The Relationships between Plant Community Stability and Diversity across Different Grassland Types and Their Association with Environmental Factors in the Habahe Forest Area, Xinjiang
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experimental Design
2.3. Research Methodology
- (1)
- (2)
- The M. Godron stability measure was introduced to the study of plant ecology by French ecologists from industrial production. In this study, the stability of grassland communities in the Habahe region was evaluated using the law-of-contribution method proposed by M. Godron [41]. This method sorts all plant species within the community based on their frequency, calculates their relative frequencies, and then accumulates the reciprocal of the total number of species and their relative frequencies. Subsequently, the cumulative percentages of inverse plant species and relative frequencies are matched and curve-fitted to obtain a smooth curve equation y = ax3 + bx2 + cx + d intersecting with y = 100 − x. The intersection point (x, y) is determined, and the Euclidean distance from this point to (20, 80) is calculated. A smaller distance indicates greater community stability, while a larger distance suggests instability. Zheng [42] proposed using species cover instead of frequency to better reflect interaction relationships between plant species, thereby enhancing stability measurement accuracy. Accordingly, this study adopted an improved M. Godron stability measure, using the reciprocal of the Euclidean distance (ESD value) as the M. Godron index to characterize community stability. The equation used for calculation is as follows [43]:
- (3)
- Plant communities’ similarities were measured using the Jaccard similarity coefficient according to the following formula [44]:
2.4. Statistical Analysis
2.5. Determination of Environmental Factors
3. Results
3.1. Characteristics of Community Structure in Different Grassland Types
3.2. Stability and Similarity Analysis of Communities in Different Grassland Types
3.3. Relationship between Species Diversity and Community Stability in Different Grassland Types
3.4. Relationship between Plant Community Characteristics and Environmental Factors
4. Discussion
4.1. Changes in Plant Community Composition under Different Grassland Types
4.2. Characterization of Community Stability and Its Relationship with Species Diversity in Different Grassland Types
4.3. Species Diversity and Community Stability in Relation to Environmental Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, N.; Bond, W.; Feurdean, A.; Lehmann, C.E.R. Grassy ecosystems in the Anthropocene. Annu. Rev. Env. Resour. 2022, 47, 261–289. [Google Scholar] [CrossRef]
- Zhao, G.L. Trends in grassland science: Based on the shift analysis of research themes since the early 1900s. Fundam. Res. 2023, 3, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, R.D.; Chomel, M.; Fry, E.L.; Johnson, D.; Lavallee, J.M.; Png, K.; Bullock, J.M.; Lavorel, S.; Manning, P.; Provost, G.L.; et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T.M.; Bonin, C.; Bruelheide, H.; Luca, E.D.; et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 2015, 526, 574–577. [Google Scholar] [CrossRef]
- Chen, C.F. Causes of Grassland Degradation in Altai Mountains and Countermeasures for Management. Prot. For. Sci. Technol. 2022, 215, 57–59. [Google Scholar] [CrossRef]
- Amanguli, M.; Luo, J. Exploring the Causes of Grassland Degradation and Management Countermeasures in Xinjiang. Xinjiang Xu Mu Ye 2019, 34, 37–39. [Google Scholar] [CrossRef]
