Understanding the Long-Term Impact of Bamboos on Secondary Forests: A Case for Bamboo Management in Southern Brazil
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Methodology
3. Results
3.1. Species Diversity and Composition
3.2. Forest Structure
4. Discussion
4.1. Species Diversity and Composition
4.2. Forest Structure
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020; ISBN 9789251329740. [Google Scholar]
- Pimm, S.L.; Jenkins, C.N.; Abell, R.; Brooks, T.M.; Gittleman, J.L.; Joppa, L.N.; Raven, P.H.; Roberts, C.M.; Sexton, J.O. The biodiversity of species and their rates of extinction, distribution, and protection. Science 2014, 344, 1246752. [Google Scholar] [CrossRef] [PubMed]
- Alroy, J. Effects of habitat disturbance on tropical forest biodiversity. Proc. Natl. Acad. Sci. USA 2017, 114, 6056–6061. [Google Scholar] [CrossRef] [Green Version]
- Malhi, Y.; Gardner, T.A.; Goldsmith, G.R.; Silman, M.R.; Zelazowski, P. Tropical forests in the anthropocene. Annu. Rev. Environ. Resour. 2014, 39, 125–159. [Google Scholar] [CrossRef] [Green Version]
- Poorter, L.; Bongers, F.; Aide, T.M.; Almeyda Zambrano, A.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; Broadbent, E.N.; Chazdon, R.L.; et al. Biomass resilience of Neotropical secondary forests. Nature 2016, 530, 211–214. [Google Scholar] [CrossRef]
- Matos, F.A.R.; Magnago, L.F.S.; Aquila Chan Miranda, C.; de Menezes, L.F.T.; Gastauer, M.; Safar, N.V.H.; Schaefer, C.E.G.R.; da Silva, M.P.; Simonelli, M.; Edwards, F.A.; et al. Secondary forest fragments offer important carbon and biodiversity cobenefits. Glob. Change Biol. 2020, 26, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Stanturf, J.A.; Kant, P.; Lillesø, J.-P.B.; Mansourian, S.; Kleine, M.; Graudal, L.; Madsen, P. Forest Landscape Restoration as a Key Component of Climate Change Mitigation and Adaptation; International Union of Forest Research Organizations (IUFRO): Vienna, Austria, 2015; Volume 34, ISBN 9783902762504. [Google Scholar]
- Van Breugel, M.; Hall, J.S.; Craven, D.; Bailon, M.; Hernandez, A.; Abbene, M.; Van Breugel, P. Succession of ephemeral secondary forests and their limited role for the conservation of floristic diversity in a human-modified tropical landscape. PLoS ONE 2013, 8, e82433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norden, N.; Chazdon, R.L.; Chao, A.; Jiang, Y.H.; Vílchez-Alvarado, B. Resilience of tropical rain forests: Tree community reassembly in secondary forests. Ecol. Lett. 2009, 12, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Rodríguez, V.; Melo, F.P.L.; Martínez-Ramos, M.; Bongers, F.; Chazdon, R.L.; Meave, J.A.; Norden, N.; Santos, B.A.; Leal, I.R.; Tabarelli, M. Multiple successional pathways in human-modified tropical landscapes: New insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. 2017, 92, 326–340. [Google Scholar] [CrossRef]
- Vyn, R. Estimated Expenditures on Invasive Species in Ontario: 2019 Survey Results; Invasive Species Centre: Marie, ON, Canada, 2019. [Google Scholar]
- Abe, M.; Izaki, J.; Miguchi, H.; Masaki, T.; Makita, A.; Nakashizuka, T. The effects of Sasa and canopy gap formation on tree regeneration in an old beech forest. J. Veg. Sci. 2002, 13, 565–574. [Google Scholar] [CrossRef]
