Immunomodulatory Effects of L-Arginine-Modified Silkworm Pupae Protein Enteral Nutrition on Murine Intestinal Morphology and Immunity
Abstract
1. Introduction
2. Results
2.1. Histopathological Manifestations
2.2. Blood Parameters
2.3. Cytokine Profiling in Intestinal Tissues
2.4. Immunoglobulin and Tight Junction Protein Levels
2.5. CD4+ T Lymphocyte Infiltration Analysis
2.6. Secretory IgA (sIgA) Immunohistochemical Analysis
3. Discussion
4. Materials and Methods
4.1. Silkworm Pupae Protein-Based Enteral Nutrition Preparations
4.2. Mice Treatments
4.3. Tissue Collection and Histological Analyses
4.4. Immunohistochemistry
4.5. Quantification of Labeled Cells
4.6. Blood Parameter Analysis
4.7. Quantification of Inflammatory Cytokines and Immune Mediators Using ELISA
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, B.; Roehl, K.; Betz, M. Enteral nutrition formula selection: Current evidence and implications for practice. Nutr. Clin. Pract. 2015, 30, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, B.L.; Clifford, T.M.; Hoskins, L.A.; Bernard, A.C. Enteral nutrition and drug administration, interactions, and complications. Nutr. Clin. Pract. 2005, 20, 618–624. [Google Scholar]
- Chen, R.; Yin, W.; Gao, H.; Zhang, H.; Huang, Y. The effects of early enteral nutrition on the nutritional statuses, gastrointestinal functions, and inflammatory responses of gastrointestinal tumor patients. Am. J. Transl. Res. 2021, 13, 6260. [Google Scholar] [PubMed]
- Wang, F.; Hou, M.; Wu, X.; Bao, L.; Dong, P. Impact of enteral nutrition on postoperative immune function and nutritional status. Genet. Mol. Res. 2015, 14, 6065–6072. [Google Scholar]
- Hu, Y.; Ma, Y.; Wang, J.; Zhu, Z.-H. Early enteral infusion of traditional Chinese medicine preparation can effectively promote the recovery of gastrointestinal function after esophageal cancer surgery. J. Thorac. Dis. 2011, 3, 249. [Google Scholar]
- Wu, X.; He, K.; Velickovic, T.C.; Liu, Z. Nutritional, functional, and allergenic properties of silkworm pupae. Food Sci. Nutr. 2021, 9, 4655–4665. [Google Scholar] [CrossRef]
- Sadat, A.; Biswas, T.; Cardoso, M.H.; Mondal, R.; Ghosh, A.; Dam, P.; Nesa, J.; Chakraborty, J.; Bhattacharjya, D.; Franco, O.L. Silkworm pupae as a future food with nutritional and medicinal benefits. Curr. Opin. Food Sci. 2022, 44, 100818. [Google Scholar]
- Ji, X.; Wang, J.; Ma, A.; Feng, D.; He, Y.; Yan, W. Effects of silkworm pupa protein on apoptosis and energy metabolism in human colon cancer DLD-1 cells. Food Sci. Hum. Wellness 2022, 11, 1171–1176. [Google Scholar] [CrossRef]
- Weixin, L.; Lixia, M.; Leiyan, W.; Yuxiao, Z.; Haifeng, Z.; Sentai, L. Effects of silkworm pupa protein hydrolysates on mitochondrial substructure and metabolism in gastric cancer cells. J. Asia-Pac. Entomol. 2019, 22, 387–392. [Google Scholar]
- Talley, N.J.; Young, L.; Bytzer, P.; Hammer, J.; Leemon, M.; Jones, M.; Horowitz, M. Impact of chronic gastrointestinal symptoms in diabetes mellitus on health-related quality of life. Am. J. Gastroenterol. 2001, 96, 71–76. [Google Scholar] [CrossRef]
- Talley, N.J.; Howell, S.; Jones, M.P.; Horowitz, M. Predictors of turnover of lower gastrointestinal symptoms in diabetes mellitus. Am. J. Gastroenterol. 2002, 97, 3087–3094. [Google Scholar] [CrossRef] [PubMed]
