Elevational Patterns of Blowfly Parasitism in Two Hole Nesting Avian Species
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Statement
Appendix A
Nest ID | Locality | P. azurea Pupae | Host Species |
---|---|---|---|
A02 | Albergue de Lecrín | 0 | Parus major |
A03 | Albergue de Lecrín | 22 | Parus major |
A06 | Albergue de Lecrín | 0 | Parus major |
A07 | Albergue de Lecrín | 23 | Parus major |
A09 | Albergue de Lecrín | 0 | Periparus ater |
A09 | Albergue de Lecrín | 0 | Parus major |
A10 | Albergue de Lecrín | 0 | Periparus ater |
A12 | Albergue de Lecrín | 0 | Parus major |
A13 | Albergue de Lecrín | 0 | Parus major |
A15 | Albergue de Lecrín | 0 | Periparus ater |
A16 | Albergue de Lecrín | 17 | Parus major |
A18 | Albergue de Lecrín | 0 | Parus major |
A19 | Albergue de Lecrín | 0 | Parus major |
A20 | Albergue de Lecrín | 0 | Parus major |
A27 | Albergue de Lecrín | 0 | Parus major |
A28 | Albergue de Lecrín | 0 | Parus major |
A33 | Albergue de Lecrín | 0 | Periparus ater |
A38 | Albergue de Lecrín | 0 | Parus major |
A42 | Albergue de Lecrín | 0 | Parus major |
A43 | Albergue de Lecrín | 10 | Parus major |
A45 | Albergue de Lecrín | 0 | Periparus ater |
A46 | Albergue de Lecrín | 2 | Parus major |
A48 | Albergue de Lecrín | 0 | Periparus ater |
A51 | Albergue de Lecrín | 0 | Parus major |
A52 | Albergue de Lecrín | 2 | Periparus ater |
A54 | Albergue de Lecrín | 5 | Parus major |
A55 | Albergue de Lecrín | 28 | Parus major |
A60 | Albergue de Lecrín | 0 | Parus major |
H01 | Hoya del Portillo | 22 | Periparus ater |
H03 | Hoya del Portillo | 16 | Periparus ater |
H04 | Hoya del Portillo | 4 | Periparus ater |
H08 | Hoya del Portillo | 40 | Periparus ater |
H12 | Hoya del Portillo | 0 | Parus major |
H13 | Hoya del Portillo | 4 | Periparus ater |
H14 | Hoya del Portillo | 39 | Periparus ater |
H19 | Hoya del Portillo | 6 | Periparus ater |
H26 | Hoya del Portillo | 10 | Periparus ater |
H34 | Hoya del Portillo | 0 | Periparus ater |
H36 | Hoya del Portillo | 3 | Periparus ater |
H37 | Hoya del Portillo | 1 | Parus major |
H38 | Hoya del Portillo | 5 | Periparus ater |
H43 | Hoya del Portillo | 0 | Periparus ater |
H46 | Hoya del Portillo | 0 | Periparus ater |
H50 | Hoya del Portillo | 2 | Periparus ater |
H51 | Hoya del Portillo | 20 | Periparus ater |
H55 | Hoya del Portillo | 24 | Periparus ater |
H60 | Hoya del Portillo | 4 | Parus major |
P01 | Puentepalo | 10 | Periparus ater |
P02 | Puentepalo | 0 | Parus major |
P03 | Puentepalo | 0 | Parus major |
P04 | Puentepalo | 7 | Periparus ater |
P14 | Puentepalo | 1 | Periparus ater |
P21 | Puentepalo | 0 | Periparus ater |
P23 | Puentepalo | 2 | Periparus ater |
P25 | Puentepalo | 9 | Periparus ater |
P28 | Puentepalo | 0 | Parus major |
P29 | Puentepalo | 6 | Periparus ater |
P32 | Puentepalo | 9 | Parus major |
P33 | Puentepalo | 53 | Periparus ater |
P36 | Puentepalo | 18 | Periparus ater |
P43 | Puentepalo | 1 | Periparus ater |
P46 | Puentepalo | 6 | Periparus ater |
P53 | Puentepalo | 3 | Periparus ater |
P54 | Puentepalo | 0 | Periparus ater |
P57 | Puentepalo | 22 | Periparus ater |
P59 | Puentepalo | 37 | Parus major |
P60 | Puentepalo | 13 | Parus major |
References
