Current Status and Conservation of Springs in Taiwan: Water Quality Assessment and Species Diversity of Aquatic Animals
Abstract
:1. Introduction
2. Methods
2.1. Spring Selections and Sampling Frequency
2.2. Water Quality Assessment and River Pollution Index (RPI)
2.3. Species Inventory of Aquatic Animals
2.3.1. Fish Sampling
2.3.2. Samplings of Benthic Animals
2.4. Species Identification
2.5. Data Analyses
3. Results
3.1. Water Quality Assessment and RPI
3.2. Fishes
3.3. Gastropoda and Bivalves
3.4. Shrimps
3.5. Crabs
3.6. Correlations of RPI and Biological Variables
4. Discussion
4.1. Water Quality Assessment and RPI
4.2. Species Diversity of Aquatic Animals
4.3. Fishes
4.4. Gastropods and Bivalves
4.5. Shrimp
4.6. Crab
4.7. Correlation between Species Diversity with Environmental Measurements
4.8. Threats and Conservation for Springs in Taiwan
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Odum, H.T. Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr. 1957, 27, 55–112. [Google Scholar] [CrossRef]
- Hershler, R.; Liu, H.-P.; Howard, J. Springsnails: A new conservation focus in western North America. BioScience 2014, 64, 693–700. [Google Scholar] [CrossRef]
- Mueller, J.M.; Lima, R.E.; Springer, A.E. Can environmental attributes influence protected area designation? A case study valuing preferences for springs in Grand Canyon National Park. Land Use Policy 2017, 63, 196–205. [Google Scholar] [CrossRef]
- Odum, E.P. Fundamentals, of Ecology; WB Saunders: Philadelphia, PE, USA, 1971. [Google Scholar]
- Williams, D.D. The springs as an interface between groundwater and lotic faunas and as a tool in assessing groundwater quality. Verh. Int. Ver. Theor. Angew. Limnol. 1991, 24, 1621–1624. [Google Scholar] [CrossRef]
- Gibert, J.; Dole-Oliver, M.J.; Marmonier, P.; Vervier, P. Surface Water-Groundwater Ecotones. In The Ecology and Management of Aquatic-Terrestrial Ecotones; United Nations Educational, Scientific and Cultural Organization: Paris, France, 1991. [Google Scholar]
- Cuthbert, M.O.; Ashley, G.M. A spring forward for hominin evolution in East Africa. PLoS ONE 2014, 9, e107358. [Google Scholar] [CrossRef] [Green Version]
- Kreamer, D.K.; Stevens, L.E.; Ledbetter, J.D. Groundwater dependent ecosystems—Science, challenges, and policy. In Groundwater; Nova Science Publishers: Hauppauge, NY, USA, 2015. [Google Scholar]
- Onete, M.; Ion, R.; Bodescu, F.P. Description and threats to Natura 2000 habitat 7220* Petrifying springs with tufa formations (Cratoneurion). A review. Marisia Stud. Mat. St. Nat. 2014, XXXIII–XXXIV, 71–79. [Google Scholar]
- Cantonati, M.; Stevens, L.E.; Segadelli, S.; Springer, A.E.; Goldscheider, N.; Celico, F.; Filippini, M.; Ogata, K.; Garginin, A. Ecohydrogeology: The interdisciplinary convergence needed to improve the study and stewardship of springs and other groundwater dependent habitats, biota, and ecosystems. Ecol. Indic. 2020, 110, 105803. [Google Scholar] [CrossRef]
- Cantonati, M.; Fensham, R.J.; Stevens, L.E.; Gerecke, R.; Glazier, D.S.; Goldscheider, N.; Knight, R.L.; Richardson, J.S.; Springer, A.E.; Tockner, K. Urgent plea for global protection of springs. Conserv. Biol. 2021, 35, 378–382. [Google Scholar] [CrossRef]
- Stevens, L.E.; Schenk, E.R.; Springer, A.E. Springs ecosystem classification. Ecol. Appl. 2020, 31, e002218. [Google Scholar] [CrossRef]
