Probable Extirpation of Anodonta vescoiana in Iraq: A Case Study of Unionid Displacement by Sinanodonta woodiana
Abstract
:1. Introduction
2. Global Invasion Dynamics of Sinanodonta woodiana
3. Ecological Mechanisms of Displacement
3.1. Competition for Space and Resources
3.2. Broad Host Fish Range
3.3. Rapid Growth and Early Maturity
3.4. Tolerance to Environmental Stressors
3.5. Facilitation of Biotic Homogenization
3.6. Habitat Modification and Potential Disease Transmission
4. Unionid Loss in Iraq: A Case Study
Verified Occurrence Records of Anodonta vescoiana
5. Conservation Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lummer, E.M.; Auerswald, K.; Geist, J. Fine sediment as environmental stressor affecting freshwater mussel behavior and ecosystem services. Sci. Total Environ. 2016, 571, 1340–1348. [Google Scholar] [CrossRef] [PubMed]
- Ożgo, M.; Urbańska, M.; Marzec, M.; Kamocki, A.; Andrzejewski, W.; Golski, J.; Lewandowski, K.; Geist, J. Lake–stream transition zones support hotspots of freshwater ecosystem services: Evidence from a 35-year study on unionid mussels. Sci. Total Environ. 2021, 774, 145114. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, C.L.; Forshay, K.J. Community patch dynamics governs direct and indirect nutrient recycling by aggregated animals across spatial scales. Funct. Ecol. 2022, 36, 595–606. [Google Scholar] [CrossRef]
- Atkinson, C.L.; Vaughn, C.C.; Forshay, K.J.; Cooper, J.T. Aggregated filter-feeding consumers alter nutrient limitation: Consequences for ecosystem and community dynamics. Ecology 2013, 94, 1359–1369. [Google Scholar] [CrossRef]
- Vaughn, C.C.; Hakenkamp, C.C. The functional role of burrowing bivalves in freshwater ecosystems. Freshw. Biol. 2001, 46, 1431–1446. [Google Scholar] [CrossRef]
- Boeker, C.; Lueders, T.; Mueller, M.; Pander, J.; Geist, J. Alteration of physico-chemical and microbial properties in freshwater substrates by burrowing invertebrates. Limnologica 2016, 59, 131–139. [Google Scholar] [CrossRef]
- Vaughn, C.C. Ecosystem services provided by freshwater mussels. Hydrobiologia 2018, 810, 15–27. [Google Scholar] [CrossRef]
- Lopes-Lima, M.; Sousa, R.; Geist, J.; Aldridge, D.C.; Araujo, R.; Bergengren, J.; Bespalaya, Y.; Bódis, E.; Burlakova, L.; Van Damme, D.; et al. Conservation status of freshwater mussels in Europe: State of the art and future challenges. Biol. Rev. 2017, 92, 572–607. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Cushway, K.C.; Geist, J.; Schwalb, A.N. Surviving global change: A review of the impacts of drought and dewatering on freshwater mussels. Biol. Rev. 2025, 100, 275–307. [Google Scholar] [CrossRef]
- Geist, J.; Benedict, A.; Dobler, A.H.; Hoess, R.; Hoos, P. Functional interactions of non-native aquatic fauna with European freshwater bivalves: Implications for management. Hydrobiologia 2025, 852, 1397–1419. [Google Scholar] [CrossRef]
- Benedict, A.; Kuehn, R.; Stoeckle, B.C.; Geist, J. Genetic comparisons of the invasive pond mussel Sinanodonta woodiana from wild and pet shop populations in Germany. Hydrobiologia 2024, 851, 2125–2137. [Google Scholar] [CrossRef]
- Douda, K.; Vrtílek, M.; Slavík, O.; Reichard, M. The role of host specificity in explaining the invasion success of the freshwater mussel Anodonta woodiana in Europe. Biol. Invasions 2012, 14, 127–137. [Google Scholar] [CrossRef]