- Schmid-Hempel, P. Evolutionary Parasitology: The Integrated Study of Infections, Immunology, Ecology, and Genetics; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Møller, A.P. Parasitism and the evolution of host life history. In Host-Parasite Evolution: General Principles and Avian Models; Clayton, D.H., Moore, J., Eds.; Oxford University Press: Oxford, UK, 1997; pp. 105–127. [Google Scholar]
- Møller, A.P.; Arriero, E.; Lobato, E.; Merino, S. A meta-analysis of parasite virulence in nestling birds. Biol. Rev. 2009, 84, 567–588. [Google Scholar] [CrossRef]
- Brown, C.R.; Brown, M.B. Ectoparasitism as a cost of coloniality in cliff swallows (Hirundo pyrrhonota). Ecology 1986, 67, 1206–1218. [Google Scholar] [CrossRef]
- Fitze, P.S.; Clobert, J.; Richner, H. Long-term life-history consequences of ectoparasite-modulated growth and development. Ecology 2004, 85, 2018–2026. [Google Scholar] [CrossRef]
- Thomas, D.W.; Shipley, B.; Blondel, J.; Perret, P.; Simon, A.; Lambrechts, M.M. Common paths link food abundance and ectoparasite loads to physiological performance and recruitment in nestling blue tits. Funct. Ecol. 2007, 21, 947–955. [Google Scholar] [CrossRef]
- Richner, H.; Tripet, F. Ectoparasitism and the trade-off between current and future reproduction. Oikos 1999, 86, 535–538. [Google Scholar] [CrossRef]
- Bennett, G.F.; Whitworth, T.L. Studies on the life history of some species of Protocalliphora (Diptera: Calliphoridae). Can. J. Zool. 1991, 69, 2048–2058. [Google Scholar] [CrossRef]
- Veiga, J.; Moreno, E.; Benzal, J.; Valera, F. Off-host longevity of the winged dispersal stage of Carnus hemapterus (Insecta: Diptera) modulated by gender, body size and food provisioning. Parasitology 2019, 146, 241–245. [Google Scholar] [CrossRef]
- Heeb, P.; Kölliker, M.; Richner, H. Bird ectoparasite interactions, nest humidity, and ectoparasite community structure. Ecology 2000, 81, 958–968. [Google Scholar]
- Dawson, R.D.; Hillen, K.K.; Whitworth, T.L. Effects of experimental variation in temperature on larval densities of parasitic Protocalliphora (Diptera: Calliphoridae) in nests of tree swallows (Passeriformes: Hirundinidae). Environ. Entomol. 2005, 34, 563–568. [Google Scholar] [CrossRef]
- Castaño-Vázquez, F.; Martínez, J.; Merino, S.; Lozano, M. Experimental manipulation of temperature reduce ectoparasites in nests of blue tits Cyanistes caeruleus. J. Avian Biol. 2018, 49, e01695. [Google Scholar] [CrossRef]
- Merino, S.; Potti, J. Weather dependent effects of nest ectoparasites on their bird hosts. Ecography 1996, 19, 107–113. [Google Scholar] [CrossRef]
- Stephenson, S.; Hannon, S.; Proctor, H. The function of feathers in tree swallow nests: Insulation or ectoparasite barrier? Condor 2009, 111, 479–487. [Google Scholar] [CrossRef]
- Clayton, D.H.; Koop, J.A.H.; Harbison, C.W.; Moyer, B.R.; Bush, S.E. How birds combat ectoparasites. Open Ornithol. J. 2010, 3, 41–71. [Google Scholar] [CrossRef] [Green Version]
- Bush, S.E.; Clayton, D.H. Anti-parasite behaviour of birds. Philos. Trans. R. Soc. B 2018, 373, 20170196. [Google Scholar] [CrossRef] [PubMed]