- Webb, D.W.; Wetzel, M.J.; Phillippe, L.R.; Reed, P.C.; Young, T.C. Aquatic biodiversity in Illinois springs. J. Kans. Entomol. Soc. 1995, 68, 93–107. [Google Scholar]
- Aboal, M.; Puig, A.M.; Prefasi, M. Diatom assemblages in springs in Castellón province, Eastern Spain. Algol. Stud. 1998, 90, 79–95. [Google Scholar] [CrossRef]
- Hatton, T.; Evans, R. Dependence of Ecosystems on Groundwater and Its Significance to Australia; Occasional Paper No 12/98; Land and Water Resources Research and Development Corporation: Canberra, Australia, 1998. [Google Scholar]
- Lai, G.G.; Padedda, B.M.; Wetzel, C.E.; Lugile, A.; Sechi, N.; Ector, L. Epilithic diatom assemblages and environmental quality of the Su Gologone karst spring (centraleastern Sardinia, Italy). Acta. Bot. Croat. 2016, 75, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Pascual, R.; Nebra, A.; Gomà, J.; Pedrocchi, C.; Cadiach, O.; García, G.; Solé, J. First data on the biological richness of Mediterranean springs. Limnetica 2020, 39, 121–139. [Google Scholar] [CrossRef]
- Environmental Protection Administration. Available online: https://wq.epa.gov.tw/EWQP/en/Encyclopedia/NounDefinition/Pedia_37.aspx. (accessed on 27 March 2022).
- Taiwan Malacofauna Database. Available online: https://shell.sinica.edu.tw/ (accessed on 22 January 2022).
- The Fish Database of Taiwan. Available online: https://fishdb.sinica.edu.tw/ (accessed on 10 January 2022).
- Shi, J.Y.; You, S.P. Freshwater shrimps of Taiwan; National Museum of Marine Biology and aquarium, Ministry of Education: Taipei, Taiwan, 1998. (In Chinese) [Google Scholar]
- Shi, J.Y.; Lee, P.W. Freshwater crabs of Taiwan; Morning Star Publ.: Taichung, Taiwan, 2009. (In Chinese) [Google Scholar]
- Yang, C.H.; Tseng, T.J.; Lin, R.S.; Tzeng, C.S.; Liao, T.Y. The Red List of Freshwater Fishes of Taiwan, 2017; Endemic Species Research Institute, Forestry Bureau, Council of Agriculture: Taipei, Taiwan, 2017. (In Chinese) [Google Scholar]
- McKinsey, D.M.; Chapman, L.J. Dissolved oxygen and fish distribution in a Florida spring. Environ. Biol. of Fishes 1998, 53, 211–223. [Google Scholar] [CrossRef]
- Gibbs, M.A.; Thornton, A.; Pasko, S.; Crater, A. Patterns of air-breathing behavior in juvenile armored catfish, Pterygoplichthys sp. (Gill 1858). Environ. Biol. of Fishes 2021, 104, 171–180. [Google Scholar] [CrossRef]
- Law & Regulation Database. Available online: https://law.moj.gov.tw/Eng/ (accessed on 12 January 2022).
- Liang, S.H.; Chiu, Y.W.; Huang, D.J. Development of Sustainable Model and Assessment of Habitat Quality of Springs in Taiwan; Council of Aquaculture: Taipei, Taiwan, 2017. (In Chinese) [Google Scholar]
- Takem, G.E.; Chandrasekharam, D.; Ayonghe, S.N.; Thambidurai, P. Pollution characteristics of alluvial groundwater from springs and bore wells in semi-urban informal settlements of Douala, Cameroon, Western Africa. Environ. Earth Sci. 2010, 61, 287–298. [Google Scholar] [CrossRef]
- Chen, W.D. Freshwater Molluscs of Taiwan; National Museum of Marine Biology and Aquarium, Ministry of Education: Taipei, Taiwan, 2011. (In Chinese) [Google Scholar]
- Chou, M.T.; Gao, R.Q.; Chang, R.Z.; Liao, G. The Freshwater, Estuarine Fish and Shrimp of Taiwan; Morning Star Publ.: Taichung, Taiwan, 2021. (In Chinese) [Google Scholar]
- Council of Aquaculture. Available online: https://conservation.forest.gov.tw/0002021 (accessed on 31 January 2022).
