Circular Bedforms Due to Pit Foraging of Greater Flamingo Phoenicopterus roseus in a Back-Barrier Intertidal Habitat
Abstract
:Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. Oikos 1994, 69, 373–386. [Google Scholar] [CrossRef]
- Floyd, C.; Martin, K. Avian ecosystem engineers: Birds that excavate cavities. In Why Birds Matter: Avian Ecological Function and Ecosystem Services; Şekercioğlu, Ç.H., Wenny, D.G., Whelan, C.J., Floyd, C., Eds.; University of Chicago Press: Chicago, IL, USA, 2016; pp. 298–320. [Google Scholar]
- Smith, J.L.; Mulder, C.P.H.; Ellis, J.C. Seabirds as ecosystem engineers: Nutrient inputs and physical disturbance. In Seabird Islands. Ecology, Invasion, and Restoration; Mulder, C.P.H., Anderson, W.B., Towns, D.R., Bellingham, P.J., Eds.; Oxford University Press: New York, NY, USA, 2011; pp. 27–54. [Google Scholar]
- Rodríguez-Pérez, H.; Green, A.J. Waterbird impacts on widgeongrass Ruppia maritima in a Mediterranean wetland: Comparing bird groups and seasonal effects. Oikos 2006, 112, 525–534. [Google Scholar] [CrossRef]
- Gihwala, K.N.; Pillay, D.; Varughese, M. Differential impacts of foraging plasticity by greater flamingo Phoenicopterus roseus on intertidal soft sediments. Mar. Ecol. Prog. Ser. 2017, 569, 227–242. [Google Scholar] [CrossRef]
- El-Hacen, E.M.; Bouma, T.J.; Oomen, P.; Piersma, T.; Olff, H. Large-scale ecosystem engineering by flamingos and fiddler crabson West-African intertidal flats promote joint food availability. Oikos 2018, 128, 753–764. [Google Scholar] [CrossRef]
- du Plessis, D.S.; Pillay, D. Temporal interactions with flamingo (Phoenicopterus roseus) foraging plasticity: Basal resources, assemblage structure and benthic heterogeneity. Estuar. Coast. Shelf Sci. 2022, 264, 107659. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, H.; Green, A.J.; Figuerola, J. Effects of Greater Flamingo Phoenicopterus ruber on macrophytes, chironomids and turbidity in natural marshes in Doñana, SW Spain. Fundam. Appl. Limnol. 2007, 170, 167–175. [Google Scholar] [CrossRef]
- Gihwala, K.N.; Pillay, D.; Varughese, M. Flamingo Foraging Plasticity: Ecological Drivers and Impacts. Master’s Dissertation, University of Cape, Town, South Africa, 2016; p. 94. [Google Scholar]
- Glassom, D.; Branch, G.M. Impact of predation by greater flamingos Phoenicopterus ruber on the macrofauna of two southern African lagoons. Mar. Ecol. Prog. Ser. 1997, 149, 1–12. [Google Scholar] [CrossRef]
- Johnson, A.R.; Cézilly, F. The Greater Flamingo; T & AD Poyser: London, UK, 2007; p. 336. [Google Scholar]
- Greater Flamingo (Phoenicopterus roseus) Feeding Mounds in the Sand, De Mond Nature Reserve, Western Cape, South Africa. Credit: Peter Chadwick, Science Photo Library. Available online: https://www.sciencephoto.com/media/728139/view/greater-flamingo-feeding-mounds (accessed on 24 August 2022).
- Flemming, B.W. Siliciclastic back-barrier tidal flats. In Principles of Tidal Sedimentology; Davis, R.A., Jr., Dalrymple, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 231–267. [Google Scholar]
- Carboneras, C.; Béchet, A. Phoenicopterus roseus. In European Breeding Bird Atlas 2: Distribution, Abundance and Change; Keller, V., Herrando, S., Voříšek, P., Franch, M., Kipson, M., Milanesi, P., Martí, D., Anton, M., Klvaňová, A., Kalyakin, M.V., et al., Eds.; European Bird Census Council & Lynx Edicions: Barcelona, Spain, 2020; p. 177. [Google Scholar]
- BirdLife International. Species Factsheet: Phoenicopterus roseus. 2022. Available online: http://www.birdlife.org (accessed on 17 August 2022).
- Wetlands International. Annex 1 to the 7th Edition of the AEWA Conservation Status Report. 2018. Available online: https://www.unep-aewa.org/sites/default/files/document/aewa_mop7_14_CSR7_with_annexes_en_corr1_0.pdf (accessed on 18 August 2022).
