; Courier Dover Publications: New York, NY, USA, 1958; p. 452. [Google Scholar]
  14. Hadjichambis, A.C.H.; Paraskeva-Hadjichambi, D.; Della, A.; Elena Giusti, M.; de Pasquale, C.; Lenzarini, C.; Censorii, E.; Reyes Gonzales-Tejero, M.; Patricia Sanchez-Rojas, C.; Ramiro-Gutierrez, J.M.; et al. Wild and semi-domesticated food plant consumption in seven circum-Mediterranean areas. Int. J. Food Sci. Nutr. 2008, 59, 383–414. [Google Scholar] [CrossRef]
  15. Guarrera, P.M. Food medicine and minor nourishment in the folk traditions of Central Italy (Marche, Abruzzo and Latium). Fitoterapia 2003, 74, 515–544. [Google Scholar] [CrossRef]
  16. Alarcón, R.; Ortiz, L.-T.; García, P. Nutrient and fatty acid composition of wild edible bladder campion populations Silene vulgaris (Moench.) Garcke. Int. J. Food Sci. Technol. 2006, 41, 1239–1242. [Google Scholar]
  17. Ali, Z.; Ahmad, V.U.; Ali, M.S.; Iqbal, F.; Zahid, M.; Alam, N. Two new C-Glycosylflavones from Silene conoidea. Nat. Prod. Lett. 1999, 13, 121–129. [Google Scholar] [CrossRef]
  18. Krishnamurthi, S.; Chadha, Y. The Wealth of India; CSIR: New Delhi, India, 1972; pp. 177–183. [Google Scholar]
  19. Rongping, Z.; Cheng, Z.; Yineng, H.; Ninghua, T.; Jun, Z. Three new cyclopeptides from Silene szechuensis. Acta Bot. Yunnanica 1997, 304–310. [Google Scholar]
  20. Ballero, M.; Fresu, I. Le piante di uso officinale nella Barbagia di Seui (Sardegna Centrale). Fitoterapia 1993, 64, 141–150. [Google Scholar]
  21. Golovko, V.; Bushneva, O. Stabilizing effect of Silene pectin polysaccharide on electrical activity of the sinoatrial area in frog heart. Bull. Exp. Biol. Med. 2007, 143, 284–286. [Google Scholar] [CrossRef]
  22. Sobiecki, J. A review of plants used in divination in southern Africa and their psychoactive effects. South. Afr. Hum. 2008, 20, 333–351. [Google Scholar]
  23. Hirst, M. A river of metaphors: Interpreting the Xhosa diviner’s myth. Afr. Stud. 1997, 56, 217–250. [Google Scholar] [CrossRef]
  24. Hirst, M. Dreams and medicines: The perspective of Xhosa diviners and novices in the Eastern Cape, South Africa. Indo-Pac. J. Phenomenol. 2005, 5, 1–22. [Google Scholar]
  25. Wink, M. Annual Plant Reviews, Functions and Biotechnology of Plant Secondary Metabolites; Wiley-Blackwell: Chichester, UK, 2010; p. 424. [Google Scholar]
  26. Wink, M. Annual Plant Reviews, Biochemistry of Plant Secondary Metabolism; Wiley-Blackwell: Chichester, UK, 2011; p. 464. [Google Scholar]
  27. Mamadalieva, N.Z. Phytoecdysteroids from Silene plants: Distribution, diversity and biological (antitumour, antibacterial and antioxidant) activities. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 2012, 11, 474–497. [Google Scholar]
  28. Gaidi, G.; Miyamoto, T.; Laurens, V.; Lacaille-Dubois, M.-A. New acylated triterpene saponins from Silene fortunei that modulate lymphocyte proliferation. J. Nat. Prod. 2002, 65, 1568–1572. [Google Scholar] [CrossRef]
  29. Darmograi, V. Flavonoids of plants of the genera Silene and Otites adans, family Caryophyllaceae. Chem. Nat. Compd. 1977, 13, 102–103. [Google Scholar]
  30. Dötterl, S.; Wolfe, L.M.; Jürgens, A. Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 2005, 66, 203–213. [Google Scholar] [CrossRef]
  31. Eshmirzaeva, N.E.; Khidyrova, N.K.; Khodzhaeva, M.; Mezhlumyan, L.G.; Shakhidoyatov, K.M. Chemical Composition of Silene viridiflora. Chem. Nat. Compd. 2005, 41, 451–453. [Google Scholar] [CrossRef]
  32. Arnetoli, M.; Montegrossi, G.; Buccianti, A.; Gonnelli, C. Determination of Organic Acids in Plants of Silene paradoxa L. by HPLC. J. Agric. Food Chem. 2008, 56, 789–795. [Google Scholar] [CrossRef]
  33. Tomczyk, M. Preliminary phytochemical investigation of Lychnis flos-cuculi herbs. J. Nat. Med. 2008, 62, 473–475. [Google Scholar]
  34. Báthori, M.; Lafont, R.; Girault, J.P.; Máthé, I. Structural diversity of ecdysteroids of Lychnis flos-cuculi. Acta Pharm. Hung. 2001, 71, 157–167. [Google Scholar]
  35. Mamadalieva, N.; Egamberdieva, D.; Lafont, R.; Girault, J. Phytoecdysteroids and antibacterial activity of the plant Coronaria flos-cuculi. Chem. Nat. Compd. 2008, 44, 404–406. [Google Scholar] [CrossRef]
  36. Kucukboyaci, N.; Ozcelik, B.; Adiguzel, N.; Goren, A. Fatty-acid compositions of Silene vulgaris and S. cserei subsp. aeoniopsis seeds and their antimicrobial activities. Chem. Nat. Compd. 2010, 46, 88–91. [Google Scholar] [CrossRef]
  37. Karamian, R.; Ghasemlou, F. Screening of total phenol and flavonoid content, antioxidant and antibacterial activities of the methanolic extracts of three Silene species from Iran. Int. J. Agric. Crop Sci. 2013, 5, 305–312. [Google Scholar]
  38. Bajpai, V.; Dung, N.; Kwon, O.; Kang, S. Analysis and the potential applications of essential oil and leaf extracts of Silene armeria L. to control food spoilage and food-borne pathogens. Eur. Food Res. Technol. 2008, 227, 1613–1620. [Google Scholar] [CrossRef]
