Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,192)

Search Parameters:
Keywords = biological invasions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1424 KiB  
Article
Comparison of Artificial Intelligence–Derived Heart Age with Chronological Age Using Normal Sinus Electrocardiograms in Patients with No Evidence of Cardiac Disease
by Myoung Jung Kim, Sung-Hee Song, Young Jun Park, Young-Hyun Lee, Jongwoo Kim, JaeHu Jeon, KyungChang Woo, Juwon Kim, Ju Youn Kim, Seung-Jung Park, Young Keun On and Kyoung-Min Park
J. Clin. Med. 2025, 14(15), 5548; https://doi.org/10.3390/jcm14155548 (registering DOI) - 6 Aug 2025
Abstract
Background/Objectives: Chronological age (CA) is commonly used in clinical decision-making, yet it may not accurately reflect biological aging. Recent advances in artificial intelligence (AI) allow estimation of electrocardiogram (ECG)-derived heart age, which may serve as a non-invasive biomarker for physiological aging. This [...] Read more.
Background/Objectives: Chronological age (CA) is commonly used in clinical decision-making, yet it may not accurately reflect biological aging. Recent advances in artificial intelligence (AI) allow estimation of electrocardiogram (ECG)-derived heart age, which may serve as a non-invasive biomarker for physiological aging. This study aimed to develop and validate a deep learning model to predict ECG-heart age in individuals with no structural heart disease. Methods: We trained a convolutional neural network (DenseNet-121) using 12-lead ECGs from 292,484 individuals (mean age: 51.4 ± 13.8 years; 42.3% male) without significant cardiac disease. Exclusion criteria included missing age data, age <18 or >90 years, and structural abnormalities. CA was used as the target variable. Model performance was evaluated using the coefficient of determination (R2), Pearson correlation coefficient (PCC), mean absolute error (MAE), and root mean square error (RMSE). External validation was conducted using 1191 independent ECGs. Results: The model demonstrated strong predictive performance (R2 = 0.783, PCC = 0.885, MAE = 5.023 years, RMSE = 6.389 years). ECG-heart age tended to be overestimated in younger adults (≤30 years) and underestimated in older adults (≥70 years). External validation showed consistent performance (R2 = 0.703, PCC = 0.846, MAE = 5.582 years, RMSE = 7.316 years). Conclusions: The proposed AI-based model accurately estimates ECG-heart age in individuals with structurally normal hearts. ECG-derived heart age may serve as a reliable biomarker of biological aging and support future risk stratification strategies. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

16 pages, 2848 KiB  
Article
Light-Guided Cyborg Beetles: An Analysis of the Phototactic Behavior and Steering Control of Endebius florensis (Coleoptera: Scarabaeidae)
by Tian-Hao Zhang, Zheng-Zhong Huang, Lei Jiang, Shen-Zhen Lv, Wen-Tao Zhu, Chao-Fan Zhang, Yi-Shi Shi and Si-Qin Ge
Biomimetics 2025, 10(8), 513; https://doi.org/10.3390/biomimetics10080513 - 6 Aug 2025
Abstract
Cyborg insects offer a biologically powered solution for locomotion control, but conventional methods typically rely on invasive electrical stimulation. Here, we introduce a noninvasive, phototaxis-based strategy to steer walking Endebius florensis beetles using light-emitting diode (LED) stimuli. Electroretinogram recordings revealed spectral sensitivity to [...] Read more.
Cyborg insects offer a biologically powered solution for locomotion control, but conventional methods typically rely on invasive electrical stimulation. Here, we introduce a noninvasive, phototaxis-based strategy to steer walking Endebius florensis beetles using light-emitting diode (LED) stimuli. Electroretinogram recordings revealed spectral sensitivity to blue, green, and yellow light, with reduced response to red. Behavioral assays demonstrated robust positive phototaxis to blue light and negative phototaxis to yellow. Using these findings, we built a wireless microcontroller-based backpack emitting directional blue light to induce steering. The beetles reliably turned toward the activated light, achieving angular deflections over 60° within seconds. This approach enables repeatable, trauma-free insect control and establishes a new paradigm for biohybrid locomotion systems. Full article
(This article belongs to the Special Issue Functional Morphology and Biomimetics: Learning from Insects)
Show Figures