- GLOBAL INVASIVE SPECIES DATABASE. Available online: http://www.iucngisd.org/gisd/100_worst.php (accessed on 31 January 2022).
- Liang, S.H.; Wu, H.P.; Shieh, B.S. Size structure, reproductive phenology, and sex ratio of an exotic armored catfish (Liposarcus multiradiatus) in the Kao-ping River of southern Taiwan. Zool. Stud. 2005, 44, 252–259. [Google Scholar]
- Rubio, V.Y.; Gibbs, M.A.; Work, K.A.; Bryan, C.E. Abundant feces from an exotic armored Catfish, Pterygoplichthys Disjunctivus (Weber, 1991), create nutrient hotspots and promote algal growth in a Florida Spring. Aquat. Invasions 2016, 11, 337–350. [Google Scholar] [CrossRef]
- Gibbs, M.; Futral, T.; Mallinger, M.; Martin, D.; Ross, M. Disturbance on the Florida Manatee by an Invasive Catfish. Southeast Nat. 2010, 9, 635–648. [Google Scholar] [CrossRef]
- Chen, I.S.; Huang, S.B.; Liu, J.C. Indicator Species of Riverine Fishes in Taiwan. Volume 1. Primary Freshwater Fishes; National Taiwan Marine University: Keelung, Taiwan, 2010. (In Chinese) [Google Scholar]
- Chen, I.S.; Huang, S.P.; Liu, C.C. Alien, Invasive Freshwater Fishes in Taiwan; National Taiwan Ocean University: Keelung, Taiwan, 2010. (In Chinese) [Google Scholar]
- Li, K.C.; Shieh, B.S.; Chiu, Y.W.; Huang, D.J.; Liang, S.H. Growth, diet composition and reproductive biology of the invasive freshwater fish Chevron snakehead Channa striata on a subtropical island. Zool. Stud. 2017, 55, 53. [Google Scholar] [CrossRef]
- Hayes, K.A.; Joshi, R.C.; Thiengo, C.; Cowie, R.H. Out of South America: Multiple origins of non-native apple snails in Asia. Divers. Distrib. 2008, 14, 701–712. [Google Scholar] [CrossRef]
- Cowie, R.H.; Hayes, K.A.; Strong, E.E.; Thiengo, S.C. Non-Native Apple Snails: Systematics, Distribution, Invasion History a Reasons for Introduction. Biology and Management of Invasive Apple Snails; Philippine Rice Research Institute (PhilRice), Maligaya: Science City of Muñoz, Nueva Ecija, Phillippine, 2017; Volume 3119, pp. 3–32. [Google Scholar]
- Naylor, R. Invasions in agriculture: Assessing the cost of the golden apple snail in Asia. Ambio 1996, 25, 443–448. [Google Scholar]
- Cowie, R.H. Apple snails (Ampullariidae) as agricultural pests: Their biology, impacts and management. In Molluscs as Crop Pests; CAB-International: Wallingford, UK, 2002. [Google Scholar]
- Halwart, M. The golden apple snail Pomacea canaliculata in Asian rice farming systems: Present impact and future threat. Int. J. Pest Manag. 1994, 40, 199–206. [Google Scholar] [CrossRef]
- Wood, T.; Anurakpongsatorn, P.; Chaichana, R.; Mahujchariyawong, J.; Satapanajaru, T. Predation on freshwater bryozoans by the apple snail, Pomacea canaliculata, Ampulariidae [sic], an invasive species in Southeast Asia: A summary report. Denisia 2005, 16, 283–286. [Google Scholar]