- Stolar, M. Glycemic control and complications in type 2 diabetes mellitus. Am. J. Med. 2010, 123, S3–S11. [Google Scholar]
- Ahmad, N.S.; Islahudin, F.; Paraidathathu, T. Factors associated with good glycemic control among patients with type 2 diabetes mellitus. J. Diabetes Investig. 2014, 5, 563–569. [Google Scholar] [CrossRef]
- Szendroedi, J.; Chmelik, M.; Schmid, A.I.; Nowotny, P.; Brehm, A.; Krssak, M.; Moser, E.; Roden, M. Abnormal hepatic energy homeostasis in type 2 diabetes. Hepatology 2009, 50, 1079–1086. [Google Scholar]
- Vaarala, O.; Atkinson, M.A.; Neu, J. The “perfect storm” for type 1 diabetes: The complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 2008, 57, 2555–2562. [Google Scholar]
- Tan, W.; Pan, T.; Wang, S.; Li, P.; Men, Y.; Tan, R.; Zhong, Z.; Wang, Y. Immunometabolism modulation, a new trick of edible and medicinal plants in cancer treatment. Food Chem. 2022, 376, 131860. [Google Scholar]
- Monferrer, E.; Sanegre, S.; Vieco-Martí, I.; López-Carrasco, A.; Fariñas, F.; Villatoro, A.; Abanades, S.; Mañes, S.; de la Cruz-Merino, L.; Noguera, R. Immunometabolism modulation in therapy. Biomedicines 2021, 9, 798. [Google Scholar] [CrossRef]
- Alba, G.; Dakhaoui, H.; Santa-Maria, C.; Palomares, F.; Cejudo-Guillen, M.; Geniz, I.; Sobrino, F.; Montserrat-de la Paz, S.; Lopez-Enriquez, S. Nutraceuticals as potential therapeutic modulators in immunometabolism. Nutrients 2023, 15, 411. [Google Scholar] [CrossRef]
- Danese, S.; Colombel, J.; Rieder, F.; Peyrin-Biroulet, L.; Siegmund, B.; Vermeire, S.; Dubinsky, M.; Schreiber, S.; Yarur, A.; Panaccione, R. P144 Modulation of Immunometabolism via NLRX1 or PLXDC2: Novel Bimodal Mechanisms for the Treatment of Inflammatory Bowel Diseases. J. Crohn’s Colitis 2024, 18, i443–i445. [Google Scholar]
- Barbul, A.; Wasserkrug, H.L.; Sisto, D.A.; Seifter, E.; Rettura, G.; Levenson, S.M.; Efron, G. Thymic stimulatory actions of arginine. J. Parenter. Enter. Nutr. 1980, 4, 446–449. [Google Scholar] [CrossRef]
- Barbul, A.; Sisto, D.; Wasserkrug, H.; Efron, G. Arginine stimulates lymphocyte immune response in healthy human beings. Surgery 1981, 90, 244–251. [Google Scholar] [PubMed]
- Yao, K.; Guan, S.; Li, T.; Huang, R.; Wu, G.; Ruan, Z.; Yin, Y. Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. Br. J. Nutr. 2011, 105, 703–709. [Google Scholar] [CrossRef]
- Sukhotnik, I.; Mogilner, J.; Krausz, M.M.; Lurie, M.; Hirsh, M.; Coran, A.G.; Shiloni, E. Oral arginine reduces gut mucosal injury caused by lipopolysaccharide endotoxemia in rat. J. Surg. Res. 2004, 122, 256–262. [Google Scholar] [CrossRef]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef] [PubMed]
- Aggeletopoulou, I.; Kalafateli, M.; Tsounis, E.P.; Triantos, C. Exploring the role of IL-1β in inflammatory bowel disease pathogenesis. Front. Med. 2024, 11, 1307394. [Google Scholar]
- Davizon-Castillo, P.; McMahon, B.; Aguila, S.; Bark, D.; Ashworth, K.; Allawzi, A.; Campbell, R.A.; Montenont, E.; Nemkov, T.; D’Alessandro, A. TNF-α–driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood J. Am. Soc. Hematol. 2019, 134, 727–740. [Google Scholar]
- Santaolalla, A.; Sollie, S.; Rislan, A.; Josephs, D.H.; Hammar, N.; Walldius, G.; Garmo, H.; Karagiannis, S.N.; Van Hemelrijck, M. Association between serum markers of the humoral immune system and inflammation in the Swedish AMORIS study. BMC Immunol. 2021, 22, 61. [Google Scholar] [CrossRef]
