Genetic Diversity and Population Differentiation of Farmed Nile Tilapia (Oreochromis niloticus Linnaeus, 1758) to Advance Selective Breeding in Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Sampling Sites
2.2. Sample Collection
2.3. Genotyping of Samples
2.4. Sequence Analysis, Genotyping, and Allele Calling
2.5. Population Genetics
3. Results
3.1. Genetic Diversity of the O. niloticus Populations
3.2. Population Differentiation and Hierarchical Clustering
3.3. Genetic Structure and Signs of Admixture Among the Farmed O. niloticus Populations
4. Discussion
4.1. Genetic Diversity of the Farmed O. niloticus Populations
4.2. Population Structure and Differentiation Patterns
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guillen, J.; Asche, F.; Borriello, A.; Carvalho, N.; Druon, J.-N.; Garlock, T.; Llorente, I.; Macias, D. What is happening to the European Union aquaculture production? Investigating its stagnation and sustainability. Aquaculture 2025, 596, 741793. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2024. Blue Transformation in Action. Rome. Available online: https://doi.org/10.4060/cd0683en (accessed on 8 January 2024).
- Musinguzi, L.; Lugya, J.; Rwezawula, P.; Kamya, A.; Nuwahereza, C.; Halafo, J.; Kamondo, S.; Njaya, F.; Aura, C.; Shoko, A.P.; et al. The extent of cage aquaculture, adherence to best practices and reflections for sustainable aquaculture on African inland waters. J. Great Lakes Res. 2019, 45, 1340–1347. [Google Scholar] [CrossRef]
- Rutaisire, J.; Nandi, S.; Sundaray, J.K. A review of Uganda and India’s freshwater aquaculture: Key practices and experience from each country. J. Ecol. Nat. Environ. 2017, 9, 15–29. [Google Scholar]
- Abaho, I.; Kwikiriza, G.; Atukwatse, F.; Izaara, A.A.; Ekwangu, J.; Baguma, S.D.; Kubiriba, J.; Kasozi, N. Selective Breeding for Genetic Improvement of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) in Uganda: Current Status, Challenges, and Future Perspectives. Animals 2025, 15, 142. [Google Scholar] [CrossRef]
- Morelos-Castro, R.M.; Aparicio-Simón, B.; García-Morales, R.; Cruz-Hernández, P.; Campos-Ramos, R.; Espinosa-Chaurand, D.; Garza-Torres, R.; Maeda-Martínez, A.N. Exploring the presence of tilapia species in a central western Mexican reservoir using mitochondrial DNA control region sequencing. Lat. Am. J. Aquat. Res. 2024, 52, 575–585. [Google Scholar] [CrossRef]
- Obiero, K.; Meulenbroek, P.; Drexler, S.; Dagne, A.; Akoll, P.; Odong, R.; Kaunda-Arara, B.; Waidbacher, H. The Contribution of Fish to Food and Nutrition Security in Eastern Africa: Emerging Trends and Future Outlooks. Sustainability 2019, 11, 1636. [Google Scholar] [CrossRef]
- Matthew, M.T.; Godfrey, K.; Phyllis, A.; James, K.; Michael, S.M.; Victoria, N. Growth performance evaluation of four wild strains and one current farmed strain of Nile tilapia in Uganda. Int. J. Fish. Aquat. Stud. 2016, 4, 594–598. [Google Scholar]
- Moses, M.; Chauka, L.J.; de Koning, D.J.; Palaiokostas, C.; Mtolera, M.S. Growth performance of five different strains of Nile tilapia (Oreochromis niloticus) introduced to Tanzania reared in fresh and brackish waters. Sci. Rep. 2021, 11, 11147. [Google Scholar] [CrossRef]
- Lind, C.E.; Agyakwah, S.K.; Attipoe, F.Y.; Nugent, C.; Crooijmans, R.P.M.A.; Toguyeni, A. Genetic diversity of Nile tilapia (Oreochromis niloticus) throughout West Africa. Sci. Rep. 2019, 9, 16767. [Google Scholar] [CrossRef]