- Bu, E.J.; Zhao, S.; He, F.; Zhu, X.L.; Xu, D.D.; Li, X.L.; Xin, X.P. Sustainable development strategy study on Xinjiang’s grassland animal husbandry. Chin. J. Agric. Resour. Reg. Plan. 2014, 35, 120–127. [Google Scholar] [CrossRef]
- Zhang, K.L.; Ye, M.; He, Q.Z.; Yin, X.K.; Guo, J.X. Analysis of Species Diversity and VOR index of Different Grassland Types in the Habahe Region of the Alitai Mountains. J. Soil Water Conserv. 2023, 37, 262–271+279. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhao, H.L. Review on the study of vegetation stability. Chin. J. Ecol. 2003, 22, 42–48. [Google Scholar] [CrossRef]
- McCann, K.S. The diversity–stability debate. Nature 2000, 405, 228–233. [Google Scholar] [CrossRef]
- MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 1955, 36, 533–536. [Google Scholar] [CrossRef]
- Elton, C.S. The ecology of invasions by animals and plants. J. Range Manag. 1958, 47, 525. [Google Scholar]
- Tilman, D.; Downing, J.A. Biodiversity and stability in grasslands. Nature 1994, 367, 363–365. [Google Scholar] [CrossRef]
- Tilman, D. Biodiversity: Population versus ecosystem stability. Ecology 1996, 77, 350–363. [Google Scholar] [CrossRef]
- Naeem, S. Li Biodiversity enhances ecosystem reliability. Nature 1997, 390, 507–509. [Google Scholar] [CrossRef]
- McGrady, S.J.; Morin, P.J. Biodiversity, density compensation, and the dynamics of populations and functional groups. Ecology 2000, 81, 361–373. [Google Scholar] [CrossRef]
- Ives, A.R. Carpenter S R. Stability and diversity of ecosystems. Science 2007, 317, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.Y.; Zhang, L.; Liao, L.R.; Wang, J.; Lei, S.L.; Liu, G.B.; Fang, N.F.; Zhang, C. Relationship between grassland plant diversity and community stability and its driving factors on the Loess Plateau. Acta Ecol. Sin. 2023, 43, 60–69. [Google Scholar] [CrossRef]
- Gardner, M.R.; Ashby, W.B. Connectance of large dynamic (cybernetic) systems: Critical values for stability. Nature 1970, 228, 784. [Google Scholar] [CrossRef]
- Gardner, M.R. Will a large complex system be stable? Nature 1972, 238, 413–414. [Google Scholar] [CrossRef]
- Lei, S.L.; Liao, L.R.; Wang, J.; Zhang, L.; Ye, Z.C.; Liu, G.B.; Zhang, C. The diversity-Godron stability relationship of alpine grassland and its environmental drivers. Acta Pratacult. Sin. 2023, 32, 1–12. [Google Scholar] [CrossRef]
- Li, W.; Zhou, M.; Zhao, P.W.; Tian, J.L.; Wang, Z.X.; Zhao, W.; Gao, Y. Vegetation Characteristics in the Early Stage of Restoration of Burned Area in Eastern Daxing’an Mountains. J. Northeast For. Univ. 2020, 48, 51–55. [Google Scholar] [CrossRef]
- Zhen, S.Q.; Liu, J.F.; Feng, X.P.; He, Z.S.; Li, W.Z.; Li, L.; Chen, W.W.; Liu, M.X. Species Diversity and Stability of Different Plant Communities in Daiyun Mountain. J. Northwest For. Univ. 2016, 31, 50–57+64. [Google Scholar] [CrossRef]
- Yu, X.W.; Song, X.S.; Kang, F.F.; Han, H.R. Evaluation on the stability of typical forest communities in sourse region of Liaohe river in North Hebei. J. Arid. Land Resour. Environ. 2016, 31, 50–57+64. [Google Scholar] [CrossRef]
- Bi, X.L.; Hong, W.; WU, C.Z.; Yan, S.J.; Feng, L.; Wang, X.G. Reasearch on the Bio-diversity and Stability of the Rare Plant Communities. J. Fujian Coll. For. 2003, 23, 301–304. [Google Scholar] [CrossRef]
- Pinder, J.E.; Kroh, G.C.; White, J.D. Basham May AM. The relationships between vegetation type and topography in Lassen Volcanic National Park. Plant Ecol. 1997, 131, 17–29. [Google Scholar] [CrossRef]
- Zhao, T.T.; Zhao, C.Z.; Kang, M.P.; Li, Q.; Tang, Y.R.; Zeng, H.X.; Wang, Y.F. Numerical classification and ordination of shrub communities on the north slope of Qilian Mountains. Chin. J. Ecol. 2021, 40, 731–739. [Google Scholar] [CrossRef]