- Song, D.J.; Shen, J.; Chen, M.H.; Liu, Z.J.; Cao, Q.; Hu, P.J.; Gao, X.; Qian, J.M.; Wu, K.C.; Lai, L.J. Association of serum immunoglobulins levels with specific disease phenotypes of Crohn’s disease: A multicenter analysis in China. Front. Med. 2021, 8, 621337. [Google Scholar] [CrossRef] [PubMed]
- Wuensch, T.; Ullrich, S.; Schulz, S.; Chamaillard, M.; Schaltenberg, N.; Rath, E.; Goebel, U.; Sartor, R.B.; Prager, M.; Büning, C. Colonic expression of the peptide transporter PEPT1 is downregulated during intestinal inflammation and is not required for NOD2-dependent immune activation. Inflamm. Bowel Dis. 2014, 20, 671–684. [Google Scholar] [CrossRef]
- Sun, B.; Chen, H.; Xue, J.; Li, P.; Fu, X. The role of GLUT2 in glucose metabolism in multiple organs and tissues. Mol. Biol. Rep. 2023, 50, 6963–6974. [Google Scholar] [CrossRef]
- Moncada, S.; Higgs, A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 1993, 329, 2002–2012. [Google Scholar]
- Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2001, 2, 907–916. [Google Scholar]
- Sarkar, P.; Pecorelli, A.; Woodby, B.; Pambianchi, E.; Ferrara, F.; Duary, R.K.; Valacchi, G. Evaluation of anti-oxinflammatory and ACE-inhibitory properties of protein hydrolysates obtained from edible non-mulberry silkworm pupae (Antheraea assama and Philosomia ricinii). Nutrients 2023, 15, 1035. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, J.; Mumby, W.; Zhang, Y.; Zhang, Y.; Wang, C.; Chen, X.; Suo, H.; Song, J. Silkworm pupa protein and its peptides: Preparation, biological activity, applications in foods, and advantages. Trends Food Sci. Technol. 2023, 139, 104129. [Google Scholar]
- Liu, P.; Shen, W.; Chen, H. Efficacy of arginine-enriched enteral formulas for the healing of pressure ulcers: A systematic review. J. Wound Care 2017, 26, 319–323. [Google Scholar]
- Ma, C.; Tsai, H.; Su, W.; Sun, L.; Shih, Y.; Wang, J. Combination of arginine, glutamine, and omega-3 fatty acid supplements for perioperative enteral nutrition in surgical patients with gastric adenocarcinoma or gastrointestinal stromal tumor (GIST): A prospective, randomized, double-blind study. J. Postgrad. Med. 2018, 64, 155–163. [Google Scholar] [PubMed]
- Yang, Y.; Tang, L.; Tong, L.; Liu, H. Silkworms culture as a source of protein for humans in space. Adv. Space Res. 2009, 43, 1236–1242. [Google Scholar]
- Food, Joint, Agricultural Organisation; World Health Organisation Ad Hoc Expert Committee. Energy and protein requirements. In Proceedings of the FAO Nutrition Meetings Report Series; Food and Agriculture Organization: Quebec, QC, Canada, 1973. [Google Scholar]
- Cao, T.-T.; Zhang, Y.-Q. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater. Sci. Eng. C 2016, 61, 940–952. [Google Scholar]
- Arnardottir, H.H.; Freysdottir, J.; Hardardottir, I. Dietary fish oil decreases the proportion of classical monocytes in blood in healthy mice but increases their proportion upon induction of inflammation. J. Nutr. 2012, 142, 803–808. [Google Scholar]
- Calder, P.C. Fatty acids and immune function: Relevance to inflammatory bowel diseases. Int. Rev. Immunol. 2009, 28, 506–534. [Google Scholar]
- Calder, P.C. Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol. Nutr. Food Res. 2008, 52, 885–897. [Google Scholar] [PubMed]