- Sanda, M.K. Genetic Variation in Wild and Farmed Tilapia and Catfish in Nigeria. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2024. [Google Scholar]
- Tibihika, P.D.; Curto, M.; Alemayehu, E.; Waidbacher, H.; Masembe, C.; Akoll, P.; Meimberg, H. Molecular genetic diversity and differentiation of Nile tilapia (Oreochromis niloticus, L. 1758) in East African natural and stocked populations. BMC Evol. Biol. 2020, 20, 16. [Google Scholar] [CrossRef] [PubMed]
- Mwanja, M.; Ondhoro, C.; Sserwada, M.; Achieng, P.; Ddungu, R.; Mwanja, W. Morphological variation of Nile tilapia populations from major water bodies of Uganda. Uganda J. Agric. Sci. 2016, 17, 21–32. [Google Scholar] [CrossRef]
- Kwikiriza, G.; Yegon, M.J.; Byamugisha, N.; Beingana, A.; Atukwatse, F.; Barekye, A.; Nattabi, J.K.; Meimberg, H. Morphometric Variations of Nile Tilapia (Oreochromis niloticus) (Linnaeus, 1758) Local Strains Collected from Different Fish Farms in South Western Highland Agro-Ecological Zone (SWHAEZ), Uganda: Screening Strains for Aquaculture. Fishes 2023, 8, 217. [Google Scholar] [CrossRef]
- Robledo, D.; Ogwang, J.; Byakora, E.; Nascimento-Schulze, J.C.; Benda, K.K.; Fraslin, C.; Salisbury, S.; Solimo, M.; Mayega, J.F.; Peter, B.; et al. Genetic diversity and population structure of farmed and wild Nile tilapia (Oreochromis niloticus) in Uganda: The potential for aquaculture selection and breeding programs. Genomics 2024, 116, 110781. [Google Scholar] [CrossRef]
- Agnèse, J.F.; Adépo-Gourène, B.; Abban, E.K.; Fermon, Y. Genetic differentiation among natural populations of the Nile tilapia Oreochromis niloticus (Teleostei, Cichlidae). Heredity 1997, 79, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Tibihika, P.D.; Curto, M.; Dornstauder-Schrammel, E.; Winter, S.; Alemayehu, E.; Waidbacher, H.; Meimberg, H. Application of microsatellite genotyping by sequencing (SSR-GBS) to measure genetic diversity of the East African Oreochromis niloticus. Conserv. Genet. 2019, 20, 357–372. [Google Scholar] [CrossRef]
- Schlötterer, C. Evolutionary dynamics of microsatellite DNA. Chromosoma 2000, 109, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Kariuki, J.; Tibihika, P.D.; Curto, M.; Alemayehu, E.; Winkler, G.; Meimberg, H. Application of microsatellite genotyping by amplicon sequencing for delimitation of African tilapiine species relevant for aquaculture. Aquaculture 2021, 537, 736501. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Curto, M.; Winter, S.; Seiter, A.; Schmid, L.; Scheicher, K.; Barthel, L.M.; Plass, J.; Meimberg, H. Application of a SSR-GBS marker system on investigation of European Hedgehog species and their hybrid zone dynamics. Ecol. Evol. 2019, 9, 2814–2832. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.O.D.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Schneider, S.; Roessli, D.; Excoffier, L. Arlequin Ver. 2.000. A Software for Population Genetics Data Analysis; Genetics and Biometry Laboratory, University of Geneva: Geneva, Switzerland, 2000. [Google Scholar]
- Langella, O. Populations 1.2. 28: A Population Genetic Software. Available online: http://www.pge.cnrs-gif.fr/bioinfo/populations/index.php (accessed on 20 November 2024).