- O’Brien, E.M.; Field, R.; Whittaker, R.J. Climatic gradients in woody plant (tree and shrub) diversity: Water-energy dynamics, residual variation, and topography. Oikos 2000, 89, 588–600. [Google Scholar] [CrossRef]
- Wiegand, T.; Moloney, K.A. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 2004, 104, 209–259. [Google Scholar] [CrossRef]
- Zhang, H.G.; Zou, W.; Chen, Z.; He, L.J.; Peng, X.F.; Wang, G.Y.; Peng, P.H.; Li, J.J.; Shi, S.L. Distribution pattern of plant community and its relationship with environmental factors in eastern Tibet, China. Chin. J. Appl. Environ. Biol. 2023, 29, 1289–1297. [Google Scholar] [CrossRef]
- Sun, Q.Y.; Zhang, W.Q.; Zhao, L.Q.; Chi, M.F.; Luo, G.S.; Zheng, X.M.; Jia, Z.K.; Wang, Q.C. Variation of understory plant diversity and its relationship with soil moisture in Pinus tabulaeformis plantation before and after clearcutting. J. Cent. South. Univ. For. Technol. 2020, 40, 119–129. [Google Scholar] [CrossRef]
- Tan, S.S.; Ye, Z.L.; Yuan, L.B.; Zhou, R.F.; Hu, G.; Jin, X.F.; Yu, M.J. Beta diversity of plant communities in Baishanzu Nature Reserve. Acta Ecol. Sin. 2013, 33, 6944–6956. [Google Scholar] [CrossRef]
- Mendez, T.M.; Meave, J.A.; Zermeno, H.I.; Ibarra, M.G. Effects of slope aspect and topographic position on environmental variables, disturbance regime and tree community attributes in a seasonal tropical dry forest. J. Veg. Sci. 2016, 27, 1094–1103. [Google Scholar] [CrossRef]
- Shall, J.M. Influence of topography, bare sand, and soil pH on the occurrence and distribution of plant species in a lacustrine dune ecosystem. J. Torrey Bot. Soc. 2014, 141, 29–38. [Google Scholar] [CrossRef]
- Grace, J.B.; Michael, A.T.; Smith, M.D.; Seabloom, E.; Andelman, S.J.; Meche, G.; Weiher, E.; Allain, L.K.; Jutila, H.; Sankaran, M.; et al. Does species diversity limit productivity in natural grassland communities? Ecol. Lett. 2007, 10, 680–689. [Google Scholar] [CrossRef] [PubMed]
- He, Z.S.; Liu, J.F.; Zhang, S.Q.; Houng, W.; Wu, Z.Y.; Xu, D.W.; Wu, C.Z. Effects of Forest Gap Disturbance on Plant Species Diversity and Stability in Regeneration Layers of Castanopsis kawakamii Natural Forests. Plant Sci. J. 2012, 30, 133–140. [Google Scholar] [CrossRef]
- Qiao, M.; Chen, Y.N.; Zhao, X.Y. Analysis and evaluation on the agricultural morphological conditions in Haba river basin, Xinjiang. Geogr. Aird Area 1997, 2, 67–72. [Google Scholar] [CrossRef]
- Ma, K.P. Measuring methods of biodiversity i. Measuring methods of α diversity (part one). Chin. Biodivers. 1994, 2, 229–239. [Google Scholar]
- Ma, K.P. Measuring methods of biodiversity i. Measuring methods of α diversity (part two). Chin. Biodivers. 1994, 2, 231–239. [Google Scholar]
- Pan, X.; Ye, M.; Xu, X.; He, Q.; Gu, X.; Zeng, G.; Chen, W.; Li, M. Characteristics and Relationships between Species Diversity and Productivity of Different Grassland Types in the Burqin Forest Region of the Altai Mountains. Forests 2023, 14, 1829. [Google Scholar] [CrossRef]
- Godron, M. Some aspects of heterogeneity in grasslands of Cantal. Stat. Ecol. 1972, 3, 397–415. [Google Scholar]
- Zheng, Y.R. Comparison of methods for studying stability of forest community. Sci. Silvae Sin. 2000, 5, 28–32. [Google Scholar]
- Xue, C.Y.; Li, X.G.; Tan, Z.Q.; Li, Z. Plant community stability and its relationship with species diversity of typical wetland in Poyang Lake, China. Acta Ecol. Sin. 2022, 41, 1–10. [Google Scholar] [CrossRef]