  39. Mamadalieva, N.Z.; Egamberdieva, D.; Tiezzi, A. In vitro biological activities of the components from Silene wallichiana. Med. Aromat. Plant Sci. Biotechnol. 2013, 7, 1–6. [Google Scholar]
  40. Mamadalieva, N.Z.; Ul’chenko, N.T.; Yuldasheva, N.K.; Egamberdieva, D.R.; Zhanibekov, A.A.; Dzhukharova, M.K.; Glushenkova, A.I. Fatty-acid composition and antibacterial activity of CHCl3 extracts of three plants of the genus Silene. Chem. Nat. Compd. 2010, 46, 95–96. [Google Scholar] [CrossRef]
  41. Mamadalieva, N.Z.; Ul’chenko, N.T.; Yuldasheva, N.K.; Zhanibekov, A.A.; Egamberdieva, D.R.; Glushenkova, A.I. Neutral lipids and biological activity of the CHCl3 extract of the aerial part of Silene guntensis. Chem. Nat. Compd. 2010, 46, 621–622. [Google Scholar]
  42. Orhan, I.; Deliorman-Orhan, D.; Özcelik, B. Antiviral activity and cytotoxicity of the lipophilic extracts of various edible plants and their fatty acids. Food Chem. 2009, 115, 701–705. [Google Scholar] [CrossRef]
  43. Özcelik, B.; Aslan, M.; Orhan, I.; Karaoglu, T. Antibacterial, antifungal and antiviral activities of the lipophilic extracts of Pistacia vera. Microbiol. Res. 2005, 160, 159–164. [Google Scholar] [CrossRef]
  44. Conforti, F.; Marrelli, M.; Carmela, C.; Menichini, F.; Valentina, P.; Uzunov, D.; Statti, G.A.; Duez, P.; Menichini, F. Bioactive phytonutrients (omega fatty acids, tocopherols, polyphenols), in vitro inhibition of nitric oxide production and free radical scavenging activity of non-cultivated Mediterranean vegetables. Food Chem. 2011, 129, 1413–1419. [Google Scholar] [CrossRef]
  45. Taskin, T.; Bitis, L. Antioxidant activity of Silene alba subsp. divaricata and Stellaria media subsp. media from Caryophyllaceae. Spatula DD 2013, 3, 1–5. [Google Scholar] [CrossRef]
  46. Mamadalieva, N.Z.; El-Readi, M.Z.; Janibekov, A.A.; Tahrani, A.; Wink, M. Phytoecdysteroids of Silene guntensis and their in vitro cytotoxic and antioxidant activity. Z. Naturforschung C 2011, 66, 215–224. [Google Scholar] [CrossRef]
  47. Popov, S.V.; Popova, G.Y.; Ovodova, R.G.; Bushneva, O.A.; Ovodov, Y.S. Effects of polysaccharides from Silene vulgaris on phagocytes. Int. J. Immunopharmacol. 1999, 21, 617–624. [Google Scholar]
  48. Behzad, S.; Piranib, A.; Mosaddegh, M. Cytotoxic activity of some medicinal plants from Hamedan district of Iran. Iran. J. Pharm. Res. 2014, 13, 199–205. [Google Scholar]
  49. Gaidi, G.; Correia, M.; Chauffert, B.; Beltramo, J.-L.; Wagner, H.; Lacaille-Dubois, M.-A. Saponins -mediated potentiation of Cisplatin accumulation and cytotoxicity in human colon cancer cells. Planta Med. 2002, 68, 70–72. [Google Scholar] [CrossRef]
  50. Zibareva, L.; Eremina, V.; Ivanova, N.; Lazkov, G. Distribution of phytoecdysteriods in the tribe Sileneae Dumort. Fam. Caryophyllaaceae. Rastit. Resur. 2003, 39, 45–53. [Google Scholar]
  51. Burdette, W. Invertebrate Hormones and Tumors; Springer: Berlin, Germany, 1974; pp. 351–367. [Google Scholar]
  52. El-Mofty, M.; Sadek, I.; Soliman, A.; Mohamed, A.; Sakre, S. α-Ecdysone, a new bracken fern factor responsible for neoplasm induction in the Egyptian toad (Bufo regularis). Nutr. Cancer 1987, 9, 103–107. [Google Scholar] [CrossRef]
  53. El-Mofty, M.; Sakre, S.; Rizk, A.; Moussa, E. Induction of breast and lung neoplastic lesions in mice by alpha-ecdysone. Oncol. Rep. 1994, 1, 435–438. [Google Scholar]
  54. Takasaki, M.; Tokuda, H.; Nishino, H.; Konoshima, T. Cancer chemopreventive agents (antitumour promoters) from Ajuga decumbens. J. Nat. Prod. 1999, 62, 972–975. [Google Scholar] [CrossRef]
  55. Lagova, N.; Valueva, I. Effect of ecdysterone isolated from Rhaponticum carthamoides on the growth of experimental tumours. Eksp. Onkol. (Kiev.) 1981, 3, 69–71. [Google Scholar]
  56. Báthori, M.; Tóth, N.; Hunyadi, A.; Marki, A.; Zador, E. Phytoecdysteroids and anabolic-androgenic steroids-structure and effects on humans. Curr. Med. Chem. 2008, 15, 75–91. [Google Scholar] [CrossRef]
  57. Seidlova-Wuttke, D.; Christel, D.; Kapur, P.; Nguyen, B.; Jarry, H.; Wuttke, W. Beta-Ecdysone has bone protective but no estrogenic effects in ovariectomized rats. Phytomedicine 2010, 17, 884–899. [Google Scholar] [CrossRef]
  58. Shakhmurova, G.A.; Mamadalieva, N.Z.; Zhanibekov, A.A.; Khushbaktova, Z.A.; Syrov, V.N. Effect of total ecdysteroid preparation from Silene viridiflora on the immune state of experimental animals under normal and secondary immunodeficiency conditions. Pharm. Chem. J. 2012, 46, 222–224. [Google Scholar]
  59. Bushneva, O.A.; Ovodova, R.G.; Shashkov, A.S.; Chizhov, A.O.; Ovodov, Y.S. Structure of Silenan, a Pectic Polysaccharide from Campion Silene vulgaris (Moench) Garcke. Biochemistry (Mosc.) 2003, 68, 1360–1368. [Google Scholar] [CrossRef]