- Hubisz, M.J.; Falush, D.; Stephens, M.; Pritchard, J.K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 2009, 9, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Liu, J.X. Structure Selector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 2018, 18, 176–177. [Google Scholar] [CrossRef]
- Hassanien, H.A.; Gilbey, J. Genetic diversity and differentiation of Nile tilapia (Oreochromis niloticus) revealed by DNA microsatellites. Aquac. Res. 2005, 36, 1450–1457. [Google Scholar] [CrossRef]
- Milano, I.; Babbucci, M.; Cariani, A.; Atanassova, M.; Bekkevold, D.; Carvalho, G.R.; Espiñeira, M.; Fiorentino, F.; Garofalo, G.; Geffen, A.J.; et al. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius). Mol. Ecol. 2014, 23, 118–135. [Google Scholar] [CrossRef] [PubMed]
- Mamoon, A.; Ismail, M.; Awad, S.T.; Ali, F.S. Investigating Nuclear DNA Microsatellites in the Nile Tilapia (Oreochromis niloticus): Insights into Association Genetics. Egypt. J. Aquat. Biol. Fish. 2024, 28, 661–675. [Google Scholar] [CrossRef]
- Allendorf, F.W. Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol. 1986, 5, 181–190. [Google Scholar] [CrossRef]
- Kajungiro, R.A.; Palaiokostas, C.; Pinto, F.A.L.; Mmochi, A.J.; Mtolera, M.; Houston, R.D.; De Koning, D.J. Population structure and genetic diversity of Nile tilapia (Oreochromis niloticus) strains cultured in Tanzania. Front Genet. 2019, 10, 450642. [Google Scholar] [CrossRef]
- Gu, D.E.; Luo, D.; Xu, M.; Ma, G.M.; Mu, X.D.; Luo, J.R.; Hu, Y.C. Species diversity defends against the invasion of Nile tilapia (Oreochromis niloticus). Knowl. Manag. Aquat. Ecosyst. 2014, 414, 07. [Google Scholar] [CrossRef]
- Geletu, T.T.; Tang, S.; Zhao, J. Genetic diversity and differentiation of cultured Nile tilapia populations from Ethiopia revealed by ddRAD-seq: Implications for better hatchery management. Aquat. Living Resour. 2025, 38, 2. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Hordofa, B.; Meressa, B.H.; Tamiru, M. Population structure and genetic diversity of Nile tilapia (Oreochromis niloticus) using microsatellite markers from selected water bodies in southwest Ethiopia. Vet. Med. Sci. 2023, 9, 2095–2106. [Google Scholar] [CrossRef] [PubMed]
- Moses, M.; Mtolera, M.S.P.; Chauka, L.J.; Lopes, F.A.; De Koning, D.J.; Houston, R.D.; Palaiokostas, C. Characterizing the genetic structure of introduced Nile tilapia (Oreochromis niloticus) strains in Tanzania using double digest RAD sequencing. Aquac. Int. 2020, 28, 477–492. [Google Scholar] [CrossRef]