- Huber, V.; Geist, J. Reproduction success of the invasive Sinanodonta woodiana (Lea 1834) in relation to native mussel species. Biol. Invasions 2019, 21, 3451–3465. [Google Scholar] [CrossRef]
- Urbańska, M.; Kirschenstein, M.; Obolewski, K.; Ożgo, M. Silent invasion: Sinanodonta woodiana successfully reproduces and possibly endangers native mussels in the north of its invasive range in Europe. Int. Rev. Hydrobiol. 2019, 104, 127–136. [Google Scholar] [CrossRef]
- Benedict, A.; Geist, J. Effects of water temperature on glochidium viability of Unio crassus and Sinanodonta woodiana: Implications for conservation, management and captive breeding. J. Molluscan Stud. 2021, 87, eyab011. [Google Scholar] [CrossRef]
- Donrovich, S.W.; Douda, K.; Plechingerová, V.; Rylková, K.; Horký, P.; Slavík, O.; Liu, H.; Reichard, M.; Lopes-Lima, M.; Sousa, R. Invasive Chinese pond mussel Sinanodonta woodiana threatens native mussel reproduction by inducing cross-resistance of host fish. Aquat. Conserv. 2017, 27, 1325–1333. [Google Scholar] [CrossRef]
- Dobler, A.; Geist, J. Distribution and potential impacts of non-native Chinese pond mussels Sinanodonta woodiana (Lea, 1834) in Bavaria, Germany. Biol. Invasions 2022, 24, 1689–1706. [Google Scholar] [CrossRef]
- Douda, K.; Zieritz, A.; Vodáková, B.; Urbańska, M.; Bolotov, I.N.; Marková, J.; Froufe, E.; Bogan, A.E.; Lopes-Lima, M. Review of the globally invasive freshwater mussels in the genus Sinanodonta Modell, 1945. Hydrobiologia 2024, 852, 1243–1273. [Google Scholar] [CrossRef]
- Geist, J.; Thielen, F.; Lavictoire, L.; Hoess, R.; Altmueller, R.; Baudrimont, M.; Blaize, C.; Campos, M.; Carroll, P.; Daill, D.; et al. Captive breeding of European freshwater mussels as a conservation tool: A review. Aquat. Conserv. 2023, 33, 1321–1359. [Google Scholar] [CrossRef]
- Abdul-Sahib, I.M.; Abdul-Sahib, E.M. A new record of the freshwater clam, Anodonta vescoiana Bourguignat, 1857 (Mollusca: Bivalvia) from Al-Ezz River, Iraqi marshes. Mesopot. J. Mar. Sci. 2009, 24, 7–12. [Google Scholar]
- Douda, K.; Liu, H.-Z.; Yu, D.; Rouchet, R.; Liu, F.; Tang, Q.-Y.; Methling, C.; Smith, C.; Reichard, M. The role of local adaptation in shaping fish–mussel coevolution. Freshw. Biol. 2017, 62, 1858–1868. [Google Scholar] [CrossRef]
- Sárkány-Kiss, A. Anodonta woodiana woodiana (Lea, 1834), a new species in Romania (Bivalvia: Unionicea). Trav. Mus. Hist. Nat. Grigore Antipa 1986, 28, 23–28. [Google Scholar]
- Mehler, K.; Labecka, A.M.; Sirbu, I.N.; Flores, N.Y.; Leuven, R.S.; Collas, F.P. Recent and future distribution of the alien Chinese pond mussel Sinanodonta woodiana (Lea, 1834) on the European continent. Aquat. Invasions 2024, 19, 51–72. [Google Scholar] [CrossRef]
- Fabbri, R.; Landi, L. Nuove segnalazioni di molluschi, crostacei e pesci esotici in Emilia-Romagna e prima segnalazione di Corbicula fluminea (O.F. Müller, 1774) in Italia (Mollusca Bivalvia, Crustacea Decapoda, Osteichthyes Cypriniformes). Quad. Stud. Not. Stor. Nat. Romagna 1999, 12, 9–20. [Google Scholar]
- Lajtner, J.; Crnčan, P. Distribution of the invasive bivalve Sinanodonta woodiana (Lea, 1834) in Croatia. Aquat. Invasions 2011, 6, 119–124. [Google Scholar] [CrossRef]
