Coral Oasis on Con Dao Islands: A Potential Refuge of Healthy Corals in the Offshore Waters of Vietnam?
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Environmental Features
2.2. Sampling Design
2.3. Data Analysis
3. Results
3.1. Sea Water Temperature Dynamics
3.2. Coral Communities
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kleypas, J.A.; Eakin, C.M. Scientists’ perceptions of the threats to coral reefs: Results of a survey of coral reef researchers. Mar. Poll. Bull. 2007, 80, 419–436. [Google Scholar]
- Wilkinson, C. Status of Coral Reefs of the World: 2008; Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre: Townsville, QLD, Australia, 2008. [Google Scholar]
- Burke, L.; Reytar, K.; Spalding, M.; Perry, A. Reef at Risk. Revisited; World Resource Institute: Washington, DC, USA, 2011. [Google Scholar]
- Eddy, T.D.; Lam, V.W.Y.; Reygondeau, G.; Cisneros-Montemayor, A.M.; Greer, K.; Palomares, M.L.D.; Bruno, J.F.; Ota, Y.; Cheung, W.W.L. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 2021, 4, 1278–1285. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Mumby, P.J.; Hooten, A.J.; Steneck, R.S.; Greenfield, P.; Gomez, E.; Harvell, C.D.; Sale, P.F.; Edwards, A.J.; Caldeira, K.; et al. Coral reefs under rapid climate change and ocean acidification. Science 2007, 318, 1737–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sale, P.F. Management of coral reefs: Where we have gone wrong and what we can do about it. Mar. Poll. Bull. 2008, 56, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Veron, J.E.N. Ocean acidification and coral reefs: An emerging big picture. Diversity 2011, 3, 262–274. [Google Scholar] [CrossRef] [Green Version]
- Dung, L.D. The status of coral reefs in central Vietnam’s coastal water under climate change. Aquat. Ecosyst. Health Manag. 2020, 23, 323–331. [Google Scholar] [CrossRef]
- Tkachenko, K.S.; Britayev, T.A.; Huan, N.; Pereladov, M.V.; Latypov, Y. Influence of anthropogenic pressure and seasonal upwelling on coral reefs in Nha Trang Bay (Central Vietnam). Mar. Ecol. 2016, 37, 1131–1146. [Google Scholar] [CrossRef]
- Vo, S.T.; de Vantier, L.; Tuyen, H.T.; Hoang, P.K. Ninh Hai waters (south Vietnam): A hotspot of reef corals in the western South China Sea. Raffles Bull. Zool. 2014, 62, 513–520. [Google Scholar]
- Tkachenko, K.S.; Huan, N.H.; Thanh, N.H.; Britayev, T.A. Extensive coral reef decline in Nha Trang Bay, Vietnam: Acanthaster planci outbreak: The final event in a sequence of chronic disturbances. Mar. Freshw. Res. 2020, 72, 186–199. [Google Scholar] [CrossRef]
- Tkachenko, K.S.; Dung, V.V.; Ha, V.T.; Huan, N.H. Coral reef collapse in South-Central Vietnam: A consequence of multiple negative effects. Aquat. Ecol. 2022, 1–9. [Google Scholar] [CrossRef]
- Latypov, Y.Y.; Selin, N.I. Current status of coral reefs of islands in the Gulf of Siam and southern Vietnam. Russ. J. Mar. Biol. 2011, 37, 255. [Google Scholar] [CrossRef]
- Tkachenko, K.S. The status of coral communities in three marine national parks of Vietnam. Sci. Rec. RSHMU 2018, 52, 110–119. (In Russian) [Google Scholar]
- Tkachenko, K.S.; Hoang, D.T.; Dang, H.N. Ecological status of coral reefs in the Spratly Islands, South China Sea (East Sea) and its relation to thermal anomalies. Estuar. Coast. Shelf Sci. 2020, 238, 106722. [Google Scholar] [CrossRef]
- WWF. Assessment of Legal Documents and Policies Relating to Management of Special-Use Forest in Vietnam; WWF: Hanoi, Vietnam, 2001. [Google Scholar]
- CDNP Authority. Ecotourism Development Project for Con Dao National Park Period 2016–2020; CDNP Authority: Con Dao, Vietnam, 2016. (In Vietnamese)
- DeVantier, L.M. Reef-Building Corals and Coral Communities of Con Dao Islands, Vietnam: Rapid Ecological Assessment of Biodiversity; Worldwide Fund for Nature Indo-China Program: Hanoi, Vietnam, 2002. [Google Scholar]
- Khuu, D.T.; Jones, P.J.S.; Ekins, P. A governance analysis of Con Dao National Park, Vietnam. Mar. Policy 2021, 127, 103986. [Google Scholar] [CrossRef]
- Hue, T.D. Proposal for Inclusion of Con Dao National Park, Viet Nam into IOSEA Site Network. In Proceedings of the 8th Meeting of the Signatory States, Da Nang, Vietnam, 21–25 October 2019; Available online: https://www.cms.int/iosea-turtles/en/document/proposal-inclusion-con-dao-national-park-viet-nam-iosea-site-network (accessed on 22 April 2022).