  60. Ghonime, M.; Eldomany, R.; Abdelaziz, A.; Soliman, H. Evaluation of immunomodulatory effect of three herbal plants growing in Egypt. Immunopharmacol. Immunotoxicol. 2011, 33, 141–145. [Google Scholar] [CrossRef]
  61. Shakhmurova, G.; Djahangirova, M.; Batyrbekov, A.; Syrov, V.N. Evaluation of adaptogen and immunotrop effect of sum ecdysteroids from Silene viridiflora. Doklady Akademii Nauk RUz 2004, 55–59. (In Russian) [Google Scholar]
  62. Syrov, V.; Dzakhangirova, M.; Khushbaktova, Z. Effect of sum of ecdysteroids from Silene brachuica for working capacity on animals in experiments. Pharm. J. 2005, 56–59. (In Russian) [Google Scholar]
  63. Dzakhangirova, M.A.; Syrov, V.N. Experimental evaluation of effect of stimulation of sum of ecdysteroids from Silene brachuica and S. viridiflora for erythropoiesis in laboratory animals. Pathology 2005, 2, 7–9. [Google Scholar]
  64. Dzakhangirova, M. The Pharmacologic Investigation of the Sum Ecdysteroid Preparations Obtained from Silene brahuica, Silene viridiflora and Ajuga turkestanica Plants as Actoprotector Means. Ph.D. Thesis, Tashkent Medical Academy, Tashkent, Uzbekistan, 2007. [Google Scholar]
  65. Ko, Y.-J.; Hsieh, W.-T.; Wu, Y.-W.; Lin, A.W.-C. Ameliorative effect of Silene aprica on liver injuries induced by carbon tetrachloride and acetaminophen. Am. J. Chin. Med. 2002, 30, 235–243. [Google Scholar] [CrossRef]
  66. Shin, D.-Y.; Choi, T.-S.; Jin, D.-H.; Cho, M.-K. Composition Comprising the Extract from Melandryum firmum for Improvement of Liver Function and Treatment of Liver Diseases. U.S. Patent WO2009117828A1, 19 October 2009. [Google Scholar]
  67. Dinan, L.; Harmatha, J.; Volodin, V.; Lafont, R. Phytoecdysteroids: Diversity, Biosynthesis and Distribution. In Ecdysone: Structures and Functions; Smagghe, G., Ed.; Springer-Verlag: Dordrecht, The Netherlands, 2009; pp. 3–46. [Google Scholar]
  68. Mosaddegh, M.; Naghibi, F.; Moazzeni, H.; Pirani, A.; Esmaeili, S. Ethnobotanical survey of herbal remedies traditionally used in Kohghiluyeh va Boyer Ahmad province of Iran. J. Ethnopharmacol. 2012, 141, 80–95. [Google Scholar] [CrossRef]
  69. Chermenskaya, T.D.; Stepanycheva, E.A.; Shchenikova, A.V.; Chakaeva, A.S. Insectoacaricidal and deterrent activities of extracts of Kyrgyzstan plants against three agricultural pests. Ind. Crops Prod. 2010, 32, 157–163. [Google Scholar] [CrossRef]
  70. Dzhukharova, M.K.; Tashkhodzhaev, B.; Saatov, Z.; Abdullaev, N.D. Phytoecdysteroids of plants of the genus Silene XIV. Brahuisterone from Silene brahuica. Chem. Nat. Compd. 1993, 29, 484–489. [Google Scholar] [CrossRef]
  71. Mamadalieva, N.; Zibareva, L.; Lafont, R.; Dinan, L.; Saatov, Z. Phytoecdysteroids from the Silene genus. Chem. Nat. Compd. 2004, 40, 574–578. [Google Scholar] [CrossRef]
  72. Meng, Y.; Whiting, P.; Zibareva, L.; Bertho, G.; Girault, J.P.; Lafont, R.; Dinan, L. Identification and quantitative analysis of the phytoecdysteroids in Silene species (Caryophyllaceae) by high-performance liquid chromatography. Novel ecdysteroids from S. pseudotites. J. Chromatogr. A 2001, 935, 309–319. [Google Scholar] [CrossRef]
  73. Bückmann, D.; Starnecker, G.; Tomaschko, K.-H.; Wilhelm, E.; Lafont, R.; Girault, J.-P. Isolation and identification of major ecdysteroids from the pycnogonid Pycnogonum litorale (Ström) (Arthropoda, Pantopoda). J. Comp. Physiol. B 1986, 156, 759–765. [Google Scholar]
  74. Girault, J.-P.; Báthori, M.; Varga, E.; Szendrei, K.; Lafont, R. Isolation and identification of new ecdysteroids from the Caryophyllaceae. J. Nat. Prod. 1990, 53, 279–293. [Google Scholar] [CrossRef]
  75. Báthori, M. HPLC analysis of ecdysteroids of Silene otites (L) Wib. In Chromatography ‘84; Kalász, H., Ettre, L.S., Eds.; Akadémiai Kiadó: Budapest, Hungary, 1986; pp. 297–306. [Google Scholar]
  76. Louden, D.; Handley, A.; Lafont, R.; Taylor, S.; Sinclair, I.; Lenz, E.; Orton, T.; Wilson, I.D. HPLC analysis of ecdysteroids in plant extracts using superheated deuterium oxide with multiple on-line spectroscopic analysis (UV, IR, 1H NMR, and MS). Anal. Chem. 2001, 74, 288–294. [Google Scholar]
  77. Mamadalieva, N.; Ramazanov, N.S.; Dinan, L.; Saatov, Z. Phytoecdysteroids of Plants of the Silene Genus. 2-Dehydroxyecdysterone-3-O-benzoate from Silene wallichiana. Chem. Nat. Compd. 2000, 36, 513–515. [Google Scholar] [CrossRef]
  78. Munkhzhargal, N.; Zibareva, L.; Lafont, R.; Pribytkova, L.; Pisareva, S. Investigation of ecdysteroid content and composition of Silene repens indigenous in Mongolia and introduced into western Siberia. Russ. J. Bioorg. Chem. 2010, 36, 923–928. [Google Scholar] [CrossRef]
  79. Novozhilova, E.; Rybin, V.; Boltenkov, E. New phytoecdysteroids containing species from family of Caryophyllaceae. In Proceedings of the III Russian Conference “New Advances on Chemistry and Chemical Engineering of Plant Materials”, 23–27 April 2007; Altay University Publisher: Barnaul, Russia; pp. 204–208.