- Villanueva, B.; Fernández, A.; Peiró-Pastor, R.; Peñaloza, C.; Houston, R.D.; Sonesson, A.K.; Tsigenopoulos, C.S.; Bargelloni, L.; Gamsız, K.; Karahan, B.; et al. Population structure and genetic variability in wild and farmed Mediterranean populations of gilthead seabream and European seabass inferred from a 60K combined species SNP array. Aquac. Rep. 2022, 24, 101145. [Google Scholar] [CrossRef]
- Diyie, R.L.; Agyarkwa, S.; Armah, E.; Amonoo, N.A.; Owusu-Frimpong, I.; Osei-Atweneboana, M.Y. Genetic variations among different generations and cultured populations of Nile Tilapia (Oreochromis niloticus) in Ghana: Application of microsatellite markers. Aquaculture 2021, 544, 737070. [Google Scholar] [CrossRef]
- Megahed, M.E. Genetic selection for improved disease resistance in aquaculture with special reference to shrimp and tilapia breeding programs in Egypt. J. Appl. Aquac. 2020, 32, 291–340. [Google Scholar] [CrossRef]
- Yoshida, G.M.; Barria, A.; Correa, K.; Cáceres, G.; Jedlicki, A.; Cadiz, M.I.; Lhorente, J.P.; Yáñez, J.M. Genome-wide patterns of population structure and linkage disequilibrium in farmed Nile tilapia (Oreochromis niloticus). Front. Genet. 2019, 10, 745. [Google Scholar] [CrossRef]
- Kliman, R.; Sheehy, B.; Schultz, J. Genetic Drift and Effective Population Size. Nat. Educ. 2008, 1, 3. [Google Scholar]
- Bernos, T.A.; Avlijaš, S.; Hill, J.; Morissette, O.; Ricciardi, A.; Mandrak, N.E.; Jeffries, K.M. Genetic diversity and structure of a recent fish invasion: Tench (Tinca tinca) in eastern North America. Evol. Appl. 2022, 16, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Allendorf, F.W.; Hössjer, O.; Ryman, N. What does effective population size tell us about loss of allelic variation? Evol. Appl. 2024, 17, e13733. [Google Scholar] [CrossRef]
- Mbiru, M.; Limbu, S.M.; Chenyambuga, S.W.; Lamtane, H.A.; Tamatamah, R.; Madalla, N.A.; Mwandya, A.W. Comparative performance of mixed-sex and hormonal-sex-reversed Nile tilapia Oreochromis niloticus and hybrids (Oreochromis niloticus × Oreochromis urolepis hornorum) cultured in concrete tanks. Aquac. Int. 2016, 24, 557–566. [Google Scholar] [CrossRef]
- Holsinger, K.E.; Weir, B.S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 2009, 10, 639–650. [Google Scholar] [CrossRef]
- O’connell, M.; Wright, J.M. Microsatellite DNA in fishes. Rev. Fish Biol. Fish. 1997, 7, 331–363. [Google Scholar] [CrossRef]
- Mireku, K.K.; Kassam, D.; Changadeya, W.; Attipoe, F.Y.; Adinortey, C.A. Assessment of genetic variations of Nile Tilapia (Oreochromis niloticus L.) in the Volta Lake of Ghana using microsatellite markers. Afr. J. Biotechnol. 2016, 16, 312–321. [Google Scholar] [CrossRef]
