Novel Circulating Biomarkers in Aortic Valve Stenosis
Abstract
1. Introduction
2. Pathophysiology of Aortic Stenosis
3. Challenges in Aortic Stenosis Staging Guidelines
4. Novel Circulating Biomarkers in Aortic Stenosis Pathogenesis
4.1. Lipoprotein(a)
4.1.1. Conjugated with Oxidised Phospholipids
4.1.2. Conjugated with Apolipoprotein C-III
4.2. Extracellular Matrix Remodelling Factors
4.2.1. Transforming Growth Factor-β1
4.2.2. Matrix Metalloproteinases
Study | Population | Detection (Sample) | Enzyme | Key Substrates | Plasma Levels in Median (Q1–Q3) | Key Findings |
---|---|---|---|---|---|---|
Lurins et al. [78] |
| ELISA (plasma) | MMP-1 | Collagen I, II, III, VII, VIII and X | Exact values not shown | MMP-1 was lower in severe AS groups compared to mild or moderate AS. |
MMP-3 | Fibronectin, laminin, gelatin I, III, IV and V, collagen III, IV, X and IX | Exact values not shown | No difference among the groups. | |||
MMP-9 | Collagen IV and V, gelatin I and V | Exact values not shown | No difference among the groups. | |||
Zhou et al. [79] |
| ELISA (plasma) | MMP-28 | Casein | Mild = 0.74 (0.25–2.23) ng/mL Moderate = 1.46 (0.50–3.22) ng/mL Severe = 4.13 (1.54–6.18) ng/mL | MMP-28 was higher in severe AS than mild or moderate AS. MMP-28 correlated with increased pressure gradients |
Matilla et al. [80] |
| ELISA (plasma) | MMP-10 | Fibronectin, gelatin I, III, IV and V, (weakly) collagen III, IV and V | Control = 593 (452–801) pg/mL Severe = 717 (552–1093) pg/mL | MMP-10 levels were elevated in patients with severe AS compared to controls and were correlated with TNF levels, suggesting a link to inflammation. |
Shelbaya et al. [81] |
| Olink Proteomics (plasma) | MMP-12 | Elastin | Not applicable | Higher MMP-12 levels were linked to increased risk of incident AV hospitalisations. |
Jian et al. [82] |
| IHC, gel zymography (autopsy) | MMP-2 | Gelatin I, collagen IV, V, VII and X | Not applicable (semi-qualitative measurements) | MMP-2 was associated with severe calcific aortic stenosis. The presence of MMP-2 in its pro form suggests a potential role in extracellular matrix deposition or healing. |
4.3. Immune Components
4.3.1. Monocytes
4.3.2. Neutrophil Extracellular Traps
4.4. Glycoproteins
4.4.1. Follistatin-like 1
4.4.2. Podoplanin
4.5. Others
4.5.1. Trimethylamine N-Oxide
4.5.2. Sestrin-2
4.5.3. Extracellular Vesicles
5. Practical Considerations for Clinical Use
5.1. Current Clinical Applications of Biomarkers
5.2. Variability in Biomarker Measurement
5.2.1. Assay Standardisation and Reproducibility
5.2.2. Economic Implications of Biomarker Use
5.2.3. Genetic Influences on Biomarker Levels
5.2.4. Limitations of Current Evidence
5.3. Areas for Future Investigation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Michail, M.; Davies, J.E.; Cameron, J.D.; Parker, K.H.; Brown, A.J. Pathophysiological coronary and microcirculatory flow alterations in aortic stenosis. Nat. Rev. Cardiol. 2018, 15, 420–431. [Google Scholar] [CrossRef]
- Lindman, B.R.; Clavel, M.-A.; Mathieu, P.; Iung, B.; Lancellotti, P.; Otto, C.M.; Pibarot, P. Calcific aortic stenosis. Nat. Rev. Dis. Primers 2016, 2, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e72–e227. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuma, K.; Taniguchi, T.; Morimoto, T.; Shiomi, H.; Ando, K.; Kanamori, N.; Murata, K.; Kitai, T.; Kawase, Y.; Izumi, C.; et al. B-type natriuretic peptide in patients with asymptomatic severe aortic stenosis. Heart 2019, 105, 384–390. [Google Scholar] [CrossRef]
- Ray, P.; Arthaud, M.; Birolleau, S.; Isnard, R.; Lefort, Y.; Boddaert, J.; Riou, B. Comparison of brain natriuretic peptide and probrain natriuretic peptide in the diagnosis of cardiogenic pulmonary edema in patients aged 65 and older. J. Am. Geriatr. Soc. 2005, 53, 643–648. [Google Scholar] [CrossRef]
- Weber, M.; Kleine, C.; Keil, E.; Rau, M.; Berkowitsch, A.; Elsaesser, A.; Mitrovic, V.; Hamm, C. Release pattern of N-terminal pro B-type natriuretic peptide (NT-proBNP) in acute coronary syndromes. Clin. Res. Cardiol. 2006, 95, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Murakami, H.; Isozaki, O.; Tsushima, T.; Takano, K. Serum concentrations of BNP and ANP in patients with thyrotoxicosis. Endocr. J. 2009, 56, 17–27. [Google Scholar] [CrossRef]