Figure 1

14 pages, 2501 KiB  
Article
Therapeutic Patterns and Surgical Decision-Making in Breast Cancer: A Retrospective Regional Cohort Study in Romania
by Ramona Andreea Cioroianu, Michael Schenker, Virginia-Maria Rădulescu, Tradian Ciprian Berisha, George Ovidiu Cioroianu, Mihaela Popescu, Cristina Mihaela Ciofiac, Ana Maria Petrescu and Stelian Ștefăniță Mogoantă
Clin. Pract. 2025, 15(8), 145; https://doi.org/10.3390/clinpract15080145 - 5 Aug 2025
Abstract
Background: Breast cancer is the most prevalent malignancy among women globally. In Romania, it is the most frequent form of cancer affecting women, with approximately 12,000 new cases diagnosed annually, and the second most common cause of cancer-related mortality, second only to [...] Read more.
Background: Breast cancer is the most prevalent malignancy among women globally. In Romania, it is the most frequent form of cancer affecting women, with approximately 12,000 new cases diagnosed annually, and the second most common cause of cancer-related mortality, second only to lung cancer. Methods: This study looked at 79 breast cancer patients from Oltenia, concentrating on epidemiology, histology, diagnostic features, and treatments. Patients were chosen based on inclusion criteria such as histopathologically verified diagnosis, availability of clinical and treatment data, and follow-up information. The analyzed biological material consisted of tissue samples taken from the breast parenchyma and axillary lymph nodes. Even though not the primary subject of this paper, all patients underwent immunohistochemical (IHC) evaluation both preoperatively and postoperatively. Results: We found invasive ductal carcinoma to be the predominant type, while ductal carcinoma in situ (DCIS) and mixed types were rare. We performed cross-tabulations of metastasis versus nodal status and age versus therapy type; none reached significance (all p > 0.05), suggesting observed differences were likely due to chance. A chi-square test comparing surgical interventions (breast-conserving vs. mastectomy) in patients who did or did not receive chemotherapy showed, χ2 = 3.17, p = 0.367, indicating that chemotherapy did not significantly influence surgical choice. Importantly, adjuvant chemotherapy and radiotherapy were used at similar rates across age groups, whereas neoadjuvant hormonal (endocrine) therapy was more common in older patients (but without statistical significance). Conclusions: Finally, we discussed the consequences of individualized care and early detection. Romania’s shockingly low screening rate, which contributes to delayed diagnosis, emphasizes the importance of improved population medical examination and tailored treatment options. Also, the country has one of the lowest rates of mammography uptake in Europe and no systematic population screening program. Full article
Show Figures

Figure 1

17 pages, 11380 KiB  
Article
Ultrasonic Surgical Aspirator in Intramedullary Spinal Cord Tumours Treatment: A Simulation Study of Vibration and Temperature Field
by Ludovica Apa, Mauro Palmieri, Pietro Familiari, Emanuele Rizzuto and Zaccaria Del Prete
Bioengineering 2025, 12(8), 842; https://doi.org/10.3390/bioengineering12080842 (registering DOI) - 4 Aug 2025
Abstract
The aim of this work is to analyse the effectiveness of the medical use of the Cavitron Ultrasonic Surgical Aspirator (CUSA) in microsurgical treatment of Intramedullary Spinal Cord Tumors (IMSCTs), with a focus on the thermo-mechanical effects on neighbouring tissues to assess any [...] Read more.
The aim of this work is to analyse the effectiveness of the medical use of the Cavitron Ultrasonic Surgical Aspirator (CUSA) in microsurgical treatment of Intramedullary Spinal Cord Tumors (IMSCTs), with a focus on the thermo-mechanical effects on neighbouring tissues to assess any potential damage. Indeed, CUSA emerges as an innovative solution, minimally invasive tumor excision technique, enabling controlled and focused operations. This study employs a Finite Element Analysis (FEA) to simulate the vibratory and thermal interactions occurring during CUSA application. A computational model of a vertebral column segment affected by an IMSCT was developed and analysed using ANSYS 2024 software. The simulations examined strain distribution, heat generation, and temperature propagation within the biological tissues. The FEA results demonstrate that the vibratory-induced strain remains highly localised to the application site, and thermal effects, though measurable, do not exceed the critical safety threshold of 46 °C established in the literature. These findings suggest that CUSA can be safely used within defined operational parameters, provided that energy settings and exposure times are carefully managed to mitigate excessive thermal accumulation. These conclusions contribute to the understanding of the thermo-mechanical interactions in ultrasonic tumour resection and aim to assist medical professionals in optimising surgical protocols. Full article
(This article belongs to the Special Issue Mathematical and Computational Modeling of Cancer Progression)
Show Figures