- Elia, A.C.; Pastorino, P.; Magara, G.; Caldaroni, B.; Dörr, A.J.M.; Esposito, G.; Menconi, V.; Prearo, M. The invasive Sinanodonta woodiana (Bivalvia: Unionidae) as a bioindicator to uncover ecological disturbances: First insights from Lake Candia (northwest Italy). Environ. Sustain. Indic. 2024, 22, 100376. [Google Scholar] [CrossRef]
- Bensaad-Bendjedid, L.; Telailia, S.; Boutabia, L.; Rouidi, S.; Zaidi, R.; Baba-Ahmed, F. The invasive Sinanodonta woodiana (Bivalvia: Unionidae) continues to spread in North Africa (Algeria): A new locality for an established population and further perspectives. Folia Malacol. 2024, 32, 259–268. [Google Scholar] [CrossRef]
- Halabowski, D.; Pyrzanowski, K.; Zięba, G.; Grabowska, J.; Przybylski, M.; Smith, C.; Reichard, M. The impact of invasive Sinanodonta woodiana (Bivalvia, Unionidae) and mussel macroparasites on the egg distribution of parasitic bitterling fish in host mussels. Sci. Rep. 2025, 15, 9417. [Google Scholar] [CrossRef]
- Urbańska, M.; Kamocki, A.; Kirschenstein, M.; Ożgo, M. The Chinese pond mussel Sinanodonta woodiana demographically outperforms European native mussels. Sci. Rep. 2021, 11, 17058. [Google Scholar] [CrossRef]
- Chandra, S.; Gerhardt, A. Expansion of Sinanodonta woodiana (Lea, 1834) (Bivalvia: Unionidae) in the Czech Republic. Aquat. Invasions 2008, 3, 91–94. [Google Scholar]
- Guarneri, I.; Popa, O.P.; Gola, L.; Kamburska, L.; Lauceri, R.; Lopes-Lima, M.; Popa, L.O.; Riccardi, N. A morphometric and genetic comparison of Sinanodonta woodiana (Lea, 1834) populations: Does shape really matter? Aquat. Invasions 2014, 9, 189–199. [Google Scholar] [CrossRef]
- Bielen, A.; Bošnjak, I.; Sepčić, K.; Jaklič, M.; Cvitanić, M.; Lušić, J.; Lajtner, J.; Simčič, T.; Hudina, S. Differences in tolerance to anthropogenic stress between invasive and native bivalves. Sci. Total Environ. 2016, 543, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Naser, M.D. First record of the freshwater crab, Potamon mesopotamicum Brandis, Storch & Türkay, 1998 (Decapoda, Brachyura, Potamidae) from the Al-Huwaizah Marshes, Iraq. Crustaceana 2009, 82, 1599–1602. [Google Scholar]
- Yasser, A.; Al-Kaaby, I.; Shabeeb, A.; Naser, M.; Auda, N.; Ajeel, S.; Yesser, A.; Al-Hello, A.-Z.; Lebepe, J. Histopathology and micronuclei induction as pollution biomarkers in common carp, Cyprinus carpio from southern Iraq. J. Biol. Stud. 2024, 7, 11–30. [Google Scholar] [CrossRef]
- Dobler, A.H.; Geist, J. Impacts of native and invasive crayfish on three native and one invasive freshwater mussel species. Freshw. Biol. 2022, 67, 389–403. [Google Scholar] [CrossRef]
- Olden, J.D.; Poff, N.L. Toward a mechanistic understanding and prediction of biotic homogenization. Am. Nat. 2003, 162, 442–460. [Google Scholar] [CrossRef]
- Boeker, C.; Geist, J. Effects of invasive and indigenous amphipods on physico-chemical and microbial properties in freshwater substrates. Aquat. Ecol. 2015, 49, 467–480. [Google Scholar] [CrossRef]
- Boeker, C.; Geist, J. Lampreys as ecosystem engineers: Burrows of Eudontomyzon sp. and their impact on physical, chemical, and microbial properties in freshwater substrates. Hydrobiologia 2016, 777, 171–181. [Google Scholar] [CrossRef]