- He, F.L.; Jin, H.X.; Guo, C.X.; Ma, J.M.; Wu, H. Vegetation Composition and Community Similarity of Haloxylon ammodendron Plantations at Different Degree of Degradation on the Edge of the Minqin Oasis. J. Desert Res. 2017, 37, 1135–1141. [Google Scholar] [CrossRef]
- Ma, Q.L.; Lu, Q.; Wei, L.Y.; Jin, H.J. Varying characteristics of soil seed banks during the succession process of Nitraria tangutorum vegetation in an arid desert area. Acta Ecol. Sin. 2015, 35, 2285–2294. [Google Scholar] [CrossRef]
- Zhao, W.; Yi, Y.L.; Li, S.X.; Liu, J.J.; Dong, Y.L.; Su, S.F. Study on Vegetation Communities and Forage Nutrition Characteristics of Different Types of Grassland in Qilian Mountains. Acta Agrestia Sin. 2022, 30, 1328–1335. [Google Scholar] [CrossRef]
- Chang, H.; Sun, H.L.; Liu, Y.H.; Qiu, X.; Shi, L.; Wen, C. Community Structure and Diversity under Different Degrees of Degraded Grassland in East Wuzhumuqin Meadow. Acta Agrestia Sin. 2020, 28, 184–192. [Google Scholar] [CrossRef]
- Su, J.J.; Liu, Y.P.; Liu, L.Y.; Wu, T.Z.; Wang, M. Quantitative classification and ordination analysis of typical plant communities in Altay Prefecture of Xinjiang. Acta Pratacult. Sin. 2023, 32, 50–67. [Google Scholar] [CrossRef]
- Li, X.M.; Song, Y.B.; Jiang, W.L. Tianshan Mountains, Altai Different Types of Grass Lawn Nutrient Evaluation Group. Caoye Yu Xumu 2015, 219, 44–48. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.H. Dynamic Analysis of Community Characteristics and Diversity of Grassland in the Northern Slope of Tianshan Mountain. Xinjiang Agric. Sci. 2017, 54, 148–155. [Google Scholar] [CrossRef]
- Wang, D.W.; Sheng, J.D.; Liu, Y.H.; Zha, X.H.; Men, X.H. Analysis of grassland biomass characteristics and its impact factors in north shop of Tianshan. Pratac. Sci. 2014, 31, 125–131. [Google Scholar] [CrossRef]
- Yang, Z.P.; Ouyang, H.; Song, M.H.; Zhou, C.P.; Yang, W.B.; Liu, X.P. Species diversity and above-ground biomass of alpine vegetation in permafrost region of Qinghai–Tibetan Plateau. Chin. J. Ecol. 2010, 29, 617–623. [Google Scholar] [CrossRef]
- Huang, X.B.; Su, J.R.; Li, S.F.; Liu, W.D.; Lang, X.D. Functional diversity drives ecosystem multifunctionality in a Pinus yunnanensis natural secondary forest. Sci. Rep. 2019, 9, 6979. [Google Scholar] [CrossRef]
- Zhang, J.G.; Wang, L.D.; Yao, T.; Li, H.Y.; Gao, Y.M.; Yan, X.M.; Li, C.N.; Li, Q.; Fen, Y.; Hu, Y.T. Plant community structure and species diversity differences in alpine grassland in the Qilian Mountains with different levels of degradation. Acta Pratacult. Sin. 2019, 28, 15–25. [Google Scholar] [CrossRef]
- Yin, X.K.; Ye, M.; Guo, J.X.; Zhang, K.L.; Zhao, F.F. Relationship Between Species Diversity and Productivity of Different Grassland Types in Buerjin Forest Area of Altai Mountains. J. Soil Water Conserv. 2022, 36, 110–115. [Google Scholar] [CrossRef]
- Wang, W.Y.; Wang, Q.J.; Li, S.X.; Wang, G. Distribution and species diversity of plant communities along transect on the northeastern Tibetan Plateau. Biodivers. Conserv. 2006, 15, 1811–1828. [Google Scholar] [CrossRef]
- Liu, P.X.; Lin, X.L.; Chen, L.Q. Phylogenetic structure and species diversity pattern of plant community under flooding disturbance in the riparian zone of reservoir. Acta Ecol. Sin. 2023, 43, 4700–4711. [Google Scholar] [CrossRef]
- Hu, D.; Lü, G.H.; Wang, H.F.; Yang, Q.; Cai, Y. Response of desert plant diversity and stability to soil factors based on water gradient. Acta Ecol. Sin. 2021, 41, 6738–6748. [Google Scholar] [CrossRef]