- Mpangwire, V.; Musiita, B.; Akisimire, R. The Role of Operation Wealth Creation (OWC) Program on Diary Farmers in Mbarara District-A Descriptive Perspective. J. Econ. Behav. Stud. 2023, 15, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Fagbémi, M.N.A.; Pigneur, L.M.; André, A.; Smitz, N.; Gennotte, V.; Michaux, J.R.; Mélard, C.; Lalèyè, P.A.; Rougeot, C. Genetic structure of wild and farmed Nile tilapia (Oreochromis niloticus) populations in Benin based on genome wide SNP technology. Aquaculture 2021, 535, 736432. [Google Scholar] [CrossRef]
- El-Sayed, A.F.M. On-farm feed management practices for Nile tilapia (Oreochromis niloticus) in Egypt. In On-Farm Feeding and Feed Management in Aquaculture; Hasan, M.R., New, M.B., Eds.; FAO Fisheries and Aquaculture Technical Paper No. 583; FAO: Rome, Italy, 2013; pp. 101–129. [Google Scholar]
- McKinna, E.M.; Nandlal, S.; Mather, P.B.; Hurwood, D.A. An investigation of the possible causes for the loss of productivity in genetically improved farmed tilapia strain in Fiji: Inbreeding versus wild stock introgression. Aquac. Res. 2010, 41, e730–e742. [Google Scholar] [CrossRef]
Site | Region | Source | Code | Collected Samples | Analysed Samples | Latitude | Longitude |
---|---|---|---|---|---|---|---|
Rukikaire farm | South Western | Ponds | RUK | 29 | 29 | 0°48′01″ S | 29°54′57″ E |
Rural Aqua Devt | South Western | RAD | 25 | 21 | 0°47′38″ S | 29°55′03″ E | |
Mapema | South Western | MKN | 31 | 22 | 0°36′4′′ S | 30°38′5′′ E | |
Kambuga | South Western | KZN | 35 | 31 | 0°48′48′′ N | 29°48′02′′ E | |
Kabonera | Central | KKN | 26 | 25 | 0°26′42′′ S | 31°40′53′′ E | |
Central | KAF | 28 | 28 | 0°26′42′′ S | 31°40′53′′ E | ||
Lusalosalo | Central | LN | 37 | 35 | 0°40′28′′ S | 31°28′28′′ E | |
Kyanamira | South Western | Hatchery | KachVic | 23 | 23 | 1°15′50″ S | 30°1′58″ E |
South Western | KachKyo | 23 | 19 | 1°15′50″ S | 30°1`58″ E | ||
Kawuku | Central | PN | 35 | 31 | 0°8′47′′ N | 32°31′36′′ E | |
Rocks | Eastern | Rocks | 20 | 19 | 0°65′81′′ N | 34°18′25′′ E | |
Tendo | Central | TN | 36 | 30 | 0°3′3′′ N | 32°33′29′′ E | |
GARUGA | Central | Wild | GN | 30 | 30 | 0°2′54′′ N | 32°33′24′′ E |
Kashenyi | Central | KSN | 22 | 21 | 0°3′15′′ N | 32°31′15′′ E | |
Gaba | Central | GBN | 18 | 18 | 0°15′28′′ N | 32°38′13′′ E | |
BAWE | Central | Cages | BN | 22 | 22 | 0°3′50′′ N | 32°33′31′′ E |
Pal | Central | Pal | 20 | 19 | 0°05′50′′ N | 32°55′43′′ E | |
Busana | Central | Busana | 20 | 19 | 0°35′53″ S | 32°27′03″ E | |
Katosi | Central | Katosi | 20 | 19 | 0°08′21″ N | 32°47′39″ E | |
SON | Eastern | SON | 20 | 19 | 0°40′44′′ N | 32°20′37′′ E |
Population | Source | N | Na | Ne | Ho | He | F |
---|---|---|---|---|---|---|---|
Pal | Cages | 14.33 ± 1.16 | 5.67 ± 0.61 | 3.40 ± 0.39 | 0.47 ± 0.05 | 0.57 ± 0.05 | 0.18 ± 0.05 |
SON | 14.33 ± 1.15 | 3.69 ± 0.48 | 2.22 ± 0.30 | 0.35 ± 0.05 | 0.39 ± 0.05 | 0.08 ± 0.04 | |