- Carlsson, N.O.L.; Bronmark, C.; Hansson, L.-A. Invading herbivory: The golden apple snail alters ecosystem functioning in Asian wetlands. Ecology 2004, 85, 1575–1580. [Google Scholar] [CrossRef] [Green Version]
- Vinarski, M.V. The history of an invasion: Phases of the explosive spread of the physid snail Physella acuta through Europe, Transcaucasia and Central Asia. Biol. Invasion 2017, 19, 1299–1314. [Google Scholar] [CrossRef]
- Bousset, L.; Pointier, J.P.; David, P.; Jarne, P. Neither variation loss, nor change in selfing rate is associated with the worldwide invasion of Physa acuta from its native North America. Biol. Invasions 2014, 16, 1769–1783. [Google Scholar] [CrossRef] [Green Version]
- Douda, K.; Vrtilek, M.; Slavik, O.; Reichard, M. The role of host specificity in explaining the invasion success of the freshwater mussel Anodonta woodiana in Europe. Biol. Invasion 2012, 14, 127–137. [Google Scholar] [CrossRef]
- Reichard, M.; Polacik, M.; Tarkan, A.S.; Spence, R.; Gaygusuz, O.; Ercan, E.; Ondrackova, M.; Smith, C. The bitterling mussel coevolutionary relationship in areas of recent and ancient sympatry. Evolution 2010, 64, 3047–3056. [Google Scholar] [CrossRef]
- Lin, C.G. A Field Guide to Freshwater Fish and Shrimps in Taiwan; Big Tree Publ.: Taipei, Taiwan, 2017; Volume 2. (In Chinese) [Google Scholar]
- Loureiro, T.G.; Anastacio, P.M.S.G.; Araujo, P.B.; Souty-Grosser, G.; Almerao, M.P. Red swamp crayfish: Biology, ecology and invasion–an overview. Nauplius 2015, 23, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Gherardi, F. Crayfish invading Europe: The case study of Procambarus clarkii. Mar. Freshw. Behav. Physiol. 2006, 39, 175–191. [Google Scholar] [CrossRef]
- Cruz, M.J.; Segurado, P.; Sousa, M.; Rebelo, R. Collapse of the amphibian community of the Paul do Boquilobo Natural Reserve (central Portugal) after the arrival of the exotic American crayfish Procambarus clarkii. J. Herpeto. 2008, 18, 197–204. [Google Scholar]
- Holdich, D.M.; Reynolds, J.D.; Souty-Grosset, C.; Sibley, P.J. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst. 2009, 11, 394–395. [Google Scholar] [CrossRef] [Green Version]
- Shih, H.T.; Ng, P.K.L. Diversity and biogeography of freshwater crabs (Crustacea: Brachyure: Potamidae, Gecarcinucidae) from East Asia. System. Biodivers. 2011, 9, 1–16. [Google Scholar] [CrossRef]
- Orient Daily. 2015/04/20. Available online: https://hk.on.cc/tw/bkn/cnt/news/20150420/bkntw-20150420082047492-0420_04011_001.html (accessed on 21 March 2022).