- Merino, S. Immunocompetence and parasitism in nestlings from wild populations. Open Ornithol. J. 2010, 3, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Owen, J.P.; Nelson, A.C.; Clayton, D.H. Ecological immunology of bird-ectoparasite systems. Trends Parasitol. 2010, 26, 530–539. [Google Scholar] [CrossRef]
- Tschirren, B.; Bischoff, L.L.; Saladin, V.; Richner, H. Host condition and host immunity affect parasite fitness in a bird-ectoparasite system. Funct. Ecol. 2007, 21, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Bize, P.; Jeanneret, C.; Klopfenstein, A.; Roulin, A. What makes a host profitable? Parasites balance host nutritive resources against immunity. Am. Nat. 2008, 171, 107–118. [Google Scholar] [CrossRef] [Green Version]
- DeSimone, J.G.; Clotfelter, E.D.; Black, E.C.; Knutie, S.A. Avoidance, tolerance, and resistance to ectoparasites in nestling and adult tree swallows. J. Avian Biol. 2018, 49, e01641. [Google Scholar] [CrossRef]
- Grab, K.M.; Hiller, B.J.; Hurlbert, J.H.; Ingram, M.E.; Parker, A.B.; Pokutnaya, D.Y.; Knutie, S.A. Host tolerance and resistance to parasitic nest flies differs between two wild bird species. Ecol. Evol. 2019, 9, 12144–12155. [Google Scholar] [CrossRef] [PubMed]
- Knutie, S.A. Food supplementation affects gut microbiota and immunological resistance to parasites in a wild bird species. J. Appl. Ecol. 2020, 57, 536–547. [Google Scholar] [CrossRef]
- Møller, A.P.; Martín-Vivaldi, M.; Merino, S.; Soler, J.J. Density-dependent and geographical variation in bird immune response. Oikos 2006, 115, 463–474. [Google Scholar] [CrossRef]
- Saino, N.; Calza, S.; Møller, A.P. Immunocompetence of nestling barn swallows in relation to brood size and parental effort. J. Anim. Ecol. 1997, 66, 827–836. [Google Scholar] [CrossRef]
- Hoi-Leitner, M.; Romero-Pujante, M.; Hoi, H.; Pavlova, A. Food availability and immune capacity in serin (Serinus serinus) nestlings. Behav. Ecol. Sociobiol. 2001, 49, 333–339. [Google Scholar] [CrossRef]
- Ardia, D.R. Cross-fostering reveals an effect of spleen size and nest temperatures on immune responses in nestling European starlings. Oecologia 2005, 145, 327–334. [Google Scholar] [CrossRef]
- Garvin, J.C.; Abroe, B.; Pedersen, M.C.; Dunn, P.O.; Whittingham, L.A. Immune response of nestling warblers varies with extra-pair paternity and temperature. Mol. Ecol. 2006, 15, 3833–3840. [Google Scholar] [CrossRef]
- Merino, S.; Møller, A.P. Host-parasite interactions and climate change. In Effects of Climate Change on Birds; Møller, A.P., Fiedler, W., Berthold, P., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 213–226. [Google Scholar]
- Møller, A.P.; Merino, S.; Soler, J.J.; Antonov, A.; Badás, E.P.; Calero-Torralbo, M.A.; de Lope, F.; Eeva, T.; Figuerola, J.; Flensted-Jensen, E.; et al. Assessing the effects of climate on host-parasite interactions: A comparative study of European birds and their parasites. PLoS ONE 2013, 8, e82886. [Google Scholar] [CrossRef]
- Pounds, J.A.; Bustamante, M.R.; Coloma, L.A.; Consuegra, J.A.; Fogden, M.P.L.; Foster, P.N.; La Marca, E.; Masters, K.L.; Merino-Viteri, A.; Puschendorf, R.; et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 2006, 439, 161–167. [Google Scholar] [CrossRef]