  80. Ramazanov, N.; Maksimov, E.; Saatov, Z.; Abdullaev, N. Phytoecdysteroms of plants of the genus Silene. XVII. Tomentesterone from Silene tomentella. Chem. Nat. Compd. 1995, 31, 600–603. [Google Scholar]
  81. Revina, T.; Revushkina, A.; Rakitin, A. Ecdysteroid-containing species in flora of the Altai Mountains. Rastit. Resur. 1988, 34, 565–570. [Google Scholar]
  82. Saatov, Z.; Usmanov, B.; Abubakirov, N. Phytoecdysones of Silene praemixta. I. Silenosterone. Chem. Nat. Compd. 1979, 15, 700–703. [Google Scholar] [CrossRef]
  83. Saatov, Z.; Gorovits, M.B.; Melibaev, S.; Abubakirov, N.K. Phytoecdysteroids of plants of the genus Silene. IX. Ecdysterone 22-O-benzoate from Silene scabrifolia. Chem. Nat. Compd. 1986, 22, 71–73. [Google Scholar] [CrossRef]
  84. Saatov, Z.; Abdullaev, N.; Gorovits, M.; Abubakirov, N. Phytoecdysteroids of plants of the genus Silene. X. Sileneoside E: 2-deoxy-alpha-ecdysone 3-O-beta-d-glucopyranoside from Silene brahuica. Chem. Nat. Compd. 1986, 22, 297–300. [Google Scholar] [CrossRef]
  85. Saatov, Z.; Gorovits, M.; Abubakirov, N. Phytoecdysteroids of plants of the genus Silene. XV. 2-Deoxy-α-ecdysone 22-O-benzoate from Silene wallichiana. Chem. Nat. Compd. 1987, 23, 708–711. [Google Scholar] [CrossRef]
  86. Saatov, Z.; Gorovits, M.; Abubakirov, N. Phytoecdysteroids of plants of the genus Silene. Chem. Nat. Compd. 1993, 29, 551–557. [Google Scholar] [CrossRef]
  87. Sadikov, Z.; Saatov, Z.; Garcia, M.; Girault, J.P.; Lafont, R. Ecdysteroids from Silene claviformis. Chem. Nat. Compd. 2001, 37, 262–265. [Google Scholar] [CrossRef]
  88. Sviridova, T.; Zibareva, L.N.; Kritskaja, S. Biological and Chemical Specialities of Species of the Genus Silene L. Grown in the South of the Tomsk Region. In Proceedings of the International Conference “Specialities of Acclimitization of Perennial Plants Accumulating Biologically Active Substances”, Krasnodar, Russia, 25–27 September 1995.
  89. Zibareva, L. The chromatographic detection of ecdysteroids in plants. In Proceedings of the Advances and Applications of Chromatography in Industry, Bratislava, Slovakia, 30 June–4 July 1996.
  90. Zibareva, L. The prognosis of the presence of ecdysteroids among the species Silene L. and Chenopodium L. to their contents in the seeds. Rastit. Resur. 1997, 33, 89–92. [Google Scholar]
  91. Zibareva, L. Occurrence of phytoecdysteroids in Silene L. genus and dynamics of their contents. Rastit. Resur. 1999, 35, 79–87. [Google Scholar]
  92. Zibareva, L. Distribution and levels of phytoecdysteroids in plants of the genus Silene during development. Arch. Insect Biochem. Physiol. 2000, 43, 1–8. [Google Scholar]
  93. Zibareva, L.; Yeryomina, V.; Ivanova, N. New ecdysteroidiferous species of the genus Silene L. and the dynamics of ecdysteroids contents in them. Rastit. Resur. 1997, 33, 73–75. [Google Scholar]
  94. Zibareva, L.; Volodin, V.; Saatov, Z.; Savchenko, T.; Whiting, P.; Lafont, R.; Dinan, L. Distribution of phytoecdysteroids in the Caryophyllaceae. Phytochemistry 2003, 64, 499–517. [Google Scholar] [CrossRef]
  95. Zibareva, L.; Yeriomina, V.I.; Munkhjargal, N.; Girault, J.-P.; Dinan, L.; Lafont, R. The phytoecdysteroid profiles of 7 species of Silene (Caryophyllaceae). Arch. Insect Biochem. Physiol. 2009, 72, 234–248. [Google Scholar]
  96. Zibareva, L.; Yeryomina, V.I. Dynamics of the contents ecdysteroids in species of the genus Silene grown in the Siberian botanical garden. Rastit. Resur. 1996, 106–110. [Google Scholar]
  97. Zibareva, L.; Ebel, A.; Gashkova, L. Physiology-biochemical aspects of study of herbal plants. In Proceedings of the International Meeting, Novosibirsk, Russia, 24–31 August 1998; p. 28.