- Sousa, R.; Novais, A.; Costa, R.; Strayer, D.L. Invasive bivalves in fresh waters: Impacts from individuals to ecosystems and possible control strategies. Hydrobiologia 2014, 735, 233–251. [Google Scholar] [CrossRef]
- Altinbilek, D. Development and management of the Euphrates–Tigris basin. Int. J. Water Resour. Dev. 2004, 20, 15–33. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Dam safety problems related to seepage. J. Earth Sci. Geotech. Eng. 2020, 10, 191–239. [Google Scholar]
- Fuller, M.R.; Doyle, M.W.; Strayer, D.L. Causes and consequences of habitat fragmentation in river networks. Ann. N. Y. Acad. Sci. 2015, 1355, 31–51. [Google Scholar] [CrossRef] [PubMed]
- Blanchet, S.; Prunier, J.G.; Paz-Vinas, I.; Saint-Pé, K.; Rey, O.; Raffard, A.; Mathieu-Bégné, E.; Loot, G.; Fourtune, L.; Dubut, V. A river runs through it: The causes, consequences, and management of intraspecific diversity in river networks. Evol. Appl. 2020, 13, 1195–1213. [Google Scholar] [CrossRef]
- Sousa, R.; Halabowski, D.; Labecka, A.M.; Douda, K.; Aksenova, O.; Bespalaya, Y.; Bolotov, I.; Geist, J.; Jones, H.A.; Konopleva, E.; et al. The role of anthropogenic habitats in freshwater mussel conservation. Glob. Chang. Biol. 2021, 27, 2298–2314. [Google Scholar] [CrossRef]
- Tomović, J.; Zorić, K.; Simić, V.; Kostić, M.; Kljajić, Z.; Lajtner, J.; Paunović, M. The first record of the Chinese pond mussel Sinanodonta woodiana (Lea, 1834) in Montenegro. Arch. Biol. Sci. 2013, 65, 1525–1531. [Google Scholar] [CrossRef]
- Szlauer-Łukaszewska, A.; Andrzejewski, W.; Gierszal, H.; Urbańska, M. Co-occurrence of Sinanodonta woodiana with native Unionidae in the lower Oder. Oceanol. Hydrobiol. Stud. 2017, 46, 244–248. [Google Scholar] [CrossRef]
- Naser, M.D.; Yasser, A.G.; Dobrzycka-Krahel, A.; Lo Brutto, S.; Auda, N.M.; De los Rios-Escalante, P.R.; Essl, F. Aquatic non-native invertebrate species in large river basins of southern Iraq. BioInvasions Rec. 2024, 13, 963–978. [Google Scholar] [CrossRef]
- Bogan, A.E.; Al-Fanharawi, A.A.; Lopes-Lima, M. First record of Sinanodonta woodiana and report for freshwater bivalves from Iraq (Mollusca: Bivalvia: Unionidae). Ecol. Montenegrina 2021, 46, 52–60. [Google Scholar] [CrossRef]
- Abdul Razak, A.; Zwair, H. Molecular study of new record species Sinanodonta woodiana (Lea, 1834) (Bivalvia: Unionidae) in middle of Iraq. Turk. J. Physiother. Rehabil. 2021, 32, 22202–22217. [Google Scholar]
- Yasser, A.G.; Naser, M.D.; Ghazi, A.H.; Mahdi, R.; Younis, M.; Shahen, M.; Ali, R. An expansion of the invasive species Amphibalanus subalbidus (Henry, 1973) in the south of Iraq. BioInvasions Rec. 2022, 11, 977–982. [Google Scholar] [CrossRef]
- Auerswald, K.; Moyle, P.; Seibert, S.P.; Geist, J. HESS Opinions: Socio-economic and ecological trade-offs of flood management—Benefits of a transdisciplinary approach. Hydrol. Earth Syst. Sci. 2019, 23, 1035–1044. [Google Scholar] [CrossRef]
- Wild, R.; Nagel, C.; Geist, J. Climate change effects on hatching success and embryonic development of fish: Assessing multiple stressor responses in a large-scale mesocosm study. Sci. Total Environ. 2023, 893, 164834. [Google Scholar] [CrossRef] [PubMed]