- Geiger, R.; Rieckmann, J.C.; Wolf, T.; Basso, C.; Feng, Y.; Fuhrer, T.; Kogadeeva, M.; Picotti, P.; Meissner, F.; Mann, M. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 2016, 167, 829–842.E13. [Google Scholar]
- Xiong, L.; Teng, J.L.; Botelho, M.G.; Lo, R.C.; Lau, S.K.; Woo, P.C. Arginine metabolism in bacterial pathogenesis and cancer therapy. Int. J. Mol. Sci. 2016, 17, 363. [Google Scholar] [CrossRef] [PubMed]
- Km, M. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2002, 2, 933–944. [Google Scholar]
- Brandtzaeg, P. Secretory IgA: Designed for anti-microbial defense. Front. Immunol. 2013, 4, 222. [Google Scholar] [CrossRef]
- Corthesy, B. Role of secretory IgA in infection and maintenance of homeostasis. Autoimmun. Rev. 2013, 12, 661–665. [Google Scholar]
- Favre, L.; Spertini, F.o.; Corthésy, B. Secretory IgA possesses intrinsic modulatory properties stimulating mucosal and systemic immune responses. J. Immunol. 2005, 175, 2793–2800. [Google Scholar]
- Finamore, A.; Peluso, I.; Cauli, O. Salivary stress/immunological markers in crohn’s disease and ulcerative colitis. Int. J. Mol. Sci. 2020, 21, 8562. [Google Scholar] [CrossRef]
- Mafi, S.; Mansoori, B.; Taeb, S.; Sadeghi, H.; Abbasi, R.; Cho, W.C.; Rostamzadeh, D. mTOR-mediated regulation of immune responses in cancer and tumor microenvironment. Front. Immunol. 2022, 12, 774103. [Google Scholar]
- Yang, L.; Chu, Z.; Liu, M.; Zou, Q.; Li, J.; Liu, Q.; Wang, Y.; Wang, T.; Xiang, J.; Wang, B. Amino acid metabolism in immune cells: Essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J. Hematol. Oncol. 2023, 16, 59. [Google Scholar]
- Dioguardi, F.S. To give or not to give? Lessons from the arginine paradox. J. Nutr. Nutr. 2011, 4, 90–98. [Google Scholar]
- Majumdar, R.; Barchi, B.; Turlapati, S.A.; Gagne, M.; Minocha, R.; Long, S.; Minocha, S.C. Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: The pathway is regulated at the post-transcriptional level. Front. Plant Sci. 2016, 7, 78. [Google Scholar]
- di Venosa, C. Enteral Nutrition Overview and Formula Selection Considerations. In Nutrition, Metabolism and Kidney Support: A Critical Care Approach; Springer: Berlin/Heidelberg, Germany, 2024; pp. 137–147. [Google Scholar]
- Kano, K.-I.; Yamamoto, R.; Yoshida, M.; Sato, T.; Nishita, Y.; Ito, J.; Nagatomo, K.; Ohbe, H.; Takahashi, K.; Kaku, M. Strategies to Maximize the Benefits of Evidence-Based Enteral Nutrition: A Narrative Review. Nutrients 2025, 17, 845. [Google Scholar] [CrossRef]
- Candelli, M.; Franza, L.; Pignataro, G.; Ojetti, V.; Covino, M.; Piccioni, A.; Gasbarrini, A.; Franceschi, F. Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases. Int. J. Mol. Sci. 2021, 22, 6242. [Google Scholar] [CrossRef]
- Hersoug, L.G.; Møller, P.; Loft, S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: Implications for inflammation and obesity. Obes. Rev. 2016, 17, 297–312. [Google Scholar] [CrossRef]
- Reddy, M.M.; Mahipal, S.V.; Subhashini, J.; Reddy, M.C.; Roy, K.R.; Reddy, G.V.; Reddy, P.R.; Reddanna, P. Bacterial lipopolysaccharide-induced oxidative stress in the impairment of steroidogenesis and spermatogenesis in rats. Reprod. Toxicol. 2006, 22, 493–500. [Google Scholar] [PubMed]