- Moreels, M.; Delforge, M.-L.; Renard, M. Fulminant myocarditis with dramatic response to corticoids. Acta Cardiol. 2010, 65, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Nishikimi, T.; Ikeda, M.; Takeda, Y.; Ishimitsu, T.; Shibasaki, I.; Fukuda, H.; Kinoshita, H.; Nakagawa, Y.; Kuwahara, K.; Nakao, K. The effect of glycosylation on plasma N-terminal proBNP-76 levels in patients with heart or renal failure. Heart 2012, 98, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Nishikimi, T.; Okamoto, H.; Nakamura, M.; Ogawa, N.; Horii, K.; Nagata, K.; Nakagawa, Y.; Kinoshita, H.; Yamada, C.; Nakao, K.; et al. Direct immunochemiluminescent assay for proBNP and total BNP in human plasma proBNP and total BNP levels in normal and heart failure. PLoS ONE 2013, 8, e53233. [Google Scholar] [CrossRef]
- Lauri, G.; Rossi, C.; Rubino, M.; Cosentino, N.; Milazzo, V.; Marana, I.; Cabiati, A.; Moltrasio, M.; De Metrio, M.; Grazi, M.; et al. B-type natriuretic peptide levels in patients with pericardial effusion undergoing pericardiocentesis. Int. J. Cardiol. 2016, 212, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Okabe, T.; Kido, T.; Kimura, T.; Yakushiji, T.; Asukai, Y.; Shimazu, S.; Saito, J.; Oyama, Y.; Igawa, W.; Ono, M.; et al. The impact of worsening renal function with elevated B-type natriuretic peptide at discharge on 1-year prognosis in heart failure patients. Sci. Rep. 2020, 10, 4451. [Google Scholar] [CrossRef] [PubMed]
- Hollstein, T.; Schlicht, K.; Krause, L.; Hagen, S.; Rohmann, N.; Schulte, D.M.; Türk, K.; Beckmann, A.; Ahrens, M.; Franke, A.; et al. Effect of various weight loss interventions on serum NT-proBNP concentration in severe obese subjects without clinical manifest heart failure. Sci. Rep. 2021, 11, 10096. [Google Scholar] [CrossRef] [PubMed]
- Peeters, F.E.C.M.; Meex, S.J.R.; Dweck, M.R.; Aikawa, E.; Crijns, H.J.G.M.; Schurgers, L.J.; Kietselaer, B.L.J.H. Calcific aortic valve stenosis: Hard disease in the heart: A biomolecular approach towards diagnosis and treatment. Eur. Heart J. 2018, 39, 2618–2624. [Google Scholar] [CrossRef] [PubMed]
- Bańka, P.; Wybraniec, M.; Bochenek, T.; Gruchlik, B.; Burchacka, A.; Swinarew, A.; Mizia-Stec, K. Influence of Aortic Valve Stenosis and Wall Shear Stress on Platelets Function. J. Clin. Med. 2023, 12, 6301. [Google Scholar] [CrossRef] [PubMed]
- Grim, J.C.; Aguado, B.A.; Vogt, B.J.; Batan, D.; Andrichik, C.L.; Schroeder, M.E.; Gonzalez-Rodriguez, A.; Yavitt, F.M.; Weiss, R.M.; Anseth, K.S. Secreted factors from pro-inflammatory macrophages promote an osteoblast-like phenotype in valvular interstitial cells. Arterioscler. Thromb. Vasc. Biol. 2020, 40, e296–e308. [Google Scholar] [CrossRef] [PubMed]
- Dweck, M.R.; Boon, N.A.; Newby, D.E. Calcific Aortic Stenosis: A Disease of the Valve and the Myocardium. J. Am. Coll. Cardiol. 2012, 60, 1854–1863. [Google Scholar] [CrossRef]
- Coisne, A.; Scotti, A.; Latib, A.; Montaigne, D.; Ho, E.C.; Ludwig, S.; Modine, T.; Généreux, P.; Bax, J.J.; Leon, M.B.; et al. Impact of Moderate Aortic Stenosis on Long-Term Clinical Outcomes: A Systematic Review and Meta-Analysis. JACC Cardiovasc. Interv. 2022, 15, 1664–1674. [Google Scholar] [CrossRef]
- Du, Y.; Gössl, M.; Garcia, S.; Enriquez-Sarano, M.; Cavalcante, J.L.; Bae, R.; Hashimoto, G.; Fukui, M.; Lopes, B.; Ahmed, A.; et al. Natural history observations in moderate aortic stenosis. BMC Cardiovasc. Disord. 2021, 21, 108. [Google Scholar] [CrossRef] [PubMed]
- Clavel, M.-A.; Malouf, J.; Michelena, H.I.; Suri, R.M.; Jaffe, A.S.; Mahoney, D.W.; Enriquez-Sarano, M. B-type natriuretic peptide clinical activation in aortic stenosis: Impact on long-term survival. J. Am. Coll. Cardiol. 2014, 63, 2016–2025. [Google Scholar] [CrossRef] [PubMed]
- Becker, L.; Cook, P.M.; Koschinsky, M.L. Identification of sequences in apolipoprotein(a) that maintain its closed conformation: A novel role for apo(a) isoform size in determining the efficiency of covalent Lp(a) formation. Biochemistry 2004, 43, 9978–9988. [Google Scholar] [CrossRef] [PubMed]