- Wild, R.; Nagel, C.; Geist, J. Multiple climate change stressors reduce the emergence success of gravel-spawning fish species and alter temporal emergence patterns. Sci. Total Environ. 2024, 949, 175054. [Google Scholar] [CrossRef]
- Rahi, K.A.; Halihan, T. Changes in the salinity of the Euphrates River system in Iraq. Reg. Environ. Change 2010, 10, 27–35. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.K.; Knutsson, S.; Laue, J. Climate change: Consequences on Iraq’s environment. J. Earth Sci. Geotech. Eng. 2018, 8, 43–58. [Google Scholar]
- Mueller, M.; Pander, J.; Geist, J. The effects of weirs on structural stream habitat and biological communities. J. Appl. Ecol. 2011, 48, 1450–1461. [Google Scholar] [CrossRef]
- Knott, J.; Mueller, M.; Pander, J.; Geist, J. Habitat quality and biological community responses to innovative hydropower plant installations at transverse in-stream structures. J. Appl. Ecol. 2024, 61, 606–620. [Google Scholar] [CrossRef]
- Abdullah, A.D.; Karim, U.F.; Masih, I.; Popescu, I.; Van der Zaag, P. Anthropogenic and tidal influences on salinity levels of the Shatt al-Arab River, Basra, Iraq. Int. J. River Basin Manag. 2016, 14, 357–366. [Google Scholar] [CrossRef]
- Awadh, S.M.; Ahmed, R.M. Hydrochemistry and pollution probability of selected sites along the Euphrates River, Western Iraq. Arab. J. Geosci. 2013, 6, 2501–2518. [Google Scholar] [CrossRef]
- Yasser, A.G.; Naser, M.D. Impact of pollutants on fish collected from different parts of Shatt Al-Arab River: A histopathological study. Environ. Monit. Assess. 2011, 181, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Yasser, A.G.; Naser, M. Acute toxicity and histopathological effects of Malathion on shrimp Macrobrachium nipponense (De Haan, 1849) (Caridea: Palaemonidae). J. Biol. Stud. 2023, 5, 774–779. [Google Scholar] [CrossRef]
- Zipper, C.E.; Beaty, B.; Johnson, G.C.; Jones, J.W.; Krstolic, J.L.; Ostby, B.J.; Wolfe, W.J.; Donovan, P. Freshwater mussel population status and habitat quality in the Clinch River, Virginia and Tennessee, USA: A featured collection. J. Am. Water Resour. Assoc. 2014, 50, 807–819. [Google Scholar] [CrossRef]
- Beggel, S.; Geist, J. Acute effects of salinity exposure on glochidia viability and host infection of the freshwater mussel Anodonta anatina (Linnaeus, 1758). Sci. Total Environ. 2015, 502, 659–665. [Google Scholar] [CrossRef]
- Strayer, D.L. Alien species in fresh waters: Ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 2010, 55, 152–174. [Google Scholar] [CrossRef]
- Gallardo, B.; Clavero, M.; Sánchez, M.I.; Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 2016, 22, 151–163. [Google Scholar] [CrossRef]
- Stoeckle, B.C.; Kuehn, R.; Geist, J. Environmental DNA as a monitoring tool for the endangered freshwater pearl mussel (Margaritifera margaritifera L.): A substitute for classical monitoring approaches? Aquat. Conserv. 2016, 26, 1120–1129. [Google Scholar] [CrossRef]
- Belle, C.C.; Stoeckle, B.C.; Geist, J. Taxonomic and geographical representation of freshwater environmental DNA research in aquatic conservation. Aquat. Conserv. 2019, 29, 1996–2009. [Google Scholar] [CrossRef]