- Epure, L.; Borda, D.R. Groundwater contamination and the relationship between water chemistry and biotic components in a karst system (Bihor Mountains, Romania). Trav. Inst. Speol. 2014, 53, 69–84. [Google Scholar]
- Lusardi, R.A.; Nichols, A.L.; Willis, A.D.; Jeffres, C.A.; Kiers, A.H.; Van Nieuwenhuyse, E.E.; Dahlgren, R.A. Not all rivers are created equal: The importance of spring-fed rivers under a changing climate. Water 2021, 13, 1652. [Google Scholar] [CrossRef]
Water Quality Measurements | Pollution Classification | |||
---|---|---|---|---|
Unpolluted | Negligibly Polluted | Moderately Polluted | Severely Polluted | |
Index scores (Si) | 1 | 3 | 6 | 10 |
DO (mg/L) | >6.5 | 4.6–6.5 | 2.0–4.5 | <2.0 |
BOD5 (mg/L) | <3.0 | 3.0–4.9 | 5.0–15 | >15 |
SS (mg/L) | <20 | 20–49 | 50–100 | >100 |
NH3-N (mg/L) | <0.5 | 0.5–0.99 | 1.0–3.0 | >3.0 |
RPI | <2.0 | 2.0–3.0 | 3.1–6.0 | >6.0 |
Water Quality Measurements | Index Scores (Si) | |||
---|---|---|---|---|
1 | 3 | 6 | 10 | |
Occurrence and Frequency (%) of Sampled Springs | ||||
DO (mg/L) | 14 (24.1) | 14 (24.1) | 21 (36.2) | 9 (15.5) |
BOD5 (mg/L) | 43 (74.1) | 10 (17.2) | 5 (8.6) | 0 (0) |
SS (mg/L) | 56 (96.6) | 2 (3.4) | 0 (0) | 0 (0) |
NH3-N (mg/L) | 57 (98.3) | 0 (0) | 1 (1.7) | 0 (0) |
Family | Species (Conservation Status) | Ethnic Groups | Occurrence and Frequency (%) |
---|---|---|---|
Cyprinidae | Cyprinus carpio koi | EX | 2 (3.4) |
Acrossocheilus paradoxus | NA* | 8 (13.8) | |
Candidia barbata | NA* | 7 (12.1) | |
Carassius auratus auratus | NA | 8 (13.8) | |
Carassius cuvieri | EX | 1 (1.7) | |
Culter alburnus | NA | 1 (1.7) | |
Cyprinus carpio | NA | 3 (5.2) | |
Distoechodon tumirostris (NVU) | NA | 1 (1.7) | |
Mylopharyngodon piceus | EX | 1 (1.7) | |
Hemiculter leucisculus | NA | 3 (5.2) | |
Metzia formosae (NEN) | NA* | 1 (1.7) | |
Puntius orphoides | EX | 2 (3.4) | |
Pseudorasbora parva | NA | 5 (8.6) | |
Puntius semifasciolatus (NEN) | NA | 7 (12.1) | |
Puntius snyderi | NA | 1 (1.7) | |
Pararasbora moltrechti | NA* | 2 (3.4) | |
Rhodeus ocellatus ocellatus (NNT) | NA | 4 (6.9) | |
Tanakia himantegus | NA* | 7 (12.1) | |
Opsariichthys pachycephalus | NA* | 9 (15.5) | |
Onychostoma alticorpus (NNT) | NA* | 1 (1.7) | |
Siluridae | Silurus asotus (NNT) | NA | 1 (1.7) |
Adrianichthyidae | Oryzias latipes (NVU) | NA | 2 (3.4) |
Poeciliidae | Gambusia affinis | EX | 30 (51.7) |
Poecilia reticulata | EX | 8 (13.8) | |
Xiphophorus hellerii | EX | 4 (6.9) | |
Cichlidae | Geophagus brasiliensis | EX | 3 (5.2) |
Oreochromis niloticus niloticus | EX | 21 (36.2) | |
Tilapia zillii | EX | 8 (13.8) | |
Amphilophus citrinellus | EX | 1 (1.7) | |
Cichlasoma managuen | EX | 3 (5.2) | |