- Becker, L.; Cook, P.M.; Wright, T.G.; Koschinsky, M.L. Quantitative evaluation of the contribution of weak lysine-binding sites present within apolipoprotein(a) kringle IV types 6-8 to lipoprotein(a) assembly. J. Biol. Chem. 2004, 279, 2679–2688. [Google Scholar] [CrossRef] [PubMed]
- Thanassoulis, G.; Campbell, C.Y.; Owens, D.S.; Smith, J.G.; Smith, A.V.; Peloso, G.M.; Kerr, K.F.; Pechlivanis, S.; Budoff, M.J.; Harris, T.B.; et al. Genetic Associations with Valvular Calcification and Aortic Stenosis. N. Engl. J. Med. 2013, 368, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, B.J.; Boekholdt, S.M.; Dubé, M.-P.; Rhéaume, E.; Wareham, N.J.; Khaw, K.-T.; Sandhu, M.S.; Tardif, J.-C. Lipoprotein(a) levels, genotype, and incident aortic valve stenosis: A prospective Mendelian randomization study and replication in a case-control cohort. Circ. Cardiovasc. Genet. 2014, 7, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Kamstrup, P.R.; Tybjærg-Hansen, A.; Nordestgaard, B.G. Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population. J. Am. Coll. Cardiol. 2014, 63, 470–477. [Google Scholar] [CrossRef]
- Vongpromek, R.; Bos, S.; Ten Kate, G.-J.R.; Yahya, R.; Verhoeven, A.J.M.; de Feyter, P.J.; Kronenberg, F.; Roeters van Lennep, J.E.; Sijbrands, E.J.G.; Mulder, M.T. Lipoprotein(a) levels are associated with aortic valve calcification in asymptomatic patients with familial hypercholesterolaemia. J. Intern. Med. 2015, 278, 166–173. [Google Scholar] [CrossRef]
- Small, A.M.; Peloso, G.M.; Linefsky, J.; Aragam, J.; Galloway, A.; Tanukonda, V.; Wang, L.-C.; Yu, Z.; Sunitha Selvaraj, M.; Farber-Eger, E.H.; et al. Multiancestry Genome-Wide Association Study of Aortic Stenosis Identifies Multiple Novel Loci in the Million Veteran Program. Circulation 2023, 147, 942–955. [Google Scholar] [CrossRef] [PubMed]
- Geraldo, L.H.M.; de Spohr, T.C.L.; do Amaral, R.F.; da Fonseca, A.C.C.; Garcia, C.; de Mendes, F.A.; Freitas, C.; dosSantos, M.F.; Lima, F.R.S. Role of lysophosphatidic acid and its receptors in health and disease: Novel therapeutic strategies. Sig. Transduct. Target. Ther. 2021, 6, 1–18. [Google Scholar] [CrossRef]
- Bouchareb, R.; Mahmut, A.; Nsaibia, M.J.; Boulanger, M.-C.; Dahou, A.; Lépine, J.-L.; Laflamme, M.-H.; Hadji, F.; Couture, C.; Trahan, S.; et al. Autotaxin Derived From Lipoprotein(a) and Valve Interstitial Cells Promotes Inflammation and Mineralization of the Aortic Valve. Circulation 2015, 132, 677–690. [Google Scholar] [CrossRef]
- Salgado-Polo, F.; Borza, R.; Matsoukas, M.-T.; Marsais, F.; Jagerschmidt, C.; Waeckel, L.; Moolenaar, W.H.; Ford, P.; Heckmann, B.; Perrakis, A. Autotaxin facilitates selective LPA receptor signaling. Cell Chem. Biol. 2023, 30, 69–84.e14. [Google Scholar] [CrossRef]
- Hitzel, J.; Lee, E.; Zhang, Y.; Bibli, S.I.; Li, X.; Zukunft, S.; Pflüger, B.; Hu, J.; Schürmann, C.; Vasconez, A.E.; et al. Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nat. Commun. 2018, 9, 2292. [Google Scholar] [CrossRef] [PubMed]
- Boffa, M.B.; Koschinsky, M.L. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat. Rev. Cardiol. 2019, 16, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Boffa, M.B.; Koschinsky, M.L. The journey towards understanding lipoprotein(a) and cardiovascular disease risk: Are we there yet? Curr. Opin. Lipidol. 2018, 29, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Jawi, M.M.; Frohlich, J.; Chan, S.Y. Lipoprotein(a) the Insurgent: A New Insight into the Structure, Function, Metabolism, Pathogenicity, and Medications Affecting Lipoprotein(a) Molecule. J. Lipids 2020, 2020, 3491764. [Google Scholar] [CrossRef] [PubMed]
- Yeang, C.; Wilkinson, M.J.; Tsimikas, S. Lipoprotein(a) and Oxidized Phospholipids in Calcific Aortic Valve Stenosis. Curr. Opin. Cardiol. 2016, 31, 440–450. [Google Scholar] [CrossRef]
- Yu, B.; Hafiane, A.; Thanassoulis, G.; Ott, L.; Filwood, N.; Cerruti, M.; Gourgas, O.; Shum-Tim, D.; Al Kindi, H.; de Varennes, B.; et al. Lipoprotein(a) Induces Human Aortic Valve Interstitial Cell Calcification. JACC Basic. Transl. Sci. 2017, 2, 358–371. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, Y.; Singh, S.S.; Zheng, K.H.; Verbeek, R.; Kavousi, M.; Pinto, S.-J.; Vernooij, M.W.; Sijbrands, E.J.G.; Boekholdt, S.M.; de Rijke, Y.B.; et al. Lipoprotein(a) is robustly associated with aortic valve calcium. Heart 2021, 107, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Liu, M.-M.; Liu, H.-H.; Xu, R.-X.; Zhu, C.-G.; Guo, Y.-L.; Wu, N.-Q.; Dong, Q.; Cui, C.-J.; Li, J.-J. Lipoprotein (a)-mediated vascular calcification: Population-based and in vitro studies. Metabolism 2022, 127, 154960. [Google Scholar] [CrossRef]