- Badyaev, A.V. Altitudinal variation in sexual dimorphism: A new pattern and alternative hypotheses. Behav. Ecol. 1997, 8, 675–690. [Google Scholar] [CrossRef]
- Baur, A.; Baur, B. Interpopulation variation in the prevalence and intensity of parasitic mite infection in the land snail Arianta arbustorum. Invertebr. Biol. 2005, 124, 194–201. [Google Scholar] [CrossRef]
- Meléndez, L.; Laiolo, P.; Mironov, S.; García, M.; Magaña, O.; Jovani, R. Climate-driven variation in the intensity of a host-symbiont animal interaction along a broad elevation gradient. PLoS ONE 2014, 9, e101942. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Ruiz, L.; Megía-Palma, R.; Reguera, S.; Ruiz, S.; Zamora-Camacho, F.J.; Figuerola, J.; Moreno-Rueda, G. Opposed elevational variation in prevalence and intensity of endoparasites and their vectors in a lizard. Curr. Zool. 2018, 64, 197–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbayo, J.; Martín, J.; Civantos, E. Habitat type influences parasite load in Algerian Psammodromus algirus. Can. J. Zool. 2019, 97, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Llanos-Garrido, A.; Díaz, J.A.; Pérez-Rodríguez, A.; Arriero, E. Variation in male ornaments in two lizard populations with contrasting parasite loads. J. Zool. 2017, 303, 218–225. [Google Scholar] [CrossRef]
- Seddon, R.J.; Hews, D.K. Correlates of melanization in multiple high- and low-elevation populations of the lizard, Sceloporus occidentalis: Behavior, hormones, and parasites. J. Exp. Zool. Part A 2017, 327, 481–492. [Google Scholar] [CrossRef]
- Comas, M. Body condition, sex and elevation in relation to mite parasitism in a high mountain gecko. J. Zool. 2020, 310, 298–305. [Google Scholar] [CrossRef]
- Wiedenfeld, D.A.; Jiménez U., G.A.; Fessl, B.; Kleindorfer, S.; Valarezo, J.C. Distribution of the introduced parasitic fly Philornis downsi (Diptera, Muscidae) in the Galapagos Islands. Pac. Conserv. Biol. 2007, 13, 14. [Google Scholar] [CrossRef]
- O’Connor, J.A.; Dudaniec, R.Y.; Kleindorfer, S. Parasite infestation and predation in Darwin’s small ground finch: Contrasting two elevational habitats between islands. J. Trop. Ecol. 2010, 26, 285–292. [Google Scholar] [CrossRef]
- Young, B.E. Effects of the parasitic botfly Philornis carinatus on nestling house wrens, Troglodytes aedon, in Costa Rica. Oecologia 1993, 93, 256–262. [Google Scholar] [CrossRef]
- Hurtrez-Boussès, S.; Blondel, J.; Perret, P.; Renaud, F. Relationship between intensity of blowfly infestation and reproductive success in a Corsican population of Blue Tits. J. Avian Biol. 1997, 28, 267–270. [Google Scholar] [CrossRef]
- Hurtrez-Boussès, S.; Perret, P.; Renaud, F.; Blondel, J. High blowfly parasitic loads affect breeding success in a Mediterranean population of blue tits. Oecologia 1997, 112, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Merino, S.; Potti, J. Growth, nutrition, and blow fly parasitism in nestling Pied Flycatchers. Can. J. Zool. 1998, 76, 936–941. [Google Scholar] [CrossRef]