- Holz, C.A.; Veblen, T.T. Tree regeneration responses to Chusquea montana bamboo die-off in a subalpine Nothofagus forest in the southern Andes. J. Veg. Sci. 2006, 17, 19–28. [Google Scholar] [CrossRef]
- Campanello, P.I.; Genoveva Gatti, M.; Ares, A.; Montti, L.; Goldstein, G. Tree regeneration and microclimate in a liana and bamboo-dominated semideciduous Atlantic Forest. For. Ecol. Manag. 2007, 252, 108–117. [Google Scholar] [CrossRef]
- Griscom, B.W.; Ashton, P.M.S. A self-perpetuating bamboo disturbance cycle in a neotropical forest. J. Trop. Ecol. 2006, 22, 587–597. [Google Scholar] [CrossRef]
- Kellermann, B.; Lacerda, A.E.B. Bambus nativos como espécies invasoras no sul do Brasil. In Bambus no Brasil: Da biologia à tecnologia; ICH-Instituto Ciência Hoje: Rio de Janeiro, Brazil, 2017; pp. 179–196. [Google Scholar]
- Lacerda, A.E.B.; Kellermann, B. What is the Long-Term Effect of Bamboo Dominance on Adult Trees in the Araucaria Forest?A Comparative Analysis between Two Successional Stages in Southern Brazil. Diversity 2019, 11, 165. [Google Scholar] [CrossRef] [Green Version]
- Valéry, L.; Fritz, H.; Lefeuvre, J.C.; Simberloff, D. In search of a real definition of the biological invasion phenomenon itself. Biol. Invasions 2008, 10, 1345–1351. [Google Scholar] [CrossRef]
- Valéry, L.; Fritz, H.; Lefeuvre, J.C.; Simberloff, D. Invasive species can also be native... Trends Ecol. Evol. 2009, 24, 585. [Google Scholar] [CrossRef]
- Montti, L.; Campanello, P.I.; Gatti, M.G.; Blundo, C.; Austin, A.T.; Sala, O.E.; Goldstein, G. Understory bamboo flowering provides a very narrow light window of opportunity for canopy-tree recruitment in a neotropical forest of Misiones, Argentina. For. Ecol. Manag. 2011, 262, 1360–1369. [Google Scholar] [CrossRef]
- Kellermann, B.; Lacerda, A.E.B. Arrested development? Investigating the role of bamboo in Araucaria Forest succession in Southern Brazil. J. Plant Ecol. 2019, 12, 1034–1046. [Google Scholar] [CrossRef]
- Griscom, B.W.; Ashton, P.M.S. Bamboo control of forest succession: Guadua sarcocarpa in Southeastern Peru. For. Ecol. Manag. 2003, 175, 445–454. [Google Scholar] [CrossRef]
- Larpkern, P.; Moe, S.R.; Totland, Ø. Bamboo dominance reduces tree regeneration in a disturbed tropical forest. Oecologia 2011, 165, 161–168. [Google Scholar] [CrossRef]
- Vibrans, A.C.; Sevegnani, L.; de Gasper, A.L.; Lingner, D.V. Diversidade e Conservação dos Remanescentes Florestais; Edifurb: Blumenau, Brazil, 2012; ISBN 9788571143302. [Google Scholar]
- Castella, P.R.; Britez, R.M. A Floresta com Araucária no Paraná: Conservação e Diagnóstico dos Remanescentes Florestais; Ministério do Meio Ambiente: Brasilia, Brazil, 2004. [Google Scholar]
- Mittermeier, R.A.; van Dijk, P.P.; Rhodin, A.G.J.; Nash, S.D. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Ecoregions; CEMEX: Mexico City, Mexico, 2004. [Google Scholar]
- Klein, R.M. O aspeto dinâmico do pinheiro brasileiro. Sellowia 1960, 12, 17–48. [Google Scholar]
- Klein, R.M. Aspectos dinâmicos da vegetação do Sul do Brasil. Sellowia 1984, 36, 5–54. [Google Scholar]
- Leite, P.F.; Klein, R.M. Vegetação. In Geografia do Brasil: Região Sul; IBGE: Rio de Janeiro, Brazil, 1990; pp. 113–150. [Google Scholar]