- Vazirian, F.; Sadeghi, M.; Kelesidis, T.; Budoff, M.J.; Zandi, Z.; Samadi, S.; Mohammadpour, A.H. Predictive value of lipoprotein(a) in coronary artery calcification among asymptomatic cardiovascular disease subjects: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 2055–2066. [Google Scholar] [CrossRef] [PubMed]
- Capoulade, R.; Chan, K.L.; Yeang, C.; Mathieu, P.; Bossé, Y.; Dumesnil, J.G.; Tam, J.W.; Teo, K.K.; Mahmut, A.; Yang, X.; et al. Oxidized Phospholipids, Lipoprotein(a), and Progression of Calcific Aortic Valve Stenosis. J. Am. Coll. Cardiol. 2015, 66, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.H.; Tsimikas, S.; Pawade, T.; Kroon, J.; Jenkins, W.S.A.; Doris, M.K.; White, A.C.; Timmers, N.K.L.M.; Hjortnaes, J.; Rogers, M.A.; et al. Lipoprotein(a) and Oxidized Phospholipids Promote Valve Calcification in Patients with Aortic Stenosis. J. Am. Coll. Cardiol. 2019, 73, 2150–2162. [Google Scholar] [CrossRef]
- Guddeti, R.R.; Patil, S.; Ahmed, A.; Sharma, A.; Aboeata, A.; Lavie, C.J.; Alla, V.M. Lipoprotein(a) and calcific aortic valve stenosis: A systematic review. Prog. Cardiovasc. Dis. 2020, 63, 496–502. [Google Scholar] [CrossRef]
- Pantelidis, P.; Oikonomou, E.; Lampsas, S.; Zakynthinos, G.E.; Lysandrou, A.; Kalogeras, K.; Katsianos, E.; Theofilis, P.; Siasos, G.; Vavuranakis, M.A.; et al. Lipoprotein(a) and calcific aortic valve disease initiation and progression: A systematic review and meta-analysis. Cardiovasc. Res. 2023, 119, 1641–1655. [Google Scholar] [CrossRef]
- Willner, N.; Prosperi-Porta, G.; Lau, L.; Nam Fu, A.Y.; Boczar, K.; Poulin, A.; Di Santo, P.; Unni, R.R.; Visintini, S.; Ronksley, P.E.; et al. Aortic Stenosis Progression: A Systematic Review and Meta-Analysis. JACC Cardiovasc. Imaging 2023, 16, 314–328. [Google Scholar] [CrossRef] [PubMed]
- Marrero, N.; Jha, K.; Razavi, A.C.; Boakye, E.; Anchouche, K.; Dzaye, O.; Budoff, M.J.; Tsai, M.Y.; Shah, S.J.; Rotter, J.I.; et al. Identifying People at High Risk for Severe Aortic Stenosis: Aortic Valve Calcium Versus Lipoprotein(a) and Low-Density Lipoprotein Cholesterol. Circ. Cardiovasc. Imaging 2024, 17, e016372. [Google Scholar] [CrossRef]
- Kaiser, Y.; Van Der Toorn, J.E.; Zheng, K.H.; Kavousi, M.; Vernooij, M.W.; Sijbrands, E.J.G.; Boekholdt, S.M.; Stroes, E.S.G.; De Rijke, Y.B.; Bos, D. Lipoprotein(a) is associated with incidence but not progression of aortic valve calcium. Eur. Heart J. 2021, 42, ehab724.1682. [Google Scholar] [CrossRef]
- Kaiser, Y.; van der Toorn, J.E.; Singh, S.S.; Zheng, K.H.; Kavousi, M.; Sijbrands, E.J.G.; Stroes, E.S.G.; Vernooij, M.W.; de Rijke, Y.B.; Boekholdt, S.M.; et al. Lipoprotein(a) is associated with the onset but not the progression of aortic valve calcification. Eur. Heart J. 2022, 43, 3960–3967. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, Y.; Nurmohamed, N.S.; Kroon, J.; Verberne, H.J.; Tzolos, E.; Dweck, M.R.; Somsen, A.G.; Arsenault, B.J.; Stroes, E.S.G.; Zheng, K.H.; et al. Lipoprotein(a) has no major impact on calcification activity in patients with mild to moderate aortic valve stenosis. Heart 2022, 108, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Greve, A.M.; Bang, C.N.; Boman, K.; Egstrup, K.; Forman, J.L.; Kesäniemi, Y.A.; Ray, S.; Pedersen, T.R.; Best, P.; Rajamannan, N.M.; et al. Effect Modifications of Lipid-Lowering Therapy on Progression of Aortic Stenosis (from the Simvastatin and Ezetimibe in Aortic Stenosis [SEAS] Study). Am. J. Cardiol. 2018, 121, 739–745. [Google Scholar] [CrossRef]
- Capoulade, R.; Torzewski, M.; Mayr, M.; Chan, K.-L.; Mathieu, P.; Bossé, Y.; Dumesnil, J.G.; Tam, J.; Teo, K.K.; Burnap, S.A.; et al. ApoCIII-Lp(a) complexes in conjunction with Lp(a)-OxPL predict rapid progression of aortic stenosis. Heart 2020, 106, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Schlotter, F.; de Freitas, R.C.C.; Rogers, M.A.; Blaser, M.C.; Wu, P.-J.; Higashi, H.; Halu, A.; Iqbal, F.; Andraski, A.B.; Rodia, C.N.; et al. ApoC-III is a novel inducer of calcification in human aortic valves. J. Biol. Chem. 2021, 296, 100193. [Google Scholar] [CrossRef]