- Wu, C.H.; Cai, J.J.; Li, H.; Zhang, Y.; Kang, Y.X. Studies on diversity and stability of the Fagaceae community in the Zibai mountain. J. Cent. South Univ. For. Technol. 2021, 41, 108–115. [Google Scholar] [CrossRef]
- Gao, R.F.; Zhang, T.Y.; Bai, Y.; Cui, H.; Liu, Z.Y. Effects of Different Improvement Measures on Species Diversity and Community Productivity of Degraded Mowing Grassland. Chin. J. Grassl. 2019, 41, 98–104. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, S.; Gao, Q.; Liu, S.L.; Yan, L.; Cao, X.J. Responses of alpine vegetation and soils to the disturbance of plateau pika (Ochotona curzoniae) at burrow level on the Qinghai–Tibetan Plateau of China. Ecol. Eng. 2016, 88, 232–236. [Google Scholar] [CrossRef]
- Tan, C.; Liu, T.; Liu, X.L.; Liu, C. Study on species diversity and stability of Haloxylon ammoderon community in the southwestern edge of Gurbantonggut desert. J. Arid Land Resour. Environ. 2010, 24, 148–158. [Google Scholar] [CrossRef]
- Xu, H.P.; Yu, C.; Shu, C.C.; Jing, S.H.; Pan, X.L.; Guo, Z.G. The effect of plateau pika disturbance on plant community diversity and stability in an alpine meadow. Acta Pratacult. Sin. 2019, 28, 90–99. [Google Scholar] [CrossRef]
- Hillebrand, H.; Bennett, D.B.; Cadotte, M.W. Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology 2008, 89, 1510–1520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Huang, Y.M. Biodiversity and stability mechanisms: Understanding and future research. Acta Ecol. Sin. 2016, 36, 3859–3870. [Google Scholar] [CrossRef]
- Zhu, G.D.; Guo, N.; Han, Y.J.; Lv, G.Y.; Wang, Z.Y.; Wang, C.J. Effects of Extreme Drought on Plant Diversity and Soil Properties of Inner Mongolian Desert Steppe. Chin. J. Grassl. 2021, 43, 52–59. [Google Scholar] [CrossRef]
- Guo, J.X.; Luo, T.F.; Ye, M.; Yin, X.K.; Zhang, K.L.; Zhao, F.F. Relationship between Grassland Species Diversity and Topographical Factors in Fuyun Mining Area of Altai Mountain, Xinjiang Province. Chin. Wild Plant Resour. 2022, 41, 89–94. [Google Scholar] [CrossRef]
- Jia, Z.T.; Yang, J.Y.; Sun, Y.X.; Chen, Q.; Yan, R.L.; Li, N.N. Analysis of Species Diversity and Regulation Factors of Salsola passerine Community in Alxa Plateau. Chin. J. Grassl. 2021, 43, 1–9. [Google Scholar] [CrossRef]
- Currie, D.J.; Mittelbach, G.G.; Cornell, H.V.; Field, R.; Guégan, J.F.; Hawkins, B.A.; Kaufman, D.M.; Kerr, J.T.; Oberdorff, T.; Brien, E.O.; et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 2004, 7, 1121–1134. [Google Scholar] [CrossRef]
- Fan, L.L.; Li, Y.M.; Nataliia, T.; Ma, X.X.; Ma, J. Response of Herbaceous Plant Quantity to Different Water Input and Meteorological Factors in a Cold Desert. Arid Zone Res. 2019, 36, 139–146. [Google Scholar] [CrossRef]
- Du, Z.Y.; An, H.; Wang, Z.L.; Wang, B.; Zhang, X.W. Response of plant community structure and its stability to water and nitrogen addition in desert grassland. Acta Ecol. Sin. 2021, 41, 2359–2371. [Google Scholar] [CrossRef]
- Yang, H.J.; Wu, M.Y.; Liu, W.X.; Zhang, Z.; Zhang, N.L.; Wan, S.Q. Community structure and composition in response to climate change in a temperate steppe. Glob. Change Biol. 2015, 17, 452–465. [Google Scholar] [CrossRef]
- Shimono, A.; Zhou, H.; Shen, H.; Hirota, M.; Ohtsuka, T.; Tang, Y. Patterns of plant diversity at high altitudes on the Qinghai–Tibetan Plateau. J. Plant Ecol. 2010, 3, 1–7. [Google Scholar] [CrossRef]
- Dorji, T.; Moe, S.R.; Klein, J.A.; Totland, Ø. Plant species richness, evenness, and composition along environmental gradients in an alpine meadow grazing ecosystem in central Tibet, China. Arct. Antarct. Alp. Res. 2014, 46, 308–326. [Google Scholar] [CrossRef]