Figure 1

22 pages, 1028 KiB  
Review
Focused Modulation of Brain Activity: A Narrative Review
by Aisha Zhantleuova, Altynay Karimova, Anna P. Andreou, Almira M. Kustubayeva, Rashid Giniatullin and Bazbek Davletov
Biomedicines 2025, 13(8), 1889; https://doi.org/10.3390/biomedicines13081889 - 3 Aug 2025
Viewed by 216
Abstract
A wide range of strategies have been developed to modulate dysfunctional brain activities. This narrative review provides a comparative analysis of biophysical, genetic, and biological neuromodulation approaches with an emphasis on their known or unknown molecular targets and translational potential. The review incorporates [...] Read more.
A wide range of strategies have been developed to modulate dysfunctional brain activities. This narrative review provides a comparative analysis of biophysical, genetic, and biological neuromodulation approaches with an emphasis on their known or unknown molecular targets and translational potential. The review incorporates data from both preclinical and clinical studies covering deep brain stimulation, transcranial electrical and magnetic stimulation, focused ultrasound, chemogenetics, optogenetics, magnetogenetics, and toxin-based neuromodulation. Each method was assessed based on specificity, safety, reversibility, and mechanistic clarity. Biophysical methods are widely used in clinical practice but often rely on empirical outcomes due to undefined molecular targets. Genetic tools offer cell-type precision in experimental systems but face translational barriers related to delivery and safety. Biological agents, such as botulinum neurotoxins, provide long-lasting yet reversible inhibition via well-characterized molecular pathways. However, they require stereotaxic injections and remain invasive. To overcome individual limitations and improve targeting, delivery, and efficacy, there is a growing interest in the synthesis of multiple approaches. This review highlights a critical gap in the mechanistic understanding of commonly used methods. Addressing this gap by identifying molecular targets may help to improve therapeutic precision. This concise review could be valuable for researchers looking to enter the evolving field of the neuromodulation of brain function. Full article
(This article belongs to the Collection Feature Papers in Neuromodulation and Brain Stimulation)
Show Figures

Figure 1

15 pages, 1194 KiB  
Article
DNA Methylation-Associated Epigenetic Changes in Thermotolerance of Bemisia tabaci During Biological Invasions
by Tianmei Dai, Yusheng Wang, Xiaona Shen, Zhichuang Lü, Fanghao Wan and Wanxue Liu
Int. J. Mol. Sci. 2025, 26(15), 7466; https://doi.org/10.3390/ijms26157466 - 1 Aug 2025
Viewed by 129
Abstract
Global warming and anthropogenic climate change are projected to expand the geographic distribution and population abundance of ectothermic species and exacerbate the biological invasion of exotic species. DNA methylation, as a reversible epigenetic modification, could provide a putative link between the phenotypic plasticity [...] Read more.
Global warming and anthropogenic climate change are projected to expand the geographic distribution and population abundance of ectothermic species and exacerbate the biological invasion of exotic species. DNA methylation, as a reversible epigenetic modification, could provide a putative link between the phenotypic plasticity of invasive species and environmental temperature variations. We assessed and interpreted the epigenetic mechanisms of invasive and indigenous species’ differential tolerance to thermal stress through the invasive species Bemisia tabaci Mediterranean (MED) and the indigenous species Bemisia tabaci AsiaII3. We examine their thermal tolerance following exposure to heat and cold stress. We found that MED exhibits higher thermal resistance than AsiaII3 under heat stress. The fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) results proved that the increased thermal tolerance in MED is closely related to DNA methylation changes, other than genetic variation. Furthermore, the quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analysis of DNA methyltransferases (Dnmts) suggested that increased expression of Dnmt3 regulates the higher thermal tolerance of female MED adults. A mechanism is revealed whereby DNA methylation enhances thermal tolerance in invasive species. Our results show that the Dnmt-mediated regulation mechanism is particularly significant for understanding invasive species’ successful invasion and rapid adaptation under global warming, providing new potential targets for controlling invasive species worldwide. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