- Cao, J.; Steffen, B.T.; Budoff, M.; Post, W.S.; Thanassoulis, G.; Kestenbaum, B.; McConnell, J.P.; Warnick, R.; Guan, W.; Tsai, M.Y. Lipoprotein(a) Levels Are Associated With Subclinical Calcific Aortic Valve Disease in White and Black Individuals. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Burdeynaya, A.; Afanasieva, O.; Ezhov, M.; Klesareva, E.; Razova, O.; Pokrovsky, S. Atherogenic lipoproteins, neutrophil-to-lymphocyte ratio and severity of aortic stenosis. Atherosclerosis 2023, 379, S48. [Google Scholar] [CrossRef]
- Garg, P.K.; Guan, W.; Karger, A.B.; Steffen, B.T.; Budoff, M.; Tsai, M.Y. Lipoprotein (a) and risk for calcification of the coronary arteries, mitral valve, and thoracic aorta: The Multi-Ethnic Study of Atherosclerosis. J. Cardiovasc. Comput. Tomogr. 2021, 15, 154–160. [Google Scholar] [CrossRef]
- Diaz, N.; Perez, C.; Escribano, A.M.; Sanz, G.; Priego, J.; Lafuente, C.; Barberis, M.; Calle, L.; Espinosa, J.F.; Priest, B.T.; et al. Discovery of potent small-molecule inhibitors of lipoprotein(a) formation. Nature 2024, 629, 945–950. [Google Scholar] [CrossRef]
- O’Donoghue, M.L.; Rosenson, R.S.; Gencer, B.; López, J.A.G.; Lepor, N.E.; Baum, S.J.; Stout, E.; Gaudet, D.; Knusel, B.; Kuder, J.F.; et al. Small Interfering RNA to Reduce Lipoprotein(a) in Cardiovascular Disease. N. Engl. J. Med. 2022, 387, 1855–1864. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Wolski, K.; Balog, C.; Swerdlow, D.I.; Scrimgeour, A.C.; Rambaran, C.; Wilson, R.J.; Boyce, M.; Ray, K.K.; Cho, L.; et al. Single Ascending Dose Study of a Short Interfering RNA Targeting Lipoprotein(a) Production in Individuals With Elevated Plasma Lipoprotein(a) Levels. JAMA 2022, 327, 1679–1687. [Google Scholar] [CrossRef]
- Hu, S.-L.; Cui, G.-L.; Huang, J.; Jiang, J.-G.; Wang, D.-W. An APOC3 3′UTR variant associated with plasma triglycerides levels and coronary heart disease by creating a functional miR-4271 binding site. Sci. Rep. 2016, 6, 32700. [Google Scholar] [CrossRef] [PubMed]
- Valleix, S.; Verona, G.; Jourde-Chiche, N.; Nédelec, B.; Mangione, P.P.; Bridoux, F.; Mangé, A.; Dogan, A.; Goujon, J.-M.; Lhomme, M.; et al. D25V apolipoprotein C-III variant causes dominant hereditary systemic amyloidosis and confers cardiovascular protective lipoprotein profile. Nat. Commun. 2016, 7, 10353. [Google Scholar] [CrossRef] [PubMed]
- Giammanco, A.; Spina, R.; Cefalù, A.B.; Averna, M. APOC-III: A Gatekeeper in Controlling Triglyceride Metabolism. Curr. Atheroscler. Rep. 2023, 25, 67–76. [Google Scholar] [CrossRef]
- Zhu, L.; Li, N.; Shi, H.; Shao, G.; Sun, L. Genetic causal association between lipidomic profiles, inflammatory proteomics, and aortic stenosis: A Mendelian randomization investigation. Eur. J. Med. Res. 2024, 29, 446. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Boer, J.M.A.; Barsova, R.M.; Favorova, O.; Goel, A.; Müller, M.; Feskens, E.J.M.; PROCARDIS CARDIoGRAM Consortium. TGFB1 genetic polymorphisms and coronary heart disease risk: A meta-analysis. BMC Med. Genet. 2012, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.L.; Bhasker, A.N.; Kumar, A.; Mohapatra, B. Identification and characterization of genetic variants of TGFB1 in patients with congenital heart disease. Meta Gene 2022, 31, 100987. [Google Scholar] [CrossRef]
- Leask, A. Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ. Res. 2010, 106, 1675–1680. [Google Scholar] [CrossRef]
- Panek, A.N.; Posch, M.G.; Alenina, N.; Ghadge, S.K.; Erdmann, B.; Popova, E.; Perrot, A.; Geier, C.; Dietz, R.; Morano, I.; et al. Connective tissue growth factor overexpression in cardiomyocytes promotes cardiac hypertrophy and protection against pressure overload. PLoS ONE 2009, 4, e6743. [Google Scholar] [CrossRef]