- Huang, D.; Licuanan, W.Y.; Hoeksema, B.W.; Chen, C.A.; Ang, P.O.; Huang, H.; Lane, D.J.W.; Vo, S.T.; Waheed, Z.; Affendi, Y.A.; et al. Extraordinary diversity of reef corals in the South China Sea. Mar. Biodivers. 2015, 45, 157–168. [Google Scholar] [CrossRef]
- Hughes, T.P.; Kerry, J.T.; Baird, A.H.; Connolly, S.R.; Dietzel, A.; Eakin, C.M.; Heron, S.F.; Hoey, A.S.; Hoogenboom, M.O.; Liu, G.; et al. Global warming transforms coral reef assemblages. Nature 2018, 556, 492–496. [Google Scholar] [CrossRef]
- Lough, J.M.; Anderson, K.D.; Hughes, T.P. Increasing thermal stress for tropical coral reefs: 1871–2017. Sci. Rep. 2018, 8, 6079. [Google Scholar] [CrossRef] [Green Version]
- Duong, P.X.; Du, H.T.; Linh, V.T.T.; Thai, T.D.; Thu, P.M. The effect of ENSO on hydrological structure and environment in the South Central Coast-Vietnam. J. Mar. Sci. 2020, 2, 10–16. [Google Scholar] [CrossRef]
- Tac, V.V.; Huan, N.H.; Son, T.P.H.; Tien, N.M.; Khang, N.H.T.; Quang, P.; Chung, T.V. Sea surface temperature anomaly in the coastal waters of Vietnam related to ENSO phenomenon. Vietnam J. Mar. Sci. Technol. 2020, 20, 1–12. [Google Scholar] [CrossRef]
- Hieu, N.T.D.; Huan, N.H.; Van, T.T.; Lien, N.P. Assessing the distribution and variation characteristics of marine primary productivity in the coastal marine area of Vietnam South Centre. IOP Conf. Ser. Earth Environ. Sci. 2022, 964, 012011. [Google Scholar] [CrossRef]
- Wang, C.; Wang, W.; Wang, D.; Wang, Q. Interannual variability of the Southeast Asia Sea associated with El Niño. J. Geophys. Res. Oceans 2006, 111, 1–19. [Google Scholar] [CrossRef]
- Dao, H.N.; Vu, H.T.; Kay, S.; Sailley, S. Impact of seawater temperature on coral reefs in the context of climate change. A case study of Cu Lao Cham—Hoi An Biosphere Reserve. Front. Mar. Sci. 2021, 8, 704682. [Google Scholar] [CrossRef]
- Cai, W.; Borlace, S.; Lengaigne, M.; van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L.; et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 2014, 4, 111–116. [Google Scholar] [CrossRef]
- Vo, S.T. The corals at Con Dao Archipelago (South Vietnam): Before, during and after the bleaching event in 1998. In Proceedings of the 9th International Coral Reef Symposium, Bali, Indonesia, 23–27 October 2002; Bali Convention Center: Bali, Indonesia, 2002; Volume 2, pp. 895–899. [Google Scholar]
- Ben, H.X.; Vo, S.T.; Hoang, P.K. Mass mortality of corals and reef living features at Con Dao archipelago (Vietnam) in October 2005. Vietnam J. Mar. Sci. Technol. 2008, 8, 59–70. (In Vietnamese) [Google Scholar]
- Hoang, P.K.; Tuan, V.S.; Quang, T.M.; Hoc, D.T.; Tuyen, H.T. Bleaching of corals in Nha Trang, Ninh Thuan, Con Dao and Phu Quoc islands in June–July 2019. Vietnam J. Mar. Sci. Technol. 2020, 20, 55–60. (In Vietnamese) [Google Scholar] [CrossRef]
- Vo, S.T.; Phan, K.H.; Hua, T.T.; Thai, M.Q.; Hoang, X.B. Genus-specific bleaching at Con Dao Islands, Southern Vietnam, June 2019. Galaxea J. Coral Reef Stud. 2020, 22, 27–28. [Google Scholar] [CrossRef]
- Giang, N.T. Short Report on Coral Bleaching Event in Con Dao 2010; CDNP Authority: Con Dao, Vietnam, 2010. (In Vietnamese)
- Giang, N.T. Mass Coral Bleaching in Con Dao 2016; CDNP Authority: Con Dao, Vietnam, 2016. Available online: https://nld.com.vn/thoi-su-trong-nuoc/san-ho-tai-con-dao-bi-tay-trang-hang-loat-20160616172609116.htm (accessed on 4 May 2022).