  98. Agzamova, M.; Isaev, I.; Mamathanov, A.; Isaev, M.; Ibragimov, T. Phytoecdysteroids from Silene praemixta. Adv. Biol. Chem. 2014, 4, 1–4. [Google Scholar]
  99. Saatov, Z.; Gorovich, M.; Abubakirov, N. Phytoecdysteroids of plants of the genus Silene. XI. 2-Deoxy-α-ecdysone 3-acetate from Silene scabrifolia. Chem. Nat. Compd. 1986, 22, 409–411. [Google Scholar]
  100. Dzhukharova, M.K.; Saatov, Z.; Gorovits, M.B.; Abubakirov, N.K. Phytoecdysteroids of plants of the genus Silene. XVIII. 2-Deoxyecdysterone 20,22-monoacetonide from Silene brahuica. Chem. Nat. Compd. 1991, 27, 207–209. [Google Scholar] [CrossRef]
  101. Báthori, M.; Lafont, R.; Girault, J.-P.; Mathe, I. Occurrence of phytoecdysteroids in Silene species. J. Toxicol. Toxin Rev. 1995, 14, 223. [Google Scholar]
  102. Báthori, M.; Girault, J.P.; Kalasz, H.; Mathé, I.; Dinan, L.N.; Lafont, R. Complex phytoecdysteroid cocktail of Silene otites (Caryophyllaceae). Arch. Insect Biochem. Physiol. 1999, 41, 1–8. [Google Scholar]
  103. Báthori, M.; Girault, J.P.; Mathé, I.; Lafont, R. Isolation of 5 alpha- and 5 beta-dihydrorubrosterone from Silene otites L. (Wib). Biomed. Chromatogr. 2000, 14, 464–467. [Google Scholar] [CrossRef]
  104. Báthori, M.; Pongracz, Z.; Tóth, G.; Simon, A.; Kandra, L.; Kele, Z.; Ohmacht, R. Isolation of a new member of the ecdysteroid glycoside family: 2-deoxy-20-hydroxyecdysone 22-O-beta-d-glucopyranoside. J. Chromatogr. Sci. 2002, 40, 409–415. [Google Scholar]
  105. Báthori, M.; Kalasz, H.; Pongracz, Z.; Mathé, I.; Kalman, A.; Argay, G. 5-Alpha- and 5-beta-2-deoxyintegristerone A, a 5-alpha and 5-beta isomer pair of ecdysteroids isolated from the Silene genus. Biomed. Chromatogr. 2002, 16, 373–378. [Google Scholar] [CrossRef]
  106. Lafont, R.; Horn, D. Phytoecdysteroids: Structures and Occurrence. In Ecdysone: From Chemistry to Mode of Action; Koolman, J., Ed.; Georg Thieme-Verlag: Stuttgart, Germany, 1989; pp. 39–64. [Google Scholar]
  107. Mamadalieva, N.; Zibareva, L.; Saatov, Z. Phytoecdysteroids of Silene linicola. Chem. Nat. Compd. 2002, 38, 268–271. [Google Scholar] [CrossRef]
  108. Mamadalieva, N.; Zibareva, L.; Saatov, Z.; Lafont, R. Phytoecdysteroids of Silene viridiflora. Chem. Nat. Compd. 2003, 39, 199–203. [Google Scholar] [CrossRef]
  109. Pongrácz, Z.; Báthori, M.; Tóth, G.; Simon, A.; Mák, M.; Máthé, I. 9α, 20-Dihydroxyecdysone, a new natural ecdysteroid from Silene italica ssp. nemoralis. J. Nat. Prod. 2003, 66, 450–451. [Google Scholar] [CrossRef]
  110. Simon, A.; Pongrácz, Z.; Tóth, G.; Mák, M.; Máthé, I.; Báthori, M. A new ecdysteroid with unique 9β-OH and four other ecdysteroids from Silene italica ssp. nemoralis. Steroids 2004, 69, 389–394. [Google Scholar]
  111. Zibareva, L. Study of peculiarities to accumulate ecdysteroids in the plants of the Silene genus. In Proceedings of the Fundamental and Applied Problems of Environmental Protection, Tomsk, Russia, 12–16 September 1995.
  112. Zibareva, L. Phytoecdysteroids of Caryophyllaceae Juss. Contemp. Probl. Ecol. 2009, 2, 476–488. [Google Scholar] [CrossRef]
  113. Zibareva, L.; Yeryomina, V.; Zibarev, P. The Method of Detection and Quantity Definition of Phytoecdysteroids in Plant Objects; Pat. Russ. Fed: Moskow, Russia, 1997. [Google Scholar]
  114. Bathori, M.; Girault, J.P.; Kalasz, H.; Mathe, I.; Lafont, R. New minor ecdysteroids from Silene otites (L.) Wib. J. Pharm. Biomed. Anal. 1997, 16, 327–336. [Google Scholar] [CrossRef]
  115. Saatov, Z.; Gorovits, M.; Abdullaev, N.; Usmanov, B.; Abubakirov, N. Phytoecdysteroids of plants of the genus Silene. VIII. 2-Deoxyecdysterone 3-acetate from Silene praemixta. Chem. Nat. Compd. 1985, 21, 56–58. [Google Scholar] [CrossRef]
  116. Mamadalieva, N.; Saatov, Z.; Kachala, V.; Shashkov, A. Phytoecdysteroids of plants of the Silene genus. 2-Deoxyecdysterone-25-acetate from Silene wallichiana. Chem. Nat. Compd. 2002, 38, 179–181. [Google Scholar] [CrossRef]
  117. Bathori, M. Purification and characterization of plant ecdysteroids of Silene species. Trends Anal. Chem. 1998, 17, 372–383. [Google Scholar] [CrossRef]
  118. Bathori, M.; Szendrei, K.; Herke, I. The ecdysteriods of Silene otites L Wib. Herba Hung. 1986, 25, 105–117. [Google Scholar]
  119. Báthori, M.; Szendrei, K.; Miklós, P.; Pelczer, I.; Solymosi, P. Ecdysteroids from Silene nutans L. In Chromatography‘85; Kalász, H., Ettre, L.S., Eds.; Akadémiai Kiadó: Budapest, Hungary, 1986; pp. 241–250. [Google Scholar]
  120. Bathori, M.; Mathe, I.; Solymosi, P.; Szendrei, K. Phytoecdysteroids in some species of Caryophyllaceae and Chenopodiaceae. Acta Bot. Hung. 1987, 33, 1938–1945. [Google Scholar]
  121. Ramazanov, N.; Sultanov, S.; Saatov, Z.; Nigmatullaev, A. Phytoecdysteroids of plants of the Silene genus and the dynamics of their accumulation. Chem. Nat. Compd. 1997, 33, 558–562. [Google Scholar] [CrossRef]
  122. Toth, N.; Simon, A.; Toth, G.; Kele, Z.; Hunyadi, A.; Bathori, M. 26-Hydroxylated ecdysteroids from Silene viridiflora. J. Nat. Prod. 2008, 71, 1461–1463. [Google Scholar]
  123. Mamadalieva, N.Z.; Janibekov, A.A.; Girault, J.P.; Lafont, R. Two minor phytoecdysteroids of the plant Silene viridiflora. Nat. Prod. Commun. 2010, 5, 1579–1582. [Google Scholar]
  124. Mamadalieva, N.Z. Study of the phytoecdysteroids of some Caryophyllaceae plants. In Proceedings of the 7th International Symposium on the Chemistry of Natural Compounds, Tashkent, Uzbekistan, 16–18 October 2007.