- Villar, A.V.; Cobo, M.; Llano, M.; Montalvo, C.; González-Vílchez, F.; Martín-Durán, R.; Hurlé, M.A.; Nistal, J.F. Plasma levels of transforming growth factor-beta1 reflect left ventricular remodeling in aortic stenosis. PLoS ONE 2009, 4, e8476. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, J.; Burg, N.; Yoshinaga, K.; Janczak, C.A.; Rifkin, D.B.; Coller, B.S. In vitro and in vivo evidence for shear-induced activation of latent transforming growth factor-beta1. Blood 2008, 112, 3650–3660. [Google Scholar] [CrossRef]
- Varshney, R.; Murphy, B.; Woolington, S.; Ghafoory, S.; Chen, S.; Robison, T.; Ahamed, J. Inactivation of platelet-derived TGF-β1 attenuates aortic stenosis progression in a robust murine model. Blood Adv. 2019, 3, 777–788. [Google Scholar] [CrossRef]
- Jian, B.; Narula, N.; Li, Q.Y.; Mohler, E.R., III; Levy, R.J. Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann. Thorac. Surg. 2003, 75, 457–465. [Google Scholar] [CrossRef]
- Bjørnstad, J.L.; Neverdal, N.O.; Vengen, O.A.; Knudsen, C.W.; Husebye, T.; Pepper, J.; Lie, M.; Christensen, G.; Tønnessen, T. Alterations in circulating activin A, GDF-15, TGF-beta3 and MMP-2, -3, and -9 during one year of left ventricular reverse remodelling in patients operated for severe aortic stenosis. Eur. J. Heart Fail. 2008, 10, 1201–1207. [Google Scholar] [CrossRef]
- Satta, J.; Oiva, J.; Salo, T.; Eriksen, H.; Ohtonen, P.; Biancari, F.; Juvonen, T.S.; Soini, Y. Evidence for an altered balance between matrix metalloproteinase-9 and its inhibitors in calcific aortic stenosis. Ann. Thorac. Surg. 2003, 76, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Basalyga, D.M.; Simionescu, D.T.; Xiong, W.; Timothy Baxter, B.; Starcher, B.C.; Vyavahare, N.R. Elastin Degradation and Calcification in an Abdominal Aorta Injury Model. Circulation 2004, 110, 3480–3487. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Jackson, P.; Tester, A.M.; Diaconu, E.; Overall, C.M.; Blalock, J.E.; Pearlman, E. Matrix Metalloproteinase-8 Facilitates Neutrophil Migration through the Corneal Stromal Matrix by Collagen Degradation and Production of the Chemotactic Peptide Pro-Gly-Pro. Am. J. Pathol. 2008, 173, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Nackman, G.B.; Karkowski, F.J.; Halpern, V.J.; Gaetz, H.P.; Tilson, M.D. Elastin degradation products induce adventitial angiogenesis in the Anidjar/Dobrin rat aneurysm model. Surgery 1997, 122, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Cheresh, D.A.; Stupack, D.G. Regulation of angiogenesis: Apoptotic cues from the ECM. Oncogene 2008, 27, 6285–6298. [Google Scholar] [CrossRef]
- Obasanmi, G.; Uppal, M.; Cui, J.Z.; Xi, J.; Ju, M.J.; Song, J.; To, E.; Li, S.; Khan, W.; Cheng, D.; et al. Granzyme B degrades extracellular matrix and promotes inflammation and choroidal neovascularization. Angiogenesis 2024, 27, 351–373. [Google Scholar] [CrossRef]
- Lurins, J.; Lurina, D.; Svirskis, S.; Nora-Krukle, Z.; Tretjakovs, P.; Mackevics, V.; Lejnieks, A.; Rapisarda, V.; Baylon, V. Impact of several proinflammatory and cell degradation factors in patients with aortic valve stenosis. Exp. Ther. Med. 2019, 17, 2433–2442. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Guo, T.; Xu, Y.; Guo, R. Correlation Between Plasma Matrix Metalloproteinase-28 Levels and Severity of Calcific Aortic Valve Stenosis. Med. Sci. Monit. 2020, 26, e925260-1–e925260-8. [Google Scholar] [CrossRef] [PubMed]
- Matilla, L.; Roncal, C.; Ibarrola, J.; Arrieta, V.; García-Peña, A.; Fernández-Celis, A.; Navarro, A.; Álvarez, V.; Gainza, A.; Orbe, J.; et al. A Role for MMP-10 (Matrix Metalloproteinase-10) in Calcific Aortic Valve Stenosis. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1370–1382. [Google Scholar] [CrossRef] [PubMed]
- Shelbaya, K.; Arthur, V.; Yang, Y.; Dorbala, P.; Buckley, L.; Claggett, B.; Skali, H.; Dufresne, L.; Yang, T.-Y.; Engert, J.C.; et al. Large-Scale Proteomics Identifies Novel Biomarkers and Circulating Risk Factors for Aortic Stenosis. J. Am. Coll. Cardiol. 2024, 83, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Jian, B.; Jones, P.L.; Li, Q.; Mohler, E.R.; Schoen, F.J.; Levy, R.J. Matrix metalloproteinase-2 is associated with tenascin-C in calcific aortic stenosis. Am. J. Pathol. 2001, 159, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Fondard, O.; Detaint, D.; Iung, B.; Choqueux, C.; Adle-Biassette, H.; Jarraya, M.; Hvass, U.; Couetil, J.