- Zhong, F.; Chen, H.; Han, L.; Jin, Y.; Wang, W. Curcumin attenuates lipopolysaccharide-induced renal inflammation. Biol. Pharm. Bull. 2011, 34, 226–232. [Google Scholar]
- Zhang, Y.; Mu, T.; Jia, H.; Yang, Y.; Wu, Z. Protective effects of glycine against lipopolysaccharide-induced intestinal apoptosis and inflammation. Amino Acids 2022, 54, 353–364. [Google Scholar] [CrossRef]
- Zamora, R.; Korff, S.; Mi, Q.; Barclay, D.; Schimunek, L.; Zucca, R.; Arsiwalla, X.D.; Simmons, R.L.; Verschure, P.; Billiar, T.R. A computational analysis of dynamic, multi-organ inflammatory crosstalk induced by endotoxin in mice. PLoS Comput. Biol. 2018, 14, e1006582. [Google Scholar] [CrossRef]
- Paszti-Gere, E.; Matis, G.; Farkas, O.; Kulcsar, A.; Palocz, O.; Csiko, G.; Neogrady, Z.; Galfi, P. The effects of intestinal LPS exposure on inflammatory responses in a porcine enterohepatic co-culture system. Inflammation 2014, 37, 247–260. [Google Scholar]
- Fischer, A.H.; Jacobson, K.A.; Rose, J.; Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb. Protoc. 2008, 2008, pdb.prot4986. [Google Scholar]
- Kim, S.-W.; Roh, J.; Park, C.-S. Immunohistochemistry for pathologists: Protocols, pitfalls, and tips. J. Pathol. Transl. Med. 2016, 50, 411–418. [Google Scholar] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [PubMed]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar]
Indicators | CG | LG | ELG | EMG | EHG |
---|---|---|---|---|---|
WBC (109/L) | 2 ± 0.1 | 1.1 ± 0.1 a | 1.57 ± 0.21 ab | 1.67 ± 0.06 ab | 1.5 ± 0.1 ab |
RBC (1012/L) | 11.5 ± 0.41 | 8.42 ± 0.34 a | 10.19 ± 0.13 ab | 10.54 ± 0.37 b | 9.78 ± 0.48 ab |
HGB (g/L) | 173.33 ± 2.89 | 138.67 ± 3.21 a | 153 ± 2 ab | 165 ± 5 b | 146.67 ± 4.73 a |
PLT (109/L) | 514.33 ± 11.68 | 229.67 ± 14.74 a | 280 ± 7.55 ab | 293 ± 6.56 ab | 273.33 ± 17.56 ab |
Ingredients | Grams per 100 g |
---|---|
Silkworm pupae protein | 23.00 |
Fish oil | 5.00 |
Olive oil | 15.00 |
Corn starch | 12.00 |
Tapioca starch | 17.50 |
Fructooligosaccharides | 9.00 |
Isomaltulose | 5.00 |
L-arginine | 0.25 |
Vitamins and minerals | 3.25 |
Dietary fiber (inulin) | 10.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, R.; Wang, T.; Zhang, L.; Jeevithan, L.; Wang, C.; Li, X.; Wu, W. Immunomodulatory Effects of L-Arginine-Modified Silkworm Pupae Protein Enteral Nutrition on Murine Intestinal Morphology and Immunity. Int. J. Mol. Sci. 2025, 26, 3209. https://doi.org/10.3390/ijms26073209
Yuan R, Wang T, Zhang L, Jeevithan L, Wang C, Li X, Wu W. Immunomodulatory Effects of L-Arginine-Modified Silkworm Pupae Protein Enteral Nutrition on Murine Intestinal Morphology and Immunity. International Journal of Molecular Sciences. 2025; 26(7):3209. https://doi.org/10.3390/ijms26073209
Chicago/Turabian StyleYuan, Rui, Tianming Wang, Linling Zhang, Lakshmi Jeevithan, Chunxiao Wang, Xiaohui Li, and Wenhui Wu. 2025. "Immunomodulatory Effects of L-Arginine-Modified Silkworm Pupae Protein Enteral Nutrition on Murine Intestinal Morphology and Immunity" International Journal of Molecular Sciences 26, no. 7: 3209. https://doi.org/10.3390/ijms26073209
APA StyleYuan, R., Wang, T., Zhang, L., Jeevithan, L., Wang, C., Li, X., & Wu, W. (2025). Immunomodulatory Effects of L-Arginine-Modified Silkworm Pupae Protein Enteral Nutrition on Murine Intestinal Morphology and Immunity. International Journal of Molecular Sciences, 26(7), 3209. https://doi.org/10.3390/ijms26073209