30 pages, 955 KiB  
Review
Breaking Barriers with Sound: The Implementation of Histotripsy in Cancer
by Ashutosh P. Raman, Parker L. Kotlarz, Alexis E. Giff, Katherine A. Goundry, Paul Laeseke, Erica M. Knavel Koepsel, Mosa Alhamami and Dania Daye
Cancers 2025, 17(15), 2548; https://doi.org/10.3390/cancers17152548 - 1 Aug 2025
Viewed by 334
Abstract
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and [...] Read more.
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and precisely destroy targeted tissue in a predefined volume while sparing critical structures like bile ducts, ureters, and blood vessels. Such precision is of value when treating tumors near vital structures. The FDA has cleared histotripsy for the treatment of all liver tumors. Major medical centers are currently spearheading clinical trials, and some institutions have already integrated the technology into patient care. Histotripsy is now being studied for a host of other cancers, including primary kidney and pancreatic tumors. Preclinical murine and porcine models have already revealed promising outcomes. One of histotripsy’s primary advantages is its non-thermal mechanical actuation. This feature allows it to circumvent the limitations of heat-based techniques, including the heat sink effect and unpredictable treatment margins near sensitive tissues. In addition to its non-invasive ablative capacities, it is being preliminarily explored for its potential to induce immunomodulation and promote abscopal inhibition of distant, untreated tumors through CD8+ T cell responses. Thus, it may provide a multilayered therapeutic effect in the treatment of cancer. Histotripsy has the potential to improve precision and outcomes across a multitude of specialties, from oncology to cardiovascular medicine. Continued trials are crucial to further expand its applications and validate its long-term efficacy. Due to the speed of recent developments, the goal of this review is to provide a comprehensive and updated overview of histotripsy. It will explore its physics-based mechanisms, differentiating it from similar technologies, discuss its clinical applications, and examine its advantages, limitations, and future. Full article
Show Figures

Figure 1

20 pages, 1383 KiB  
Review
The Multifaceted Role of miR-211 in Health and Disease
by Juan Rayo Parra, Zachary Grand, Gabriel Gonzalez, Ranjan Perera, Dipendra Pandeya, Tracey Weiler and Prem Chapagain
Biomolecules 2025, 15(8), 1109; https://doi.org/10.3390/biom15081109 - 1 Aug 2025
Viewed by 246
Abstract
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor [...] Read more.
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor suppressor and oncogene. In physiological contexts, miR-211 regulates cell cycle progression, metabolism, and differentiation through the modulation of key signaling pathways, including TGF-β/SMAD and PI3K/AKT. miR-211 participates in retinal development, bone physiology, and protection against renal ischemia–reperfusion injury. In pathological conditions, miR-211 expression is altered in various diseases, particularly cancer, where it may be a useful diagnostic and prognostic biomarker. Its stability in serum and differential expression in various cancer types make it a promising candidate for non-invasive diagnostics. The review also explores miR-211’s therapeutic potential, discussing both challenges and opportunities in developing miRNA-based treatments. Understanding miR-211’s complex regulatory interactions and context-dependent functions is crucial for advancing its clinical applications for diagnosis, prognosis, and targeted therapy in multiple diseases. Full article
(This article belongs to the Special Issue DNA Damage, Mutagenesis, and Repair Mechanisms)
Show Figures

Figure 1

25 pages, 5899 KiB  
Review
Non-Invasive Medical Imaging in the Evaluation of Composite Scaffolds in Tissue Engineering: Methods, Challenges, and Future Directions
by Samira Farjaminejad, Rosana Farjaminejad, Pedram Sotoudehbagha and Mehdi Razavi
J. Compos. Sci. 2025, 9(8), 400; https://doi.org/10.3390/jcs9080400 - 1 Aug 2025
Viewed by 281
Abstract
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities [...] Read more.
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities capable of monitoring scaffold integration, degradation, and tissue regeneration in real-time has become critical. This review summarizes current non-invasive imaging techniques used to evaluate tissue-engineered constructs, including optical methods such as near-infrared fluorescence imaging (NIR), optical coherence tomography (OCT), and photoacoustic imaging (PAI); magnetic resonance imaging (MRI); X-ray-based approaches like computed tomography (CT); and ultrasound-based modalities. It discusses the unique advantages and limitations of each modality. Finally, the review identifies major challenges—including limited imaging depth, resolution trade-offs, and regulatory hurdles—and proposes future directions to enhance translational readiness and clinical adoption of imaging-guided tissue engineering (TE). Emerging prospects such as multimodal platforms and artificial intelligence (AI) assisted image analysis hold promise for improving precision, scalability, and clinical relevance in scaffold monitoring. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