  125. Mamadalieva, N.; Zibareva, L.; Evrard-Todeschi, N.; Girault, J.-P.; Maria, A.; Ramazanov, N.; Saatov, Z.; Lafont, R. New minor ecdysteroids from Silene viridiflora. Collect. Czech. Chem. Commun. 2004, 69, 1675–1680. [Google Scholar] [CrossRef]
  126. Saatov, Z.; Abdullaev, N.; Gorovits, M.; Abubakirov, N. Phytoecdysteroids of plants of the genus Silene. VI. α-Ecdysone 22-sulfate—A new ecdysteroid from Silene brahuica. Chem. Nat. Compd. 1984, 20, 441–444. [Google Scholar]
  127. Baltayev, U. Ecdysteroside, a phytoecdysteroid from Silene tatarica. Phytochemistry 1998, 47, 1233–1235. [Google Scholar] [CrossRef]
  128. Saatov, Z.; Gorovits, M.; Abdullaev, N.; Abubakirov, N. Phytoecdysteroids of plants of the genus Silene XII. 5α-Ecdysterone 22-O-benzoate from Silene scabrifolia. Chem. Nat. Compd. 1987, 23, 563–565. [Google Scholar] [CrossRef]
  129. Abubakirov, N.K. Ecdysteroids of flowering plants (Angiospermae). Proc. Indian Natl. Sci. Acad. Phys. Sci. 1982, 48A, 122–138. [Google Scholar]
  130. Abubakirov, N.K. Insect moulting hormones in plants from Central Asia. Uzb. Acad. Sci. Ser.: Chem. 1984, 4, 49–53. [Google Scholar]
  131. Baltaev, U.; Belov, Y.; Chumachenko, M.; Abubakirov, N. High-performance liquid chromatography of the phytoecdysteroids of Melandrium nutans. Chem. Nat. Compd. 1984, 20, 300–301. [Google Scholar] [CrossRef]
  132. Bergamasco, R.; Horn, D.H.S. Distribution and Role of Insect Hormones in Plants. In Endocrinology of Insects; Downer, R.G.H., Laufer, H., Eds.; Alan R. Liss: New York, NY, USA, 1983; pp. 627–654. [Google Scholar]
  133. Girault, J.P.; Báthori, M.; Kalász, H.; Mathé, I.; Lafont, R. Sidisterone, a C24 Ecdysteroid from Silene dioica and Silene otites. J. Nat. Prod. 1996, 59, 522–524. [Google Scholar]
  134. Saatov, Z.; Usmanov, B.Z.; Abubakirov, N.K. Phytoecdysones of Silene praemixta. II. Premixisterone. Chem. Nat. Compd. 1979, 15, 703–705. [Google Scholar] [CrossRef]
  135. Saatov, Z.; Gorovits, M.; Abdullaev, N.; Usmanov, B.; Abubakirov, N. Phytoecdysteroids of Silene plants. III. Silenoside A—A new ecdysteroid glycoside from Silene brahuica. Chem. Nat. Compd. 1981, 17, 534–539. [Google Scholar] [CrossRef]
  136. Saatov, Z.; Gorovits, M.; Abdullaev, N.; Usmanov, B.; Abubakirov, N. Phytoecdysteroids of Silene plants. V. Silenoside B-digalactoside of ecdysterone from Silene brahuica. Chem. Nat. Compd. 1982, 18, 578–582. [Google Scholar] [CrossRef]
  137. Saatov, Z.; Gorovits, M.; Abdullaev, N.; Usmanov, B.; Abubakirov, N. Phytoecdysteroids of plants of the genus Silene. IV. Sileneoside C—A galactoside of intergristerone A from Silene brahuica. Chem. Nat. Compd. 1982, 18, 193–196. [Google Scholar]
  138. Volodin, V.; Chadin, I.; Whiting, P.; Dinan, L. Screening plants of European North-East Russia for ecdysteroids. Biochem. Syst. Ecol. 2002, 30, 525–578. [Google Scholar]
  139. Zibareva, L.; Yeryomina, V. 20-Hydroxyecdysone distribution of different parts of Silene bellidifolia Juss. ex Jacq. и S. squamigera Boiss., cultivating in Siberian Botanical garden (Tomsk). Rastit. Resur. 2002, 38, 81–85. [Google Scholar]
  140. Cui, Z.-H.; Qiao, L.; Gao, C.-Y.; Lou, Z.-C. Chemical constituents of Silene jenisseensis. J. Chin. Pharm. Sci. 1995, 4, 30–31. [Google Scholar]
  141. Baltaev, U.; Darmograi, V.; Abubakirov, N. Phytoecdysteroids of plants of the genus Silene. XIV. Ecdysterone 20-O-benzoate from Silene tatarica. Chem. Nat. Compd. 1987, 23, 706–708. [Google Scholar] [CrossRef]
  142. Saatov, Z.; Abdullaev, N.; Gorovits, M.; Abubakirov, N. Phytoecdysteroids of plants of the genus Silene. XVII. Ecdysterone 22, 25-di-O-benzoate from Silene scabrifolia. Chem. Nat. Compd. 1990, 26, 301–303. [Google Scholar]
  143. Ramazonov, N.; Mamadalieva, N.; Bobaev, I. Phytoecdysteroids from five species of the genus Silene. Chem. Nat. Compd. 2007, 43, 117–118. [Google Scholar] [CrossRef]
  144. Sadikov, Z.T.; Saatov, Z. Phytoecdysteroids of plants of the genus Silene XX. Integristerone A 25-acetate from Silene brahuica. Chem. Nat. Compd. 1999, 35, 440–441. [Google Scholar] [CrossRef]
  145. Saatov, Z.; Abdullaev, N.; Gorovits, M.; Abubakirov, N. Phytoecdysteroids of plants of the genus Silene. VII. Sileneoside D—ecdysterone 3-O-α-d-galactopyranoside from Silene brahuica. Chem. Nat. Compd. 1984, 20, 700–703. [Google Scholar] [CrossRef]
  146. Dzhukarova, M.K.; Saatov, Z.; Abdullaev, N.D. Phytoecdysteroids of plants of the genus Silene XVI. 5α-sileneoside E from Silene brahuica. Chem. Nat. Compd. 1995, 31, 207–210. [Google Scholar] [CrossRef]
  147. Dzhukharova, M.K.; Saatov, Z.; Abdullaev, N.D.; Abubakirov, N.K. Phytoecdysteroids of the plants of the genus Silene XV. Silenoside F—Brahuisterone 3-O-β-d-glucopyranoside from Silene brahuica. Chem. Nat. Compd. 1994, 30, 680–683. [Google Scholar] [CrossRef]
  148. Sadykov, Z.T.; Saatov, Z. Phytoecdysteroids of plants of the Silene genus. XIX. The structure of sileneoside G. Chem. Nat. Compd. 1998, 34, 602–604. [Google Scholar] [CrossRef]