- Lingner, D.V.; De Oliveira, M.M.; Rosot, N.C.; Dlugosz, L.F. Caracterização da estrutura e da dinâmica de um remanescente de Floresta com Araucária no Planalto Catarinense. Pesqui. Florest. Bras. 2007, 55, 55–66. [Google Scholar]
- Herrera, H.A.R.; Rosot, N.C.; Rosot, M.A.D.; Oliveira, Y.M.M. De Análise florística e fitossociológica do componente arbóreo da floresta ombrófila mista presente na reserva florestal EMBRAPA/EPAGRI, Caçador, SC—Brasil. Floresta 2009, 39, 485–500. [Google Scholar] [CrossRef]
- Maran, J.C.; Rosot, M.A.D.; Figueiredo Filho, A.; Lacerda, A.E.B. Ordenamento florestal por talhões: Metodologia apoiada em SIG e silvicultura para o manejo de florestas nativas. Adv. For. Sci. 2020, 7, 997–1008. [Google Scholar] [CrossRef]
- Vibrans, A.C.; Sevegnani, L.; Gasper, A.L.; Lingner, D.V. (Eds.) Inventário florístico florestal de Santa Catarina; Edifurb: Blumenau, Brazil, 2013; Volume 3. [Google Scholar]
- Lacerda, A.E.B. Conservation strategies for Araucaria Forests in Southern Brazil: Assessing current and alternative approaches. Biotropica 2016, 48, 537–544. [Google Scholar] [CrossRef]
- Lacerda, A.E.B.; Rosot, M.A.D.; Filho, A.F.; Garrastazú, M.C.; Nimmo, E.R.; Kellermann, B.; Radomski, M.I.; Beimgraben, T.; Mattos, P.P.; Oliveira, Y.M.M. Sustainable Forest Management in Rural Southern Brazil: Exploring Participatory Forest Management Planning. Sustain. For. Manag. Case Stud. 2012, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Sendulsky, T. Merostachys multiramea (Poaceae: Bambusoideae: Bambuseae) and similar species from Brazil. Novon 1995, 5, 76–96. [Google Scholar] [CrossRef]
- Giovannoni, M.; Vellozo, L.; Kubiak, G. Sobre as “ratadas” do primeiro planalto paranaense. Arq. Biol. E Tecnol. 1946, 1, 185–195. [Google Scholar]
- Pereira, C. Sobre as ‘ratadas’ no sul do Brasil e o ciclo vegetativo das taquaras. Arq. Inst. Biol. Sao Paulo 1941, 12, 175–195. [Google Scholar]
- Budowski, G. Distribution of tropical American rain forest species in the light of successional processes. Turrialba 1065, 15, 40–42. [Google Scholar]
- Carvalho, P.E.R. Espécies Arbóreas Brasileiras v 5; Embrapa: Brasília, Brasil, 2014. [Google Scholar]
- Klein, R.M. Aspectos fitossociológicos da bracatinga (Mimosa scabrella). In Proceedings of the Seminário sobre Atualidades e Perspectivas Florestais, 4: Bracatinga uma alternativa para refIorestamento. Documentos 5; EMBRAPA-URPFCS: Curitiba, Brasil; 1981; pp. 145–148. [Google Scholar]
- Colwell, R.K. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9.1.0. 2013. Available online: http://purl.oclc.org/estimates (accessed on 4 November 2021).
- Chao, A.; Ma, K.H.; Hsieh, T.C. User’s Guide for iNEXT Online: Software for Interpolation and Extrapolation of Species Diversity. Code 2016, 30043, 1–14. [Google Scholar]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Jost, L.; Chao, A. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 2012, 93, 2533–2547. [Google Scholar] [CrossRef]
- PC-ORD. Multivariate Analysis of Ecological Data. Version 7.08 2018. Available online: https://www.wildblueberrymedia.net/pcord (accessed on 04 November 2021).
- NCSS Statistical Software 2021. Available online: https://www.ncss.com/ (accessed on 04 November 2021).