- Amat, J.A.; Rendón, M.A.; Rendón-Martos, M.; Garrido, A.; Ramírez, J.M. Ranging behaviour of greater flamingos during the breeding and post-breeding periods: Linking connectivity to biological processes. Biol. Conserv. 2005, 125, 183–192. [Google Scholar] [CrossRef]
- Brichetti, P.; Fracasso, G. Ornitologia Italiana. Gavidae-Falconidae; Alberto Perdisa Editore: Bologna, Italy, 2003; p. 479. [Google Scholar]
- Scarton, F. Environmental characteristics of shallow bottoms used by Greater Flamingo Phoenicopterus roseus in a northern Adriatic lagoon. Acrocephalus 2017, 38, 161–169. [Google Scholar] [CrossRef]
- Brichetti, P.; Fracasso, G. The Birds of Italy: Anatidae-Alcidae; Edizioni Belvedere: Latina, Italy, 2018; Volume 1, p. 512, “historia naturae” (6). [Google Scholar]
- Verza, E.; Grion, M.; Ravagnani, A.; Sartori, A.; Stival, E.; Tinarelli, R. Censimento del Fenicottero (Phoenicopterus roseus) Presso le Zone Umide della Costa Alto Adriatica (Friuli Venezia Giulia, Veneto, Emilia Romagna)—INVERNO 2021, Società Veneziana di Scienze Naturali. Available online: https://www.svsn.it/censimento-del-fenicottero-phoenicopterus-roseus-presso-le-zone-umide-della-costa-alto-adriatica-friuli-venezia-giulia-veneto-emilia-romagna-inverno-2021/ (accessed on 18 August 2022).
- Tourenq, C.; Aulagnier, S.; Durieux, L.; Lek, S.; Mesleard, F.; Johnson, A.; Martin, J.L. Identifying rice fields at risk from damage by the greater flamingo. J. Appl. Ecol. 2001, 38, 170–179. [Google Scholar] [CrossRef]
- Béchet, A.; Germain, C.; Sandoz, A.; Hirons, G.J.M.; Green, R.E.; Walmsley, J.G.; Johnson, A.R. Assessment of the impacts of hydrological fluctuations and salt pans abandonment on Greater flamingos in the Camargue, South of France. Biodivers. Conserv. 2009, 18, 1575–1588. [Google Scholar] [CrossRef]
- Rendon-Martos, M.; Vargas, J.M.; Rendon, M.A.; Garrido, A.; Ramirez, J.M. Nocturnal movements of breeding Greater flamingos in southern Spain. Waterbirds 2000, 23, 9–19. [Google Scholar] [CrossRef]
- Yohannes, E.; Arnaud, A.; Béchet, A. Tracking variations in wetland use by breeding flamingos using stable isotope signatures of feather and blood. Estuar. Coast. Shelf Sci. 2014, 136, 11–18. [Google Scholar] [CrossRef]
- Petti, M.; Pascolo, S.; Bosa, S.; Bezzi, A.; Fontolan, G. Tidal flats morphodynamics: A new conceptual model to predict their evolution over a medium-long period. Water 2019, 11, 1176. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvador, P.; Bezzi, A.; Martinucci, D.; Sponza, S.; Fontolan, G. Circular Bedforms Due to Pit Foraging of Greater Flamingo Phoenicopterus roseus in a Back-Barrier Intertidal Habitat. Diversity 2022, 14, 788. https://doi.org/10.3390/d14100788
Salvador P, Bezzi A, Martinucci D, Sponza S, Fontolan G. Circular Bedforms Due to Pit Foraging of Greater Flamingo Phoenicopterus roseus in a Back-Barrier Intertidal Habitat. Diversity. 2022; 14(10):788. https://doi.org/10.3390/d14100788
Chicago/Turabian StyleSalvador, Paolo, Annelore Bezzi, Davide Martinucci, Stefano Sponza, and Giorgio Fontolan. 2022. "Circular Bedforms Due to Pit Foraging of Greater Flamingo Phoenicopterus roseus in a Back-Barrier Intertidal Habitat" Diversity 14, no. 10: 788. https://doi.org/10.3390/d14100788
APA StyleSalvador, P., Bezzi, A., Martinucci, D., Sponza, S., & Fontolan, G. (2022). Circular Bedforms Due to Pit Foraging of Greater Flamingo Phoenicopterus roseus in a Back-Barrier Intertidal Habitat. Diversity, 14(10), 788. https://doi.org/10.3390/d14100788