-P.; Henin, D.; Michel, J.-B.; et al. Extracellular matrix remodelling in human aortic valve disease: The role of matrix metalloproteinases and their tissue inhibitors. Eur. Heart J. 2005, 26, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Hewing, B.; Au, S.C.-D.; Ludwig, A.; Ellerbroek, R.; van Dijck, P.; Hartmann, L.; Grubitzsch, H.; Giannini, C.; Laule, M.; Stangl, V.; et al. Severe Aortic Valve Stenosis in Adults is Associated with Increased Levels of Circulating Intermediate Monocytes. J. Cardiovasc. Transl. Res. 2017, 10, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Xia, Y.; Shi, D.; Yang, L.; Xie, M.; Wang, Z.; Gao, F.; Shao, Q.; Ma, X.; Zhou, Y. Relation of Monocyte Number to Progression of Aortic Stenosis. Am. J. Cardiol. 2022, 171, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Shimoni, S.; Meledin, V.; Bar, I.; Fabricant, J.; Gandelman, G.; George, J. Circulating CD14+ monocytes in patients with aortic stenosis. J. Geriatr. Cardiol. 2016, 13, 81–87. [Google Scholar] [CrossRef]
- Schwartzenberg, S.; Meledin, V.; Zilberman, L.; Goland, S.; George, J.; Shimoni, S. Low circulating monocyte count is associated with severe aortic valve stenosis. Isr. Med. Assoc. J. 2013, 15, 500–504. [Google Scholar]
- Navani, R.V.; Dayawansa, N.H.; Nanayakkara, S.; Palmer, S.; Noaman, S.; Htun, N.M.; Walton, A.S.; Peter, K.; Stub, D. Post-Procedure Monocyte Count Levels Predict Major Adverse Cardiovascular Events (MACE) Following Transcatheter Aortic Valve Implantation (TAVI) for Aortic Stenosis. Heart Lung Circ. 2024, 33, 1340–1347. [Google Scholar] [CrossRef]
- Mazur, P.; Mielimonka, A.; Natorska, J.; Wypasek, E.; Gawęda, B.; Sobczyk, D.; Kapusta, P.; Malinowski, K.P.; Kapelak, B. Lymphocyte and monocyte subpopulations in severe aortic stenosis at the time of surgical intervention. Cardiovasc. Pathol. 2018, 35, 1–7. [Google Scholar] [CrossRef]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Mangold, A.; Ondracek, A.S.; Hofbauer, T.M.; Artner, T.; Nechvile, J.; Panagiotides, N.G.; Mirna, M.; Hammerer, M.; Fejzic, D.; Hoppe, U.; et al. Deoxyribonuclease is prognostic in patients undergoing transcatheter aortic valve replacement. Eur. J. Clin. Investig. 2021, 51, e13595. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, M.; Xu, Y.; Yan, S.; Jin, E.; Li, X. Neutrophil extracellular trap burden correlates with the stenosis of coronary atherosclerosis. PeerJ 2023, 11, e15471. [Google Scholar] [CrossRef] [PubMed]
- Kopytek, M.; Kolasa-Trela, R.; Ząbczyk, M.; Undas, A.; Natorska, J. NETosis is associated with the severity of aortic stenosis: Links with inflammation. Int. J. Cardiol. 2019, 286, 121–126. [Google Scholar] [CrossRef] [PubMed]
- El Husseini, D.; Boulanger, M.-C.; Mahmut, A.; Bouchareb, R.; Laflamme, M.-H.; Fournier, D.; Pibarot, P.; Bossé, Y.; Mathieu, P. P2Y2 receptor represses IL-6 expression by valve interstitial cells through Akt: Implication for calcific aortic valve disease. J. Mol. Cell Cardiol. 2014, 72, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Meher, A.K.; Spinosa, M.; Davis, J.P.; Pope, N.; Laubach, V.E.; Su, G.; Serbulea, V.; Leitinger, N.; Ailawadi, G.; Upchurch, G.R. Novel Role of IL (Interleukin)-1β in Neutrophil Extracellular Trap Formation and Abdominal Aortic Aneurysms. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Obama, T.; Ohinata, H.; Takaki, T.; Iwamoto, S.; Sawada, N.; Aiuchi, T.; Kato, R.; Itabe, H. Cooperative Action of Oxidized Low-Density Lipoproteins and Neutrophils on Endothelial Inflammatory Responses Through Neutrophil Extracellular Trap Formation. Front. Immunol. 2019, 10, 1899. [Google Scholar] [CrossRef]
- Ohinata, H.; Obama, T.; Makiyama, T.; Watanabe, Y.; Itabe, H. High-Density Lipoprotein Suppresses Neutrophil Extracellular Traps Enhanced by Oxidized Low-Density Lipoprotein or Oxidized Phospholipids. Int. J. Mol. Sci. 2022, 23, 13992. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.; Borreguero, L.J.J.; Sylva, M.; Ruiz, L.F.; Rezai, F.; Gunst, Q.D.; de la Pompa, J.-L.; Ruijter, J.M.; van den Hoff, M.J.B. Deletion of Fstl1 (Follistatin-Like 1) From the Endocardial/Endothelial Lineage Causes Mitral Valve Disease. Arterioscler. Thromb. Vasc. Biol. 2017, 37, e116–e130. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Kishimoto, Y.; Saita, E.; Aoyama, M.; Ikegami, Y.; Ohmori, R.; Tanimoto, K.; Kondo, K.; Momiyama, Y. Association between Plasma Follistatin-like Protein 1 Levels and the Presence and Severity of Coronary Artery Disease. Int. Heart J. 2021, 62, 1207–1212. [Google Scholar] [CrossRef]