- Wang, Y. Composite of typhoon-induced sea surface temperature and chlorophyll—A responses in the South China Sea. J. Geophys. Res. Oceans 2020, 125, e2020JC016243. [Google Scholar] [CrossRef]
- Anh, L.T.; Takagi, H.; Thao, N.D. Storm surge and high waves due to 1997 typhoon Linda: Uninvestigated worst storm event in Southern Vietnam. J. Jpn. Soc. Civ. Eng. Ser. B3 2019, 75, I73–I78. [Google Scholar] [CrossRef]
- Skirving, W.; Marsh, B.; De La Cour, J.; Liu, G.; Harris, A.; Maturi, E.; Geiger, E.; Eakin, C.M. CoralTemp and the Coral Reef Watch Coral Bleaching Heat Stress Product Suite Version 3.1. Remote Sens. 2020, 12, 3856. [Google Scholar] [CrossRef]
- Kohler, K.E.; Gill, S.M. Coral Point Count with Excel extension (CPCe): A visual basic program for determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 2006, 32, 1259–1269. [Google Scholar] [CrossRef]
- Veron, J.E.N. Corals of the World [Three Volumes]; Australian Institute of Marine Science: Townsville, QLD, Australia, 2000.
- Latypov, Y.Y. Scleractinian Corals of Vietnam; Science Publishing Group: New York, NY, USA, 2014. [Google Scholar]
- Baird, A.H.; Marshall, P.A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 2002, 237, 133–141. [Google Scholar] [CrossRef]
- Marshall, P.A.; Baird, A.H. Bleaching of corals on the Great Barrier Reef: Differential susceptibility among taxa. Coral Reefs 2000, 19, 155–163. [Google Scholar] [CrossRef]
- Kayanne, H.; Harii, S.; Ide, Y.; Akimoto, F. Recovery of coral populations after 1998 bleaching of Shiraho Reef, in the southern Ruykyus, NW Pacific. Mar. Ecol. Prog. Ser. 2002, 239, 93–103. [Google Scholar] [CrossRef] [Green Version]
- McClanahan, T.R. The relationship between bleaching and mortality of common corals. Mar. Biol. 2004, 144, 1239–1245. [Google Scholar] [CrossRef]
- McClanahan, T.R.; Baird, A.H.; Marshall, P.A.; Toscano, M.A. Comparing bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia. Mar. Poll. Bull. 2004, 48, 327–335. [Google Scholar] [CrossRef]
- McClanahan, T.R.; Ateweberhan, M.; Graham, N.A.J.; Wilson, S.K.; Ruiz Sebastian, C.; Guillaume, M.M.M.; Bruggemann, J.H. Western Indian Ocean coral communities: Bleaching responses and susceptibility to extinction. Mar. Ecol. Progr. Ser. 2007, 337, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, C.R.C.; Harris, A.; Sheppard, A.L.S. Archipelago-wide coral recovery patterns since 1998 in the Chagos Archipelago, central Indian Ocean. Mar. Ecol. Prog. Ser. 2008, 362, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Stimpson, J. The effect of shading by the table coral Acropora hyacinthus on understory corals. Ecology 1985, 66, 40–53. [Google Scholar] [CrossRef]
- Pratchett, M.S.; Anderson, K.D.; Hoogenboom, M.O.; Widman, E.; Baird, A.H.; Pandolfi, J.M.; Edmunds, P.J.; Lough, J.M. Spatial, temporal and taxonomic variation in coral growth–implications for the structure and function of coral reef ecosystems. Oceanogr. Mar. Biol. 2015, 53, 215–295. [Google Scholar]
- Goreau, T.J. Bleaching and reef community change in Jamaica: 1951–1991. Am. Zool. 1992, 32, 683–695. [Google Scholar] [CrossRef] [Green Version]
- Oliver, T.A.; Palumbi, S.R. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 2011, 30, 429–440. [Google Scholar] [CrossRef]
- Guest, J.R.; Baird, A.H.; Maynard, J.A.; Muttaqin, E.; Edwards, A.J.; Campbell, S.J.; Yewdall, K.; Affendi, Y.A.; Chou, L.M. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 2012, 7, e33353. [Google Scholar] [CrossRef] [PubMed]