Cichlasoma spp. | EX | 2 (3.4) | |
Cobitis sinensis | NA | 5 (8.6) | |
Misgurnus anguillicaudatus | NA | 1 (1.7) | |
Cobitidae | Cobitis sinensis | NA | 5(8.6) |
Misgurnus anguillicaudatus | NA | 1(1.7) | |
Loricariidae | Pterygoplichthys pardalis | EX | 1 (1.7) |
Hypostomus plecostomus | EX | 2 (3.4) | |
Eleotridae | Eleotris fusca | NA | 1 (1.7) |
Gobiidae | Rhinogobius candidianus | NA* | 1 (1.7) |
Rhinogobius gigas | NA* | 1 (1.7) | |
Rhinogobius giurinus | NA | 9 (15.5) | |
Rhinogobius lanyuensis (NCR) | NA* | 1 (1.7) | |
Rhinogobius rubromaculatus | NA* | 7 (12.1) | |
Sicyopterus japonicus | NA | 1 (1.7) | |
Osphronemidae | Trichogaster trichopterus | EX | 1 (1.7) |
Macropodus opercularis (NNT) | NA | 1 (1.7) | |
Channidae | Channa asiatica (NVU) | NA | 1 (1.7) |
Channa maculata | NA | 1 (1.7) | |
Channa striata | EX | 9 (15.5) | |
Anguillidae | Anguilla marmorata | NA | 3 (5.2) |
Total and Ethnic Species Groups | Statistics | Fishes | Gastropoda and Bivalves | Shrimps | Crabs |
---|---|---|---|---|---|
Total recorded species | Range | 0–20 | 0–12 | 0–4 | 0–4 |
mean ± SE | 3.4 ± 4.0 | 4.1 ± 3.4 | 1.2 ± 1.2 | 0.4 ± 0.9 | |
Native species | Range | 0–11 | 0–9 | 0–4 | 0–4 |
mean ± SE | 1.8 ± 2.5 | 3.1 ± 2.8 | 1.1 ± 1.1 | 0.4 ± 0.9 | |
Endemic species | Range | 0–7 | 0–2 | 0–2 | 0–3 |
mean ± SE | 0.8 ± 1.4 | 0.1 ± 0.3 | 0.1 ± 0.3 | 0.3 ± 0.7 | |
Exotic species | Range | 0–9 | 0–3 | 0–2 | 0 |
mean ± SE | 1.7 ± 1.8 | 0.8 ± 0.9 | 0.1 ± 0.3 | 0.0 ± 0.0 |
Order | Family | Species | Ethnic Groups | Occurrence and Frequency (%) |
---|---|---|---|---|
Gastropoda | Neritidae | Septaria porcellana | NA | 2 (3.4) |
Vivipariidae | Sinotaia quadrata | NA | 23(39.7) | |
Pomacea canaliculata | EX | 26 (44.8) | ||
Pomacea scalaris | EX | 7 (12.1) | ||
Thiaridae | Thiara scabra scabra | NA | 14 (24.1) | |
Tarebia granifera | NA | 27 (46.6) | ||
Melanoides tuberculatus | NA | 33 (56.9) | ||
Melanoides formosensis | NA* | 2 (3.4) | ||
Melanoides maculata | NA | 2 (3.4) | ||
Stenomelania tortuosa | NA | 2 (3.4) | ||
Stenomelania plicaria | NA | 23 (39.7) | ||
Pleuroceridae | Semisulcospira libertina | NA | 8 (13.8) | |
Assimineidae | Assiminea sp. | NA | 2 (3.4) | |
Assiminea taiwanensis | NA | 3 (5.2) | ||
Lymnaeidae | Radix swinhoei | NA | 4 (6.9) | |
Austropeplea ollula | NA | 19 (32.8) | ||
Physidae | Physella acuta | EX | 16 (27.6) | |
Planorbidae | Fernssia sp. | NA | 2 (3.4) | |
Gyraulus spirillus | NA | 8 (13.8) | ||
Polypylis hemisphaerula | NA | 2 (3.4) | ||
Indoplanorbis exustus | EX | 1 (1.7) | ||
Stenothyridae | Stenothyra formosana | NA* | 1 (1.7) | |
Bivalvia | Corbiculidae | Corbicula fluminea | NA | 10 (17.2) |