Busana | 13.42 ± 1.16 | 5.56 ± 0.60 | 3.34 ± 0.42 | 0.44 ± 0.05 | 0.54 ± 0.05 | 0.19 ± 0.04 | |
Katosi | 13.64 ± 1.20 | 3.69 ± 0.57 | 2.28 ± 0.37 | 0.30 ± 0.05 | 0.36 ± 0.06 | 0.12 ± 0.04 | |
BAWE | 20.39 ± 0.81 | 6.64 ± 0.50 | 3.80 ± 0.30 | 0.52 ± 0.04 | 0.65 ± 0.04 | 0.19 ± 0.04 | |
Rocks | Hatchery | 13.78 ± 1.12 | 4.25 ± 0.58 | 2.66 ± 0.41 | 0.36 ± 0.05 | 0.41 ± 0.06 | 0.09 ± 0.04 |
Kawuku | 30.17 ± 0.46 | 6.22 ± 0.63 | 3.04 ± 0.34 | 0.43 ± 0.05 | 0.49 ± 0.05 | 0.10 ± 0.04 | |
Tendo | 29.22 ± 0.33 | 7.17 ± 0.53 | 3.94 ± 0.28 | 0.58 ± 0.04 | 0.67 ± 0.03 | 0.14 ± 0.05 | |
KachVic | 21.94 ± 0.40 | 6.61 ± 0.64 | 3.37 ± 0.38 | 0.44 ± 0.04 | 0.57 ± 0.04 | 0.18 ± 0.04 | |
KachKyo | 17.89 ± 0.42 | 4.56 ± 0.46 | 2.66 ± 0.27 | 0.44 ± 0.05 | 0.47 ± 0.05 | 0.05 ± 0.04 | |
Garuga | Wild | 28.58 ± 0.62 | 5.08 ± 0.49 | 2.75 ± 0.31 | 0.40 ± 0.04 | 0.48 ± 0.05 | 0.12 ± 0.04 |
Kashenyi | 19.75 ± 0.54 | 4.81 ± 0.45 | 2.63 ± 0.26 | 0.39 ± 0.05 | 0.47 ± 0.05 | 0.16 ± 0.05 | |
Gaba | 17.08 ± 0.44 | 5.22 ± 0.50 | 2.75 ± 0.27 | 0.44 ± 0.05 | 0.49 ± 0.05 | 0.07 ± 0.05 | |
Mapema | Ponds | 21.00 ± 0.46 | 5.31 ± 0.55 | 2.93 ± 0.37 | 0.40 ± 0.05 | 0.48 ± 0.05 | 0.13 ± 0.05 |
Kabonera | 23.19 ± 0.79 | 5.17 ± 0.57 | 2.82 ± 0.31 | 0.38 ± 0.05 | 0.47 ± 0.05 | 0.15 ± 0.06 | |
KAF | 25.83 ± 0.99 | 4.39 ± 0.48 | 2.59 ± 0.30 | 0.42 ± 0.06 | 0.43 ± 0.05 | 0.01 ± 0.05 | |
Rukikaire | 28.47 ± 0.32 | 6.14 ± 0.65 | 3.17 ± 0.37 | 0.44 ± 0.05 | 0.51 ± 0.05 | 0.12 ± 0.05 | |
RAD | 20.08 ± 0.34 | 4.11 ± 0.41 | 2.60 ± 0.27 | 0.43 ± 0.05 | 0.46 ± 0.05 | 0.07 ± 0.05 | |
Kambuga | 29.64 ± 0.74 | 6.28 ± 0.66 | 2.98 ± 0.34 | 0.41 ± 0.05 | 0.50 ± 0.05 | 0.12 ± 0.04 | |
Lusalosalo | 32.36 ± 1.24 | 6.75 ± 0.75 | 3.21 ± 0.43 | 0.41 ± 0.05 | 0.50 ± 0.05 | 0.16 ± 0.04 | |
Total average | 21.76 ± 0.29 | 5.37 ± 0.13 | 2.96 ± 0.08 | 0.42 ± 0.01 | 0.50 ± 0.01 | 0.12 ± 0.01 |
Pal | SON | Busana | Rocks | Katosi | BN | PN | TN | GN | KSN | GBN | KachVic | KachKyo | MKN | KKN | KAF | RUK | RAD | KZN | LN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | Pal | |||||||||||||||||||
0.29 | 0.00 | SON | ||||||||||||||||||
0.22 | 0.30 | 0.00 | Busana | |||||||||||||||||
0.29 | 0.20 | 0.30 | 0.00 | Rocks | ||||||||||||||||
0.31 | 0.21 | 0.32 | 0.19 | 0.00 | Katosi | |||||||||||||||
0.28 | 0.36 | 0.30 | 0.34 | 0.36 | 0.00 | BN | ||||||||||||||
0.35 | 0.43 | 0.37 | 0.41 | 0.44 | 0.16 | 0.00 | PN | |||||||||||||
0.26 | 0.34 | 0.28 | 0.32 | 0.35 | 0.02 | 0.13 | 0.00 | TN | ||||||||||||
0.35 | 0.44 | 0.37 | 0.42 | 0.44 | 0.18 | 0.03 | 0.14 | 0.00 | GN | |||||||||||
0.35 | 0.44 | 0.38 | 0.42 | 0.44 | 0.18 | 0.02 | 0.15 | 0.01 | 0.00 | KSN | ||||||||||
0.35 | 0.43 | 0.37 | 0.41 | 0.44 | 0.17 | 0.03 | 0.14 | 0.01 | 0.02 | 0.00 | GBN | |||||||||