- Greig, C.; Robertson, C.; Lacerda, A.E.B. Spectral-temporal modelling of bamboo-dominated forest succession in the Atlantic Forest of Southern Brazil. Ecol. Modell. 2018, 384, 316–332. [Google Scholar] [CrossRef]
- Montti, L.; Campanello, P.I.; Goldstein, G. Flowering, die-back and recovery of a semelparous woody bamboo in the Atlantic Forest. Acta Oecologica 2011, 37, 361–368. [Google Scholar] [CrossRef]
- González, M.E.; Veblen, T.T.; Donoso, C.; Valeria, L. Tree regeneration responses in a lowland Nothofagus-dominated forest after bamboo dieback in South-Central Chile. Plant Ecol. 2002, 161, 59–73. [Google Scholar] [CrossRef]
- Qing-Pei, Y.; Guang-Yao, Y.; Qing-Ni, S.; Jian-Min, S.; Ming, O.; Hong-Yan, Q.; Xiang-Min, F. Ecological studies on bamboo expansion: Process, consequence and mechanism. Chin. J. Plant Ecol. 2015, 39, 110–124. [Google Scholar] [CrossRef]
- de Souza, R.F.; do Amaral Machado, S.; Figueiredo Filho, A. Modelagem da biomassa total e da lenha por unidade de área para bracatingais nativos. Rev. Arvore 2014, 38, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Gomes, J.F.; Longhi, S.J.; Araújo, M.M.; Brena, D.A. Classificação e crescimento de unidades de vegetação em Floresta Ombrófila Mista, São Francisco de Paula, RS. Ciência Florest 2008, 18, 93. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.R.; Morton, L.W.; Engle, D.M.; Debinski, D.M.; Harr, R.N. Nature reserves as catalysts for landscape change. Front. Ecol. Environ. 2012, 10, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Gergeron, Y. Species and stand dynamics in the mixed woods of Quebec’s southern boreal forest. Ecology 2000, 81, 1500–1516. [Google Scholar] [CrossRef]
- Bergeron, Y.; Harvey, B. Basing silviculture on natural ecosystem dynamics: An approach applied to the southern boreal mixedwood forest of Quebec. For. Ecol. Manag. 1997, 92, 235–242. [Google Scholar] [CrossRef]
- Franklin, J.F.; Spies, T.A.; Van Pelt, R.; Carey, A.B.; Thornburgh, D.A.; Berg, D.R.; Lindenmayer, D.B.; Harmon, M.E.; Keeton, W.S.; Shaw, D.C.; et al. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manag. 2002, 155, 399–423. [Google Scholar] [CrossRef]
- Nath, A.J.; Lal, R.; Das, A.K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Conserv. 2015, 3, 654–663. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Feng, W.; Xu, J.; Kuzyakov, Y. Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. L. Degrad. Dev. 2018, 29, 3886–3897. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; ISBN 9781107654815. [Google Scholar]
- Lacerda, A.E.B.; Hanisch, A.L.; Nimmo, E.R. Leveraging traditional agroforestry practices to support sustainable and agrobiodiverse landscapes in Southern Brazil. Land 2020, 9, 176. [Google Scholar] [CrossRef]