- Ye, P.C.; Chen, H.; Wu, J.Y.; Zhang, G.F. Distribution Pattern and Correlation with Main Environmental Factors of Higher Plant Diversity in North–West Yunnan. J. Ecol. Rural Environ. 2020, 36, 89–94. [Google Scholar] [CrossRef]
Grassland Type | Constructive Species | Accompanying Species | Species Numbers |
---|---|---|---|
DS | Stipa caucasica Festuca valesiaca Artemisia frigida | Bassia prostrata Agropyron cristatum Stipa sareptana Carex canescens | 24 |
MS | Festuca ovina Artemisia frigida Agropyron cristatum Stipa capillata | Koeleria macrantha Potentilla chinensis Leymus secalinus Cleistogenes squarrosa | 63 |
MMS | Festuca ovina Helictochloa hookeri | Achillea millefolium Phlomoides oreophila Bromus inermis Galium verum Fragaria vesca Medicago falcata | 44 |
MM | Poa annua Helictochloa hookeri Bromus inermis | Alchemilla japonica Geranium wilfordii Bistorta vivipara Elymus pseudocaninus | 34 |
Grassland Type | Fit Curve | Intersection Coordinates | R2 | ESD |
---|---|---|---|---|
DS | Y = 1.085x3 − 0.026x2 + 2.06x + 41.48 | (23.45, 76.55) | 0.995 | 4.88 |
MS | Y = 1.513x3 − 0.031x2 + 2.139x + 49.44 | (19.71, 80.29) | 0.975 | 0.41 |
MMS | Y = 2.498x3 − 0.048x2 + 3.003x + 38.45 | (19.58, 80.42) | 0.938 | 0.59 |
MM | Y = 2.002x3 − 0.041x2 + 2.633x + 40.60 | (20.62, 79.38) | 0.951 | 0.88 |
Grassland Type | DS | MS | MMS | MM |
---|---|---|---|---|
DS | 1.000 | |||
MS | 0.309 (21) | 1.000 | ||
MMS | 0.193 (11) | 0.535 (38) | 1.000 | |
MM | 0.184 (9) | 0.289 (20) | 0.529 (27) | 1.000 |
Different Grassland Types | Species Diversity Index | Fit Curve |
---|---|---|
DS | Margalef | y = 0.5387x + 0.5588 |
Simpson | y = −0.1649x + 0.2440 | |
Shannon–Wiener | y = −1.9220x + 1.0911 | |
Alatalo | y = −1.1353x + 0.8405 | |
MS | Margalef | y = 0.7707x + 0.6963 |
Simpson | y = −2.4529x + 1.2018 | |
Shannon–Wiener | y = −1.0007x + 0.6355 | |
Alatalo | y = −0.1576x + 0.2092 | |
MMS | Margalef | y = 6.268x + 0.6425 |
Simpson | y = 3.8297x + 0.3741 | |
Shannon–Wiener | y = 0.1346x − 0.0191 | |
Alatalo | y = −2.16x + 0.9008 | |
MM | Margalef | y = 0.1234x + 0.0061 |
Simpson | y = 0.2398x − 0.1877 | |
Shannon–Wiener | y = 0.5711x + 0.5515 | |
Alatalo | y = 0.1189x + 0.7552 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, G.; Ye, M.; Li, M.; Chen, W.; He, Q.; Pan, X.; Zhang, X.; Che, J.; Qian, J.; Lv, Y. The Relationships between Plant Community Stability and Diversity across Different Grassland Types and Their Association with Environmental Factors in the Habahe Forest Area, Xinjiang. Diversity 2024, 16, 499. https://doi.org/10.3390/d16080499
Zeng G, Ye M, Li M, Chen W, He Q, Pan X, Zhang X, Che J, Qian J, Lv Y. The Relationships between Plant Community Stability and Diversity across Different Grassland Types and Their Association with Environmental Factors in the Habahe Forest Area, Xinjiang. Diversity. 2024; 16(8):499. https://doi.org/10.3390/d16080499
Chicago/Turabian StyleZeng, Guoyan, Mao Ye, Miaomiao Li, Weilong Chen, Qingzhi He, Xiaoting Pan, Xi Zhang, Jing Che, Jiaorong Qian, and Yexin Lv. 2024. "The Relationships between Plant Community Stability and Diversity across Different Grassland Types and Their Association with Environmental Factors in the Habahe Forest Area, Xinjiang" Diversity 16, no. 8: 499. https://doi.org/10.3390/d16080499
APA StyleZeng, G., Ye, M., Li, M., Chen, W., He, Q., Pan, X., Zhang, X., Che, J., Qian, J., & Lv, Y. (2024). The Relationships between Plant Community Stability and Diversity across Different Grassland Types and Their Association with Environmental Factors in the Habahe Forest Area, Xinjiang. Diversity, 16(8), 499. https://doi.org/10.3390/d16080499