15 pages, 3443 KiB  
Article
Evaluating the Potential of Cuscuta japonica as Biological Control Agent for Derris trifoliata Management in Mangrove Forests
by Huiying Wu, Yunhong Xue and Wenai Liu
Forests 2025, 16(8), 1250; https://doi.org/10.3390/f16081250 - 1 Aug 2025
Viewed by 187
Abstract
Climbing vines have recently induced increasing threats to forest growth under favourable environmental changes. In mangrove forests, the native vine Derris trifoliata became invasive and is now one of the main threats. Yet current management relies on manual removal with low efficiency. Exploring [...] Read more.
Climbing vines have recently induced increasing threats to forest growth under favourable environmental changes. In mangrove forests, the native vine Derris trifoliata became invasive and is now one of the main threats. Yet current management relies on manual removal with low efficiency. Exploring an alternative, cost-effective method is required. To assess the potential of a proposed biological control method, this study performed a pot-plant experiment using Cuscuta japonica to infect D. trifoliata and three common mangrove species in Beihai, China. Results showed that D. trifoliata had a higher infection rate and high host mortality (90%) than mangrove (0%). It also had significantly decreased moisture by 4%, nitrogen by 14%, phosphorus by 27%, potassium by 49% and increased soluble sugar by 49% and protein by 20%, whereas only moisture (2% reduction) and one or two minerals of Excoecaria agallocha and Aegiceras corniculatum were influenced. Only Kandelia obovata had neither effective haustoria nor any nutrients impact from the infection. This study indicated that C. japonica can cause more damage to D. trifoliata than to mangrove species and has the potential to be used as a biological control agent for the threatened mangrove forests of A. corniculatum and K. obovata with monitoring and control. Further field tests are required to bring this method into practice. Full article
(This article belongs to the Special Issue Forest Invasive Species: Distribution, Control and Management)
Show Figures

Figure 1

25 pages, 573 KiB  
Review
Challenges and Opportunities in Using Fish Metrics for Reservoir Water Quality Evaluation
by Alexandre Moreira, Sara Rodrigues, Lucas Ferreira, Nuno E. Formigo and Sara C. Antunes
Water 2025, 17(15), 2274; https://doi.org/10.3390/w17152274 - 30 Jul 2025
Viewed by 303
Abstract
The Water Framework Directive (WFD) was designed to protect the quality of all water resources. For reservoirs, the ecological potential classification assesses biological parameters, evaluating only the phytoplankton community. Thus, this study aimed to evaluate the effectiveness of using fish communities to determine [...] Read more.
The Water Framework Directive (WFD) was designed to protect the quality of all water resources. For reservoirs, the ecological potential classification assesses biological parameters, evaluating only the phytoplankton community. Thus, this study aimed to evaluate the effectiveness of using fish communities to determine water quality in reservoirs. A literature review was conducted to gather information on how fish community data were integrated into reservoir water quality assessment under the WFD. This work includes an exploratory case study of the Aguieira Reservoir (Portugal), evaluating the ichthyofauna community, along with physical, chemical, and biological assessment of the water. The results of the review show that fish abundance and composition (sensitive metrics) should be used to develop ecological indices for assessing water quality in reservoirs. However, the effects of anthropogenic pressures and invasive species are not included in the calculation of most proposed indices. The case study serves as an illustrative example and demonstrates low abundance and composition of the fish community with a high percentage of invasive species, revealing a poor water quality, regarding ichthyofauna biotic index results (F-IBIP). Nevertheless, including these metrics in the classification of ecological potential can help guide restoration strategies to mitigate the effects of anthropogenic pressures. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