- Duguma, L.A.; Atela, J.; Ayana, A.N.; Alemagi, D.; Mpanda, M.; Nyago, M.; Minang, P.A.; Nzyoka, J.M.; Foundjem-Tita, D.; Ntamag-Ndjebet, C.N. Community forestry frameworks in sub-Saharan Africa and the impact on sustainable development. Ecol. Soc. 2018, 23, 21. [Google Scholar] [CrossRef] [Green Version]
Year | 0 D | 1 D | 2 D | Sexcl | Summary | |||||
---|---|---|---|---|---|---|---|---|---|---|
Control | Removal | Control | Removal | Control | Removal | Control | Removal | Sshared | Stotal | |
2007 | 9 (4.8) | [9 (4.8)] | 3.14 (1.9) | [3.14 (1.9)] | 1.92 (0.9) | [1.92 (0.9)] | - | - | - | [9] |
2010 | 16 (5.0) | 20 (5.2) ns | 5.07 (1.1) | 5.19 (0.6) ns | 3.08 (0.7) | 3.8 (0.4) ns | 7 | 5 | 9 | 27 |
2012 | 16 (4.3) | 21 (3.8) ns | 4.89 (0.9) | 5.16 (0.9) ns | 3.04 (0.6) | 3.03 (0.5) ns | 8 | 13 | 8 | 29 |
2014 | 15 (3.7) | 26 (5.6) * | 4.74 (1.1) | 7.45 (1.5) * | 3.01 (0.6) | 3.87 (0.8) ns | 4 | 15 | 11 | 30 |
2016 | 14 (3.9) | 26 (3.9) * | 4.93 (1.3) | 9.89 (2.1) * | 3.37 (0.7) | 5.39 (1.3) * | 3 | 15 | 11 | 29 |
2018 | 13 (3.9) | 27 (3.6) * | 4.85 (1.5) | 14.4 (2.5) * | 3.4 (0.9) | 9.12 (2.3) * | 3 | 17 | 10 | 30 |
2020 | 12 (5.5) | 29 (3.9) ns | 5.17 (2.0) | 18.02 (2.6) * | 3.7 (1.1) | 13.61 (2.3) * | 0 | 17 | 12 | 29 |
Year | CONTROL | REMOVAL | ||||||
---|---|---|---|---|---|---|---|---|
N | G | N | G | |||||
2007 | 400 (365) | 4.32 (4.9) | 4.1 (9.8) | 6.6 (9.8) | [400] (365) | [4320] (4.9) | [4.1] (9.8) | [6.6] (9.8) |
2010 | 1956 (833) | 9.91 (7.6) | 5.6 (1.7) | 6.6 (4.5) | 4844 (1434) * | 20.98 (4.5) * | 5.4 (2.5) | 6.1 (4.3) |
2012 | 2178 (792) | 16.45 (7.7) | 9.4 (3.1) | 8.3 (5.3) | 2904 (1,012) | 18.99 (4.5) | 7.4 (3.5) * | 7.4 (5.4) |
2014 | 1474 (429) | 17.69 (6.7) | 11.6 (3.5) | 10.7 (6.2) | 2096 (433) | 19.26 (4.5) | 8.3 (3.9) * | 8.7 (6.4) * |
2016 | 978 (235) | 19.01 (6.8) | 13.4 (3.7) | 13.8 (7.6) | 1756 (506) * | 20.39 (5.4) | 9.1 (4.3) * | 9.7 (7.3) * |
2018 | 711 (141) | 18.83 (4.7) | 15.3 (3.8) | 16.6 (7.9) | 1600 (592) * | 22.06 (4.5) | 9.3 (5.0) * | 10.4 (8.3) * |
2020 | 533 (141) | 18.05 (6.2) | 15.9 (5.0) | 18.6 (9.2) | 1593 (526) * | 20.81 (4.4) | 8.1 (5.4) * | 9.7 (8.5) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacerda, A.E.B. Understanding the Long-Term Impact of Bamboos on Secondary Forests: A Case for Bamboo Management in Southern Brazil. Diversity 2021, 13, 567. https://doi.org/10.3390/d13110567
Lacerda AEB. Understanding the Long-Term Impact of Bamboos on Secondary Forests: A Case for Bamboo Management in Southern Brazil. Diversity. 2021; 13(11):567. https://doi.org/10.3390/d13110567
Chicago/Turabian StyleLacerda, André Eduardo Biscaia. 2021. "Understanding the Long-Term Impact of Bamboos on Secondary Forests: A Case for Bamboo Management in Southern Brazil" Diversity 13, no. 11: 567. https://doi.org/10.3390/d13110567
APA StyleLacerda, A. E. B. (2021). Understanding the Long-Term Impact of Bamboos on Secondary Forests: A Case for Bamboo Management in Southern Brazil. Diversity, 13(11), 567. https://doi.org/10.3390/d13110567