- Bańbura, J.; Perret, P.; Blondel, J.; Thomas, D.W.; Cartan-Son, M.; Lambrechts, M.M. Effects of Protocalliphora parasites on nestling food composition in Corsican Blue Tits Parus caeruleus: Consequences for nestling performance. Acta Ornithol. 2004, 39, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Puchala, P. Detrimental effects of larval blow flies (Protocalliphora azurea) on nestlings and breeding success of Tree Sparrows (Passer montanus). Can. J. Zool. 2004, 82, 1285–1290. [Google Scholar] [CrossRef]
- Simon, A.; Thomas, D.; Blondel, J.; Perret, P.; Lambrechts, M.M. Physiological ecology of Mediterranean blue tits (Parus caeruleus L.): Effects of ectoparasites (Protocalliphora spp.) and food abundance on metabolic capacity of nestlings. Physiol. Biochem. Zool. 2004, 77, 492–501. [Google Scholar] [CrossRef]
- Arriero, E.; Moreno, J.; Merino, S.; Martínez, J. Habitat effects on physiological stress response in nestling blue tits are mediated through parasitism. Physiol. Biochem. Zool. 2008, 81, 195–203. [Google Scholar] [CrossRef]
- Merino, S.; Potti, J. Mites and blowflies decrease growth and survival in nestling pied flycatchers. Oikos 1995, 73, 95–103. [Google Scholar] [CrossRef]
- Bouslama, Z.; Chabi, Y.; Lambrechts, M. Chicks resist high parasite intensities in an Algerian population of blue tits. Écoscience 2001, 8, 320–324. [Google Scholar] [CrossRef]
- Potti, J. Blowfly infestation at the nestling stage affects egg size in the Pied Flycatcher Ficedula hypoleuca. Acta Ornithol. 2008, 43, 76–82. [Google Scholar] [CrossRef]
- Eeva, T.; Andersson, T.; Berglund, Å.M.M.; Brommer, J.E.; Hyvönen, R.; Klemola, T.; Laaksonen, T.; Loukola, O.; Morosinotto, C.; Rainio, K.; et al. Species and abundance of ectoparasitic flies (Diptera) in pied flycatcher nests in Fennoscandia. Parasites Vectors 2015, 8, 648. [Google Scholar] [CrossRef] [Green Version]
- Garrido-Bautista, J.; Moreno-Rueda, G.; Baz, A.; Canal, D.; Camacho, C.; Cifrián, B.; Nieves-Aldrey, J.L.; Carles-Tolrá, M.; Potti, J. Variation in parasitoidism of Protocalliphora azurea (Diptera: Calliphoridae) by Nasonia vitripennis (Hymenoptera: Pteromalidae) in Spain. Parasitol. Res. 2020, 119, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Gold, C.S.; Dahlsten, D.L. Prevalence, habitat selection, and biology of Protocalliphora (Diptera: Calliphoridae) found in nests of mountain and chestnut-backed chickadees in California. Hilgardia 1989, 57, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Hori, K.; Iwasa, M.; Ogawa, R. Biology of two species of the Protocalliphora (Diptera: Calliphoridae) in Tokachi, Hokkaido, Japan: Feeding behaviour of larvae, larval and pupal duration, voltinism and host specificity. Appl. Entomol. Zool. 1990, 25, 475–482. [Google Scholar] [CrossRef]
- Polo, V. Carbonero Garrapinos—Periparus ater (Linnaeus, 1758). In Enciclopedia Virtual de los Vertebrados Españoles; Salvador, A., Morales, M.B., Eds.; Museo Nacional de Ciencias Naturales: Madrid, Spain, 2016; Available online: http://www.vertebradosibericos.org (accessed on 13 May 2021).
- Gosler, A. The Great Tit; Hamlyn: London, UK, 1993. [Google Scholar]
- Atiénzar, F.; Álvarez, E.; Barba, E. Carbonero común—Parus major (Linnaeus, 1758). In Enciclopedia Virtual de los Vertebrados Españoles; Salvador, A., Morales, M.B., Eds.; Museo Nacional de Ciencias Naturales: Madrid, Spain, 2016; Available online: http://www.vertebradosibericos.org (accessed on 21 June 2021).