- Tkachenko, K.S.; Soong, K. Dongsha Atoll: A potential thermal refuge for reef-building corals in the South China Sea. Mar. Environ. Res. 2017, 127, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Kerry, J.T.; Alvarez-Noriega, M.; Alvarez-Romero, J.G.; Anderson, K.D.; Baird, A.H.; Babcock, R.C.; Beger, M.; Bellwood, D.R.; Berkelmans, R.; et al. Global warming and recurrent mass bleaching of corals. Nature 2017, 543, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Schoepf, V.; Carrion, S.A.; Pfeifer, S.M.; Naugle, M.; Dugal, L.; Bruyn, J.; McCulloch, M.T. Stress-resistant corals may not acclimatize to ocean warming but maintain heat tolerance under cooler temperatures. Nat. Commun. 2019, 10, 4031. [Google Scholar] [CrossRef] [PubMed]
- Dixon, A.M.; Forster, P.M.; Heron, S.F.; Stoner, A.M.K.; Beger, M. Future loss of local-scale thermal refugia in coral reef ecosystems. PLoS Clim. 2022, 1, e0000004. [Google Scholar] [CrossRef]
- Mumby, P.J.; Elliott, I.A.; Eakin, C.M.; Skirving, W.J.; Paris, C.B.; Edwards, H.J.; Enriquez, S.; Prieto, R.I.; Cherubin, L.M.; Stevens, J.R. Reserve design for uncertain responses of coral reefs to climate change. Ecol. Lett. 2011, 14, 132–140. [Google Scholar] [CrossRef]
- Magris, R.A.; Heron, S.F.; Pressey, R.L. Conservation planning for coral reefs accounting for climate warming disturbances. PLoS ONE 2015, 10, e0140828. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.C.; Starger, C.J.; McClanahan, T.R.; Glynn, P.W. Coral’s adaptive response to climate change. Nature 2004, 430, 741. [Google Scholar] [CrossRef]
- Ladner, J.T.; Barshis, D.J.; Palumbi, S.R. Protein evolution in two co-occurring types of Symbiodinium: An exploration into the genetic basis of thermal tolerance in Symbiodinium clade D. BMC Evol. Biol. 2012, 12, 217. [Google Scholar] [CrossRef] [Green Version]
- Grottoli, A.G.; Rodrigues, L.J.; Palardy, J.E. Heterotrophic plasticity and resilience in bleached corals. Nature 2006, 440, 1186. [Google Scholar] [CrossRef]
- Wooldridge, S.A. Differential thermal bleaching susceptibilities amongst coral taxa: Re-posing the role of the host. Coral Reefs 2014, 33, 15–27. [Google Scholar] [CrossRef]
- Brown, B.E. Coral bleaching: Causes and consequences. Coral Reefs 1997, 16, S129–S138. [Google Scholar] [CrossRef]
- Baird, A.H.; Bhagooli, R.; Ralph, P.J.; Takahashi, S. Coral bleaching: The role of the host. Trends Ecol. Evol. 2009, 24, 16–20. [Google Scholar] [CrossRef]
- Tkachenko, K.S. Coral reefs in the face of ecological threats of the 21st century. Biol. Bull. Rev. 2017, 7, 64–83. [Google Scholar] [CrossRef]
- Qin, Z.; Yu, K.; Wang, Y.; Xu, L.; Huang, X.; Chen, B.; Li, Y.; Wang, W.; Pan, Z. Spatial and intergeneric variation in physiological in physiological indicators of corals in the South China Sea: Insights into their current state and their adaptability to environmental stress. J. Geophys. Res. Ocean. 2019, 124, 3317–3332. [Google Scholar] [CrossRef]
Dominant Coral Genera (Species Number) | Main Representatives of Dominant Genera | Site # with the Cover of Coral Taxa | Thermal Susceptibility of Genus | ||
---|---|---|---|---|---|
>5% | >10% | >20% | |||
Acropora (32) | A. austera A. intermedia A. hyacinthus A. latistella A. millepora A. muricata A. robusta | 1 3 6 2, 4 2, 3 2 | 5 2, 5, 6 1, 6 1 | 1 1, 3 5 | Susceptible |