0.31 | 0.39 | 0.33 | 0.38 | 0.40 | 0.14 | 0.04 | 0.11 | 0.03 | 0.04 | 0.03 | 0.00 | KachVic | ||||||||
0.36 | 0.44 | 0.38 | 0.43 | 0.45 | 0.18 | 0.02 | 0.15 | 0.03 | 0.03 | 0.03 | 0.04 | 0.00 | KachKyo | |||||||
0.35 | 0.44 | 0.38 | 0.42 | 0.45 | 0.17 | 0.02 | 0.14 | 0.03 | 0.03 | 0.02 | 0.04 | 0.03 | 0.00 | MKN | ||||||
0.36 | 0.44 | 0.38 | 0.42 | 0.45 | 0.18 | 0.03 | 0.15 | 0.03 | 0.03 | 0.03 | 0.05 | 0.05 | 0.03 | 0.00 | KKN | |||||
0.38 | 0.46 | 0.40 | 0.45 | 0.47 | 0.20 | 0.03 | 0.16 | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | 0.03 | 0.05 | 0.00 | KAF | ||||
0.34 | 0.42 | 0.36 | 0.40 | 0.43 | 0.16 | 0.01 | 0.13 | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.03 | 0.04 | 0.00 | RUK | |||
0.36 | 0.45 | 0.38 | 0.43 | 0.45 | 0.19 | 0.02 | 0.15 | 0.04 | 0.04 | 0.04 | 0.05 | 0.04 | 0.03 | 0.04 | 0.04 | 0.03 | 0.00 | RAD | ||
0.35 | 0.43 | 0.37 | 0.41 | 0.43 | 0.17 | 0.02 | 0.14 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.03 | 0.04 | 0.05 | 0.02 | 0.03 | 0.00 | KZN | |
0.35 | 0.43 | 0.37 | 0.41 | 0.44 | 0.18 | 0.03 | 0.14 | 0.05 | 0.04 | 0.04 | 0.05 | 0.05 | 0.03 | 0.04 | 0.06 | 0.03 | 0.04 | 0.04 | 0.00 | LN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwikiriza, G.; Abaho, I.; Tibihika, P.D.; Izaara, A.A.; Atukwatse, F.; Omara, T.; Nattabi, J.K.; Kasozi, N.; Curto, M.; Melcher, A.; et al. Genetic Diversity and Population Differentiation of Farmed Nile Tilapia (Oreochromis niloticus Linnaeus, 1758) to Advance Selective Breeding in Uganda. Diversity 2025, 17, 128. https://doi.org/10.3390/d17020128
Kwikiriza G, Abaho I, Tibihika PD, Izaara AA, Atukwatse F, Omara T, Nattabi JK, Kasozi N, Curto M, Melcher A, et al. Genetic Diversity and Population Differentiation of Farmed Nile Tilapia (Oreochromis niloticus Linnaeus, 1758) to Advance Selective Breeding in Uganda. Diversity. 2025; 17(2):128. https://doi.org/10.3390/d17020128
Chicago/Turabian StyleKwikiriza, Gerald, Ivan Abaho, Papius Dias Tibihika, Andrew A. Izaara, Faith Atukwatse, Timothy Omara, Juliet K. Nattabi, Nasser Kasozi, Manuel Curto, Andreas Melcher, and et al. 2025. "Genetic Diversity and Population Differentiation of Farmed Nile Tilapia (Oreochromis niloticus Linnaeus, 1758) to Advance Selective Breeding in Uganda" Diversity 17, no. 2: 128. https://doi.org/10.3390/d17020128
APA StyleKwikiriza, G., Abaho, I., Tibihika, P. D., Izaara, A. A., Atukwatse, F., Omara, T., Nattabi, J. K., Kasozi, N., Curto, M., Melcher, A., & Meimberg, H. (2025). Genetic Diversity and Population Differentiation of Farmed Nile Tilapia (Oreochromis niloticus Linnaeus, 1758) to Advance Selective Breeding in Uganda. Diversity, 17(2), 128. https://doi.org/10.3390/d17020128