- Geist, J.; Kühn, R. Genetic diversity and differentiation of central European freshwater pearl mussel (Margaritifera margaritifera L.) populations: Implications for conservation and management. Mol. Ecol. 2005, 14, 425–439. [Google Scholar] [CrossRef]
- Geist, J.; Bayerl, H.; Stoeckle, B.C.; Kuehn, R. Securing genetic integrity in freshwater pearl mussel propagation and captive breeding. Sci. Rep. 2021, 11, 16019. [Google Scholar] [CrossRef]
Region/Country | Native Unionids Affected | Habitat Type | Main Impact Observed | Source |
---|---|---|---|---|
Iraq | Anodonta vescoiana (endemic) | Marshes, rivers, canals (degraded) | Probable displacement; local extirpation | This study; [21] |
Italy | A. anatina | Canals, agricultural reservoirs | Space dominance; sediment alteration | [25] |
Montenegro | Unio pictorum, Unio tumidus | Silt-clay substrate, slow flow, shallow lake (Lake Šasko) | Competitive exclusion; reproductive interference | [46] |
Poland | U. tumidus, U. pictorum, A. anatina, P. complanata | Natural riverine ecosystems (Oder River, oxbow lakes) | Recent co-occurrence; no confirmed replacement yet | [47] |
Germany (Bavaria) | U. pictorum, A. anatina, A. cygnea | Fish ponds, rivers, reservoirs | High S. woodiana biomass linked with low native mussel biomass in some plots | [18] |
Scientific Name | Country | Coordinates | Event Date | Status | Basis | Institution/Source |
---|---|---|---|---|---|---|
Anodonta vescoiana Bourguignat, 1856 | Iraq | 33.3° N, 43.7° E | 1933 | Present | Preserved specimen | Museum of Comparative Zoology, Harvard |
Anodonta vescoiana Bourguignat, 1856 | Iraq | 33.4° N, 43.6° E | Not dated | Present | Preserved specimen | Museum of Comparative Zoology, Harvard |
Anodonta vescoiana Bourguignat, 1856 | Iraq | Not specified | 10 March 1980 | Present | Preserved specimen | Collection Mollusca SMF, Frankfurt am Main, Germany |
Anodonta vescoiana Bourguignat, 1856 | Iraq | Not specified | 1 August 1983 | Present | Preserved specimen | Collection Mollusca SMF, Frankfurt am Main, Germany |
Anodonta vescoiana Bourguignat, 1856 | Syrian Arab Republic | Not specified | Not dated | Present | Preserved specimen | Museu de Ciències Naturals de Barcelona |
Anodonta vescoiana Bourguignat, 1856 | Iraq | 31.0833° N 46.1000° E And 31.1167° N 47.2167° E | 2009 | Present | Field observation | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naser, M.; Yasser, A.; Geist, J.; Douda, K.; Essl, F. Probable Extirpation of Anodonta vescoiana in Iraq: A Case Study of Unionid Displacement by Sinanodonta woodiana. Diversity 2025, 17, 415. https://doi.org/10.3390/d17060415
Naser M, Yasser A, Geist J, Douda K, Essl F. Probable Extirpation of Anodonta vescoiana in Iraq: A Case Study of Unionid Displacement by Sinanodonta woodiana. Diversity. 2025; 17(6):415. https://doi.org/10.3390/d17060415
Chicago/Turabian StyleNaser, Murtada, Amaal Yasser, Juergen Geist, Karel Douda, and Franz Essl. 2025. "Probable Extirpation of Anodonta vescoiana in Iraq: A Case Study of Unionid Displacement by Sinanodonta woodiana" Diversity 17, no. 6: 415. https://doi.org/10.3390/d17060415
APA StyleNaser, M., Yasser, A., Geist, J., Douda, K., & Essl, F. (2025). Probable Extirpation of Anodonta vescoiana in Iraq: A Case Study of Unionid Displacement by Sinanodonta woodiana. Diversity, 17(6), 415. https://doi.org/10.3390/d17060415