Montipora (16) | M. aequituberculata | 1 | 6 | Susceptible | |
Galaxea (1) | G. fascicularis | 1 | Resistant | ||
Pachyseris (2) | P. speciosa | 1 | Resistant | ||
Porites (8) | P. lobata P.rus | 2, 4 1, 4, 6 | Resistant (massive); Susceptible (branching) | ||
Lobophyllia (6) Fungia (5) | Lobophyllia recta Fungia fungites | 2, 4 6 | Resistant Resistant | ||
Other recorded coral genera | |||||
Acanthastrea (1) Astreopora (2) Astrea (2) Caulastrea (1) Coscinaraea (1) Ctenactis (1) Cycloseris (2) Cyphastrea (2) Dendrophyllia (1) Diploastrea (1) Dipsastraea (10) Echinopora (2) Echinophyllia (3) Euphyllia (2) Favites (6) Gardineroseris (1) Goniastrea (6) Goniopora (2) Herpolitha (1) Hydnophora (3) Isopora (2) Leptastrea (2) Leptoria (1) Leptoseris (1) Lithpohyllon (1) Merulina (1) Mycedium (1) Oulastrea (1) Oulophyllia (1) Oxypora (1) Pavona (4) Pectinia (2) Physogyra (1) Platygyra (4) Plerogyra (1) Plesiastrea (1) Pocillopora (5) Podabacia (1) Psammocora (4) Sandalolitha (2) Seriatopora (1) Stylophora (1) Tubastrea (2) Turbinaria (3) Millepora (2) Heliopora (1) | Resistant Resistant Resistant Resistant Resistant Resistant Resistant Resistant Resistant Resistant Resistant Resistant Resistant Resistant Susceptible Resistant Resistant Resistant Resistant Resistant Susceptible Resistant Susceptible Resistant Resistant Resistant Resistant Resistant Resistant Resistant Resistant Susceptible Susceptible Resistant Susceptible Susceptible Susceptible Resistant Resistant Resistant Susceptible Susceptible Resistant Resistant Susceptible Resistant |
F | P | ||
---|---|---|---|
Site 1 | |||
3–5 m depth | Stony coral | 0.11 | 0.893 |
Dead coral | 0.42 | 0.669 | |
Acropora | 2.15 | 0.172 | |
9–12 m depth | Stony coral | 1.77 | 0.224 |
Dead coral | 0.25 | 0.783 | |
Montipora aequituberculata | 0.44 | 0.653 | |
Porites rus | 0.56 | 0.585 | |
Pachyseris speciosa | 0.12 | 0.882 | |
Galaxea fascicularis | 0.35 | 0.708 | |
Site 3 | |||
3–5 m depth | Stony coral | 0.41 | 0.673 |
Dead coral | 0.7 | 0.517 | |
Acropora | 0.21 | 0.807 | |
Site 6 | |||
3–5 m depth | Stony coral | 4.59 | 0.023 |
Dead coral | 1.40 | 0.293 | |
Sargassum | 5.77 | 0.010 | |
Acropora | 3.85 | 0.036 | |
Montipora aequituberculata | 1.7 | 0.234 | |
9–12 m depth | Stony coral | 0.57 | 0.581 |
Dead coral | 1.13 | 0.362 | |
Acropora | 0.23 | 0.796 | |
Montipora aequituberculata | 0.16 | 0.847 | |
Fungia | 0.07 | 0.929 | |
Porites rus | 0.38 | 0.693 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkachenko, K.S.; Dung, V.V.; Ha, V.T. Coral Oasis on Con Dao Islands: A Potential Refuge of Healthy Corals in the Offshore Waters of Vietnam? Diversity 2023, 15, 4. https://doi.org/10.3390/d15010004
Tkachenko KS, Dung VV, Ha VT. Coral Oasis on Con Dao Islands: A Potential Refuge of Healthy Corals in the Offshore Waters of Vietnam? Diversity. 2023; 15(1):4. https://doi.org/10.3390/d15010004
Chicago/Turabian StyleTkachenko, K. S., V. V. Dung, and V. T. Ha. 2023. "Coral Oasis on Con Dao Islands: A Potential Refuge of Healthy Corals in the Offshore Waters of Vietnam?" Diversity 15, no. 1: 4. https://doi.org/10.3390/d15010004
APA StyleTkachenko, K. S., Dung, V. V., & Ha, V. T. (2023). Coral Oasis on Con Dao Islands: A Potential Refuge of Healthy Corals in the Offshore Waters of Vietnam? Diversity, 15(1), 4. https://doi.org/10.3390/d15010004