  149. Sadikov, Z.T.; Saatov, Z.; Girault, J.P.; Lafont, R. Sileneoside H, a new phytoecdysteroid from Silene brahuica. J. Nat. Prod. 2000, 63, 987–988. [Google Scholar]
  150. Baltaev, U.; Rashkes, Y.; Darmograi, V.; Belov, Y.; Abubakirov, N. Phytoecdysteroids of Silene nutans. II. 22-Deoxyecdysterone and features of its mass spectrum. Chem. Nat. Compd. 1985, 21, 59–62. [Google Scholar]
  151. Mamadalieva, N.; Egamberdieva, D.; Zhanibekov, A.; Triggiani, D.; Tiezzi, A. Chemical components of Silene viridiflora and their biological properties. Chem. Nat. Compd. 2009, 45, 589–591. [Google Scholar]
  152. Ramazanov, N.; Maksimov, E.; Saatov, Z.; Abdullaev, N. Phytoecdysteroids of plants of the Silene genus. XVIII. Tomentesterone from Silene tomentella. Chem. Nat. Compd. 1996, 32, 47–49. [Google Scholar] [CrossRef]
  153. Saatov, Z.; Gorovits, M.; Abubakirov, N. Phytoecdysteroids of plants of the genus Silene. XVI. Viticosterone E 22-O-benzoate from Silene wallichiana. Chem. Nat. Compd. 1988, 24, 463–465. [Google Scholar] [CrossRef]
  154. Baltaev, U.; Rashkes, Y.; Abubakirov, N. Phytoecdysteroids of Silene nutans. III. Nusilsterone. Chem. Nat. Compd. 1985, 21, 489–491. [Google Scholar] [CrossRef]
  155. Simon, A.; Tóth, N.; Tóth, G.; Kele, Z.; Groska, J.; Báthori, M. Ecdysteroids from Silene viridiflora. Helv. Chim. Acta 2009, 92, 753–761. [Google Scholar] [CrossRef]
  156. Saatov, Z.; Gorovits, M.; Abubakirov, N. Phytoecdysteroids of plants of the genus Silene XIII. Ecdysterone 20, 22-monoacetonide from Silene scabrifolia. Chem. Nat. Compd. 1987, 23, 643. [Google Scholar] [CrossRef]
  157. Glensk, M.; Wray, V.; Nimtz, M.; Schöpke, T. Silenosides A−C, triterpenoid saponins from Silene vulgaris. J. Nat. Prod. 1999, 62, 717–721. [Google Scholar] [CrossRef]
  158. Fu, H.; Koike, K.; Li, W.; Nikaido, T.; Lin, W.; Guo, D. Silenorubicosides A−D, Triterpenoid Saponins from Silene rubicunda. J. Nat. Prod. 2005, 68, 754–758. [Google Scholar]
  159. Larhsini, M.; Marston, A.; Hostettmann, K. Triterpenoid saponins from the roots of Silene cucubalus. Fitoterapia 2003, 74, 237–241. [Google Scholar] [CrossRef]
  160. Bukharov, V.G.; Karneeva, L.N. Nutanoside—A triterpene glycoside from Silene nutans. Chem. Nat. Compd. 1971, 7, 200–200. [Google Scholar] [CrossRef]
  161. Bouguet Bonnet, S.; Rochd, M.; Mutzenhardt, P.; Henry, M. Total assignment of 1H and 13C NMR spectra of three triterpene saponins from roots of Silene vulgaris (Moench) Garcke. Magn. Reson. Chem. 2002, 40, 618–621. [Google Scholar] [CrossRef]
  162. Lacaille-Dubois, M.-A.; Hanquet, B.; Cui, Z.-H.; Lou, Z.-C.; Wagner, H. Acylated triterpene saponins from Silene jenisseensis. Phytochemistry 1995, 40, 509–514. [Google Scholar]
  163. Lacaille-Dubois, M.-A.; Hanquet, B.; Cui, Z.-H.; Lou, Z.-C.; Wagner, H. Jenisseensosides C and D, biologically active acylated triterpene saponins from Silene jenisseensis. Phytochemistry 1997, 45, 985–990. [Google Scholar] [CrossRef]
  164. Lacaille-Dubois, M.-A.; Hanquet, B.; Cui, Z.-H.; Lou, Z.-C.; Wagner, H. A new biologically active acylated triterpene saponin from Silene fortunei. J. Nat. Prod. 1999, 62, 133–136. [Google Scholar] [CrossRef]
  165. Zou, C.; Jiang, J.; Chen, C.; Zhou, J.; Zhao, Q. Diacylated triterpenoid saponin from Silene szechuensis. Chin. Chem. Lett. 1999, 10, 33–36. [Google Scholar]
  166. Xu, W.; Wu, J.; Zhu, Z.; Sha, Y.; Fang, J.; Li, Y. Pentacyclic triterpenoid saponins from Silene viscidula. Helv. Chim. Acta 2010, 93, 2007–2014. [Google Scholar] [CrossRef]
  167. Tan, N.; Zhou, J.; Zhao, S.; Cheng, C. Rubicunosides B, C, D-three new triterpenoids saponins with acetylated saccharides from Silene rubicunda. Acta Chim. Sin. 1996, 54, 722–728. [Google Scholar]
  168. Wu, Q.; Tu, G.; Fu, H. A new triterpenoid saponin from Silene rubicunda Franch. J. Chin. Pharm. Sci. 2014, 23, 246–250. [Google Scholar]
  169. Elgamal, M.H.A.; Soliman, H.S.M.; Karawya, M.S.; Duddeck, H. Villosagenin I and II Two Novel Pentacyclic 28-Nortriterpenes from Silene villosa (Forssk). Nat. Prod. Lett. 1994, 4, 297–301. [Google Scholar] [CrossRef]
  170. Karawya, M.; Elgamal, M.; Shalaby, N.; Soliman, H. Saponins of Silene succulenta forssk, growing locally. Egypt. J. Pharm. Sci. 1991, 32, 879. [Google Scholar]
  171. Tolibaev, I.; Mukhamedova, K.S.; Glushenkova, A.I. Lipids of Silene brahuica. Chem. Nat. Compd. 1993, 29, 444–446. [Google Scholar] [CrossRef]
  172. Salt, T.; Adler, J. Dominance of Δ7-sterols in the family caryophyllaceae in the family Caryophyllaceae. Lipids 1986, 21, 754–758. [Google Scholar] [CrossRef]
  173. Zemtsova, G.; Glyzin, V.Y.; Dzhumyrko, S. Flavones and their C-glycosides from Silene saxatilis. Chem. Nat. Compd. 1975, 11, 538–538. [Google Scholar] [CrossRef]
  174. Chopin, M.J.; Bouillant, M.L.; Wagner, H.; Galle, K. Endgültige Struktur von Schaftosid aus Silene schafta. Phytochemistry 1974, 13, 2583–2586. [Google Scholar]