23 pages, 882 KiB  
Review
Toward Precision Medicine: Molecular Biomarkers of Response to Tofacitinib in Inflammatory Bowel Disease
by Anja Bizjak, Boris Gole, Gregor Jezernik, Uroš Potočnik and Mario Gorenjak
Genes 2025, 16(8), 908; https://doi.org/10.3390/genes16080908 - 29 Jul 2025
Viewed by 292
Abstract
Ulcerative colitis (UC), a subtype of inflammatory bowel disease (IBD), is a chronic, relapsing inflammatory condition that significantly impairs the patient’s quality of life. While biologics have transformed disease management, a substantial number of patients remain unresponsive or lose efficacy over time. Tofacitinib [...] Read more.
Ulcerative colitis (UC), a subtype of inflammatory bowel disease (IBD), is a chronic, relapsing inflammatory condition that significantly impairs the patient’s quality of life. While biologics have transformed disease management, a substantial number of patients remain unresponsive or lose efficacy over time. Tofacitinib (TOFA), an oral Janus kinase (JAK) inhibitor, introduces a novel therapeutic class of small-molecule drugs with a unique oral administration route, offering enhanced patient convenience and broader accessibility compared to parenterally administered biologics. As the first oral treatment approved for moderate to severe UC in years, TOFA acts by modulating the JAK/STAT pathway, influencing critical inflammatory mediators such as IL-6, IL-17, and IFN-γ. However, response rates are variable and appear dose-dependent, with up to 60% of patients showing inadequate therapeutic outcomes. This review represents the first comprehensive synthesis focused specifically on biomarkers of TOFA response in UC. Drawing on multi-omics data—epigenomics, transcriptomics, proteomics, and cellular profiling, we highlight emerging predictors of responsiveness, including CpG methylation signatures (e.g., LRPAP1 and FGFR2), transcriptomic regulators (e.g., REG3A and CLDN3), immune and epithelial cell shifts, and the cationic transporter MATE1. TOFA demonstrates a dual mechanism by modulating immune responses while supporting epithelial barrier restoration. Despite being promising, TOFA’s dose-dependent efficacy and interpatient variability underscore the critical need for non-invasive, predictive biomarkers to guide personalized treatment. As the first review of its kind, this work establishes a basis for precision medicine approaches to optimize the clinical utility of TOFA in UC management. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

12 pages, 1398 KiB  
Article
Flight Phenology of Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) in Its Native Range: A Baseline for Managing an Emerging Invasive Pest
by Claudia Alzate, Eduardo Soares Calixto and Silvana V. Paula-Moraes
Insects 2025, 16(8), 779; https://doi.org/10.3390/insects16080779 - 29 Jul 2025
Viewed by 288
Abstract
Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) is an important pest with a broad host range and growing relevance due to its high dispersal capacity, recent invasions into Africa and Asia, and documented resistance to biological insecticides. Here, we assessed S. eridania flight phenology [...] Read more.
Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) is an important pest with a broad host range and growing relevance due to its high dispersal capacity, recent invasions into Africa and Asia, and documented resistance to biological insecticides. Here, we assessed S. eridania flight phenology and seasonal dynamics in the Florida Panhandle, using pheromone trapping data to evaluate population trends and environmental drivers. Moths were collected year-round, showing consistent patterns across six consecutive years, including two distinct annual flight peaks: an early crop season flight around March, and a more prominent flight peak during September–October. Moth abundance followed a negative quadratic relationship with temperature, with peak activity occurring between 15 °C and 26 °C. No significant relationship was found with precipitation or wind. These results underscore the strong influence of abiotic factors, particularly temperature, on seasonal abundance patterns of this species. Our findings offer key insights by identifying predictable periods of high pest pressure and the environmental conditions that drive population increases. Understanding the flight phenology and behavior of this species provides an ultimate contribution to the development of effective IPM and insect resistance management (IRM) programs, promoting the development of forecasting tools for more effective, timely pest management interventions. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Graphical abstract