- Baucells Colomer, J.; Camprodon i Subirachs, J.; Cerdeira i Ribot, J.; Vila Perdiguero, P. Guía de las Cajas Nido y Comederos Para Aves y Otros Vertebrados; Lynx Edicions: Barcelona, Spain, 2003. [Google Scholar]
- Moreno-Rueda, G. Selección de cajas-nido por aves insectívoras en Sierra Nevada. Zool. Baet. 2003, 13, 131–138. [Google Scholar]
- Rózsa, L.; Reiczigel, J.; Majoros, G. Quantifying parasites in samples of hosts. J. Parasitol. 2000, 86, 228–232. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Johnson, L.S.; Eastman, M.D.; Kermott, L.H. Effect of ectoparasitism by larvae of the blow fly Protocalliphora parorum (Diptera: Calliphoridae) on nestling House Wrens, Troglodytes aedon. Can. J. Zool. 1991, 69, 1441–1446. [Google Scholar] [CrossRef]
- Musgrave, K.; Bartlow, A.W.; Fair, J.M. Long-term variation in environmental conditions influences host-parasite fitness. Ecol. Evol. 2019, 9, 7688–7703. [Google Scholar] [CrossRef] [Green Version]
- Eeva, T.; Lehikoinen, E.; Nurmi, J. Effects of ectoparasites on breeding success of great tits (Parus major) and pied flycatchers (Ficedula hypoleuca) in an air pollution gradient. Can. J. Zool. 1994, 72, 624–635. [Google Scholar] [CrossRef]
- Eeva, T.; Klemola, T. Variation in prevalence and intensity of two avian ectoparasites in a polluted area. Parasitology 2013, 140, 1384–1393. [Google Scholar] [CrossRef] [Green Version]
- Lafferty, K.D. Environmental parasitology: What can parasites tell us about human impacts on the environment? Parasitol. Today 1997, 13, 251–255. [Google Scholar] [CrossRef]
- Butler, M.W.; Garvin, J.C.; Wheelwright, N.T.; Freeman-Gallant, C.R. Ambient temperature, but not paternity, is associated with immune response in savannah sparrows (Passerculus sandwichensis). Auk 2009, 126, 536–542. [Google Scholar] [CrossRef]
- Arneberg, P.; Skorping, A.; Grenfell, B.; Read, A.F. Host densities as determinants of abundance in parasite communities. Proc. R. Soc. Lond. Ser. B 1998, 265, 1283–1289. [Google Scholar] [CrossRef] [Green Version]
- Bennett, G.F.; Whitworth, T.L. Host, nest, and ecological relationship of species of Protocalliphora (Diptera: Calliphoridae). Can. J. Zool. 1992, 70, 51–61. [Google Scholar] [CrossRef]
- Cantarero, A.; López-Arrabé, J.; Rodríguez-García, V.; González-Braojos, S.; Ruiz-De-Castañeda, R.; Redondo, A.J.; Moreno, J. Factors affecting the presence and abundance of generalist ectoparasites in nests of three sympatric hole-nesting bird species. Acta Ornithol. 2013, 48, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Moreno, J.; Merino, S.; Lobato, E.; Ruiz-De-Castañeda, R.; Martínez-de la Puente, J.; del Cerro, S.; Rivero-de Aguilar, J. Nest-dwelling ectoparasites of two sympatric hole-nesting passerines in relation to nest composition: An experimental study. Écoscience 2009, 16, 418–427. [Google Scholar] [CrossRef] [Green Version]
- Remeš, V.; Krist, M. Nest design and the abundance of parasitic Protocalliphora blow flies in two hole-nesting passerines. Écoscience 2005, 12, 549–553. [Google Scholar] [CrossRef]
DF | χ2 | p | |
---|---|---|---|
Locality | 2 | 11.53 | 0.003 |
Species | 1 | 0.465 | 0.50 |
Locality*Species | 2 | 3.69 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Rueda, G. Elevational Patterns of Blowfly Parasitism in Two Hole Nesting Avian Species. Diversity 2021, 13, 591. https://doi.org/10.3390/d13110591
Moreno-Rueda G. Elevational Patterns of Blowfly Parasitism in Two Hole Nesting Avian Species. Diversity. 2021; 13(11):591. https://doi.org/10.3390/d13110591
Chicago/Turabian StyleMoreno-Rueda, Gregorio. 2021. "Elevational Patterns of Blowfly Parasitism in Two Hole Nesting Avian Species" Diversity 13, no. 11: 591. https://doi.org/10.3390/d13110591
APA StyleMoreno-Rueda, G. (2021). Elevational Patterns of Blowfly Parasitism in Two Hole Nesting Avian Species. Diversity, 13(11), 591. https://doi.org/10.3390/d13110591