  175. Heinsbroek, R.; van Brederode, J.; van Nigtevecht, G.; Maas, J.; Kamsteeg, J.; Besson, E.; Chopin, J. The 2″-O-glucosylation of vitexin and isovitexin in petals of Silene alba is catalysed by two different enzymes. Phytochemistry 1980, 19, 1935–1937. [Google Scholar]
  176. Richardson, M. Flavonols and C-Glycosylflavonoids of the Caryophyllales. Biochem. Syst. Ecol. 1978, 6, 283–286. [Google Scholar] [CrossRef]
  177. Iwashina, T.; Ootani, S. Characterization of C-glycosylflavones and anthocyanins in several species of Caryophyllaceae. Ann. Tsukuba Bot. Gard. 1987, 20, 19–30. [Google Scholar]
  178. Kamsteeg, J.; van Brederode, J.; van Nigtevecht, G. Pleiotropic effect of a pelargonidin-hydroxylation gene in Silene dioica. Phytochemistry 1976, 15, 1917–1918. [Google Scholar]
  179. Bajpai, V.; Shukla, S.; Kang, S. Chemical composition and antifungal activity of essential oil and various extract of Silene armeria L. Bioresour. Technol. 2008, 99, 8903–8908. [Google Scholar] [CrossRef]
  180. Dötterl, S.; Jahreiß, K.; Jhumur, U.S.; Jürgens, A. Temporal variation of flower scent in Silene otites (Caryophyllaceae): A species with a mixed pollination system. Bot. J. Linn. Soc. 2012, 169, 447–460. [Google Scholar] [CrossRef]
  181. Jhumur, U.; Dötterl, S.; Jürgens, A. Floral odors of Silene otites: Their variability and attractiveness to mosquitoes. J. Chem. Ecol. 2008, 34, 14–25. [Google Scholar]
  182. Andersson, S.; Nilsson, L.A.A.; Groth, I.; Bergstrom, G. Floral scents in butterfly-pollinated plants: Possible convergence in chemical composition. Bot. J. Linn. Soc. 2002, 140, 129–153. [Google Scholar] [CrossRef]
  183. Jürgens, A.; Witt, T.; Gottsberger, G. Flower scent composition in night-flowering Silene species (Caryophyllaceae). Biochem. Syst. Ecol. 2002, 30, 383–397. [Google Scholar]
  184. Jürgens, A. Flower scent composition in diurnal Silene species (Caryophyllaceae): Phylogenetic constraints or adaption to flower visitors? Biochem. Syst. Ecol. 2004, 32, 841–859. [Google Scholar] [CrossRef]
  185. Knudsen, J.T.; Tollsten, L. Trends in floral scent chemistry in pollination syndromes: Floral scent composition in moth pollinated taxa. Bot. J. Linn. Soc. 1993, 113, 263–284. [Google Scholar] [CrossRef]
  186. Dötterl, S.; Burkhardt, D.; Weißbecker, B.; Jürgens, A.; Schütz, S.; Mosandl, A. Linalool and lilac aldehyde/alcohol in flower scents: Electrophysiological detection of lilac aldehyde stereoisomers by a moth. J. Chromatogr. A 2006, 1113, 231–238. [Google Scholar]
  187. Vardavas, C.I.; Majchrzak, D.; Wagner, K.H.; Elmadfa, I.; Kafatos, A. Lipid concentrations of wild edible greens in Crete. Food Chem. 2006, 99, 822–834. [Google Scholar] [CrossRef]
  188. Asai, T.; Fujimoto, Y. Cyclic fatty acyl glycosides in the glandular trichome exudate of Silene gallica. Phytochemistry 2010, 71, 1410–1417. [Google Scholar] [CrossRef]
  189. Vardavas, C.I.; Majchrzak, D.; Wagner, K.H.; Elmadfa, I.; Kafatos, A. The antioxidant and phylloquinone content of wildly grown greens in Crete. Food Chem. 2006, 99, 813–821. [Google Scholar] [CrossRef]
  190. Morales, P.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Molina, M.; Ferreira, I.C. Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genet. Resour. Crop Evol. 2012, 59, 851–863. [Google Scholar] [CrossRef]
  191. Günter, Y.; Ovodov, Y. Pectin substances of the callus culture of Silene vulgaris (M.). Appl. Biochem. Microbiol. 2011, 47, 82–86. [Google Scholar] [CrossRef]
  192. Borris, R.P.; Hesse, M.; Seifert, K.; Johne, S. 2-[6′-(O-trans-Cinnamoyl)-β-d-glucopyranosyloxy]-3-methyl 4H-pyran-4-one, a New Acylated Pyrone Glucoside from Silene vulgaris (Caryophyllaceae) Part 186. Papers on Organic Natural Products. Helv. Chim. Acta 1982, 65, 2481–2485. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Mamadalieva, N.Z.; Lafont, R.; Wink, M. Diversity of Secondary Metabolites in the Genus Silene L. (Caryophyllaceae)—Structures, Distribution, and Biological Properties. Diversity 2014, 6, 415-499. https://doi.org/10.3390/d6030415

AMA Style

Mamadalieva NZ, Lafont R, Wink M. Diversity of Secondary Metabolites in the Genus Silene L. (Caryophyllaceae)—Structures, Distribution, and Biological Properties. Diversity. 2014; 6(3):415-499. https://doi.org/10.3390/d6030415

Chicago/Turabian Style

Mamadalieva, Nilufar Z., Rene Lafont, and Michael Wink. 2014. "Diversity of Secondary Metabolites in the Genus Silene L. (Caryophyllaceae)—Structures, Distribution, and Biological Properties" Diversity 6, no. 3: 415-499. https://doi.org/10.3390/d6030415

APA Style

Mamadalieva, N. Z., Lafont, R., & Wink, M. (2014). Diversity of Secondary Metabolites in the Genus Silene L. (Caryophyllaceae)—Structures, Distribution, and Biological Properties. Diversity, 6(3), 415-499. https://doi.org/10.3390/d6030415

Article Metrics

Back to TopTop