16 pages, 6112 KiB  
Article
The Olfactory System of Dolichogenidea gelechiidivoris (Marsh) (Hymenoptera: Braconidae), a Natural Enemy of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)
by Shu-Yan Yan, He-Sen Yang, Cong Huang, Gui-Fen Zhang, Judit Arnó, Jana Collatz, Chuan-Ren Li, Fang-Hao Wan, Wan-Xue Liu and Yi-Bo Zhang
Int. J. Mol. Sci. 2025, 26(15), 7312; https://doi.org/10.3390/ijms26157312 - 29 Jul 2025
Viewed by 228
Abstract
The parasitoid wasp Dolichogenidea gelechiidivoris is a key koinobiont solitary endoparasitoid of the invasive agricultural pest Tuta absoluta. This study investigates both the morphological and molecular foundations of sex-specific olfactory differentiation in this species. Morphological analysis revealed that males possess significantly longer [...] Read more.
The parasitoid wasp Dolichogenidea gelechiidivoris is a key koinobiont solitary endoparasitoid of the invasive agricultural pest Tuta absoluta. This study investigates both the morphological and molecular foundations of sex-specific olfactory differentiation in this species. Morphological analysis revealed that males possess significantly longer antennae (2880.8 ± 20.36 μm) than females (2137.23 ± 43.47 μm), demonstrating pronounced sexual dimorphism. Scanning electron microscopy identified similar sensilla types on both sexes, but differences existed in the length and diameter of specific sensilla. Transcriptomic analysis of adult antennae uncovered molecular differentiation, identifying 11 odorant-binding proteins (OBPs) and 20 odorant receptors (ORs), with 27 chemosensory genes upregulated in females and 4 enriched in males. Integrating morphological and molecular evidence demonstrates complementary sexual specialization in the olfactory apparatus of D. gelechiidivoris. Linking these findings to the potential functions of different sensilla types, as discussed in the context of prior research, provides crucial insights into the sex-specific use of volatile cues. These findings provide critical insights into the use of volatile signals in this highly relevant species for biological control targeting T. absoluta. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

9 pages, 464 KiB  
Review
Photobiomodulation as a Hypothetical Strategy to Reverse Botulinum Toxin Effects: Exploring the Neuroregenerative Mechanisms and Translational Potential
by Rodrigo Álvaro Brandão Lopes-Martins, Francisco Gonzalez-Lima, Sérgio Gomes da Silva, Patrícia Sardinha Leonardo, Cristiane Soncino, Roberto Fernandes Pacheco, Carolina Lúcia de Oliveira e Oliveira and Fabrizio dos Santos Cardoso
Life 2025, 15(8), 1206; https://doi.org/10.3390/life15081206 - 28 Jul 2025
Viewed by 355
Abstract
Background: Botulinum toxin type A (BoNT/A) is widely used in both clinical and aesthetic settings to induce temporary neuromuscular paralysis by inhibiting acetylcholine release. Although generally regarded as safe and effective, complications such as iatrogenic ptosis or facial asymmetry may occur and persist [...] Read more.
Background: Botulinum toxin type A (BoNT/A) is widely used in both clinical and aesthetic settings to induce temporary neuromuscular paralysis by inhibiting acetylcholine release. Although generally regarded as safe and effective, complications such as iatrogenic ptosis or facial asymmetry may occur and persist for several weeks or even months, with no standardized method currently available to accelerate recovery. Objective: This article explores the hypothesis that photobiomodulation (PBM)—a non-invasive modality recognized for its neuroregenerative potential—may facilitate the reversal of BoNT/A-induced neuromuscular blockade. Discussion: PBM enhances mitochondrial activity by stimulating cytochrome c oxidase in nerve and muscle tissues, thereby increasing ATP production and modulating intracellular signaling pathways associated with neuroplasticity, cell survival, and synaptogenesis. Preclinical studies have demonstrated that PBM can upregulate neurotrophic factors (e.g., BDNF, NGF), enhance SNAP-25 expression, and promote structural remodeling of neurons in both young and aged brains. These mechanisms are biologically consistent with the regenerative processes required for recovery from BoNT/A-induced effects. While controlled clinical trials for this specific application are currently lacking, anecdotal clinical reports suggest that PBM may accelerate functional recovery in cases of BoNT/A-related complications. Conclusions: Although this approach has not yet been tested in clinical trials, we propose that photobiomodulation may hypothetically serve as a supportive strategy to promote neuromuscular recovery in patients experiencing adverse effects from BoNT/A. This hypothesis is grounded in robust preclinical evidence but requires validation through translational and clinical research. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

Back to TopTop