Unionidae | Anodonta woodiana | NA | 4 (6.9) |
Family | Species | Ethnic Groups | Occurrence and Frequency (%) |
---|---|---|---|
Palaemonidae | Palaemonidae sp. | - | 1 (1.7) |
Macrobrachium asperulum | NA | 13 (22.4) | |
Macrobrachium gracilirostre | NA | 1 (1.7) | |
Macrobrachium hirtimanus | NA | 1 (1.7) | |
Macrobrachium japonicum | NA | 1 (1.7) | |
Macrobrachium lar | NA | 9 (15.5) | |
Macrobrachium nipponense | NA | 6 (10.3) | |
Palaemon concinnus | NA | 2 (3.4) | |
Atyidae | Caridina pseudodenticulata | NA* | 7 (12.1) |
Caridina sp. | - | 1 (1.7) | |
Caridina serrata | EX | 2 (3.4) | |
Caridina formosae | NA* | 1 (1.7) | |
Caridina weberi | NA | 2 (3.4) | |
Neocaridina denticulate | NA | 18 (31.0) | |
Neocaridina saccam | NA* | 2 (3.4) | |
Cambaridae | Procambarus clarkii | EX | 1 (1.7) |
Crabs | |||
Family | Species | Ethnic Groups | Occurrence and Frequency (%) |
Grapsidae | Sesarmops impressum | NA | 1 (1.7) |
Varuna litterata | NA | 4 (6.9) | |
Platyeriocheir formosa | NA* | 3 (5.2) | |
Metasesarma aubryi | NA | 1 (1.7) | |
Parasesarma pictum | NA | 1 (1.7) | |
Potamidae | Geothelphusa miyazakii | NA* | 2 (3.4) |
Geothelphusa albogilva | NA* | 1 (1.7) | |
Geothelphusa bicolor | NA* | 1 (1.7) | |
Geothelphusa ilan | NA* | 1 (1.7) | |
Geothelphusa nanhsi | NA* | 1 (1.7) | |
Geothelphusa olea | NA* | 2 (3.4) | |
Geothelphusa tsayae | NA* | 3 (5.2) | |
Candidiopotamon rathbunae | NA* | 7 (12.1) | |
Geothelphusa makatao | NA* | 1 (1.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, Y.-W.; Huang, D.-J.; Shieh, B.-S.; Gan, Y.-C.; Chen, Y.-C.; Jen, C.-H.; Lee, L.-L.; Liang, S.-H. Current Status and Conservation of Springs in Taiwan: Water Quality Assessment and Species Diversity of Aquatic Animals. Diversity 2023, 15, 332. https://doi.org/10.3390/d15030332
Chiu Y-W, Huang D-J, Shieh B-S, Gan Y-C, Chen Y-C, Jen C-H, Lee L-L, Liang S-H. Current Status and Conservation of Springs in Taiwan: Water Quality Assessment and Species Diversity of Aquatic Animals. Diversity. 2023; 15(3):332. https://doi.org/10.3390/d15030332
Chicago/Turabian StyleChiu, Yuh-Wen, Da-Ji Huang, Bao-Sen Shieh, Ye-Chen Gan, Yi-Chih Chen, Chia-Hung Jen, Lin-Lee Lee, and Shih-Hsiung Liang. 2023. "Current Status and Conservation of Springs in Taiwan: Water Quality Assessment and Species Diversity of Aquatic Animals" Diversity 15, no. 3: 332. https://doi.org/10.3390/d15030332
APA StyleChiu, Y. -W., Huang, D. -J., Shieh, B. -S., Gan, Y. -C., Chen, Y. -C., Jen, C. -H., Lee, L. -L., & Liang, S. -H. (2023). Current Status and Conservation of Springs in Taiwan: Water Quality Assessment and Species Diversity of Aquatic Animals. Diversity, 15(3), 332. https://doi.org/10.3390/d15030332