- Widera, C.; Giannitsis, E.; Kempf, T.; Korf-Klingebiel, M.; Fiedler, B.; Sharma, S.; Katus, H.A.; Asaumi, Y.; Shimano, M.; Walsh, K.; et al. Identification of Follistatin-Like 1 by Expression Cloning as an Activator of the Growth Differentiation Factor 15 Gene and a Prognostic Biomarker in Acute Coronary Syndrome. Clin. Chem. 2012, 58, 1233–1241. [Google Scholar] [CrossRef]
- Li, G.; Ren, H.; Wu, X.; Hu, Q.; Hong, Z.; Wang, G.; Gu, G.; Ren, J.; Li, J. Follistatin like protein-1 modulates macrophage polarization and aggravates dextran sodium sulfate-induced colitis. Int. Immunopharmacol. 2020, 83, 106456. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Zhu, Q.; Deng, W.; Hou, C.; Sun, N.; Han, W.; Tang, Y.; Wang, C.; Ye, J. Follistatin-like 1 suppresses osteoblast differentiation of bone marrow mesenchymal cells during inflammation. Arch. Oral. Biol. 2022, 135, 105345. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, J.; Yang, G.; Yang, L.; Chen, Z.; Yang, K.; Sun, J.T.; Liu, Y. Role of follistatin-like 1 levels and functions in calcific aortic stenosis. Front. Cardiovasc. Med. 2023, 9, 1050310. [Google Scholar] [CrossRef] [PubMed]
- Herzog, B.H.; Fu, J.; Wilson, S.J.; Hess, P.R.; Sen, A.; McDaniel, J.M.; Pan, Y.; Sheng, M.; Yago, T.; Silasi-Mansat, R.; et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 2013, 502, 105–109. [Google Scholar] [CrossRef]
- Syväranta, S.; Helske, S.; Lappalainen, J.; Kupari, M.; Kovanen, P.T. Lymphangiogenesis in aortic valve stenosis—Novel regulatory roles for valvular myofibroblasts and mast cells. Atherosclerosis 2012, 221, 366–374. [Google Scholar] [CrossRef]
- Näpänkangas, J.; Ohtonen, P.; Ohukainen, P.; Weisell, J.; Väisänen, T.; Peltonen, T.; Taskinen, P.; Rysä, J. Increased mesenchymal podoplanin expression is associated with calcification in aortic valves. Cardiovasc. Pathol. 2019, 39, 30–37. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, Y.; Ren, W.; Shen, F.; Xu, M.; Yu, M.; Fu, J.; Xia, L.; Ruan, C.; Zhao, Y. Plasma soluble podoplanin is a novel marker for the diagnosis of tumor occurrence and metastasis. Cancer Sci. 2018, 109, 403. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Xu, M.; Zhao, X.; Shen, F.; Ruan, C.; Zhao, Y. The Detection of Plasma Soluble Podoplanin of Patients with Breast Cancer and Its Clinical Signification. Cancer Manag. Res. 2020, 12, 13207–13214. [Google Scholar] [CrossRef]
- Xie, G.; Yan, A.; Lin, P.; Wang, Y.; Guo, L. Trimethylamine N-oxide—a marker for atherosclerotic vascular disease. RCM 2021, 22, 787–797. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, S.; Zhan, H.; Chen, H.; Hu, P.; Zhou, D.; Dai, H.; Liu, X.; Hu, W.; Zhu, G.; et al. Trimethylamine N-Oxide Levels Are Associated with Severe Aortic Stenosis and Predict Long-Term Adverse Outcome. J. Clin. Med. 2023, 12, 407. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zeng, Q.; Xiong, Z.; Xian, G.; Liu, Z.; Zhan, Q.; Lai, W.; Ao, L.; Meng, X.; Ren, H.; et al. Trimethylamine N-oxide induces osteogenic responses in human aortic valve interstitial cells in vitro and aggravates aortic valve lesions in mice. Cardiovasc. Res. 2022, 118, 2018–2030. [Google Scholar] [CrossRef] [PubMed]
- Seldin, M.M.; Meng, Y.; Qi, H.; Zhu, W.; Wang, Z.; Hazen, S.L.; Lusis, A.J.; Shih, D.M. Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB. J. Am. Heart Assoc. 2016, 5, e002767. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, D.; Tokgozoglu, L.; Gurses, K.M.; Stahlman, M.; Boren, J.; Soyal, M.F.T.; Canpınar, H.; Guc, D.; Saglam Ayhan, A.; Hazirolan, T.; et al. Association of dietary and gut microbiota-related metabolites with calcific aortic stenosis. Acta Cardiol. 2021, 76, 544–552. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, T.; Yu, Z.; Yu, Q.; Wang, Y.; Hu, J.; Shi, J.; Yang, G. The functions and roles of sestrins in regulating human diseases. Cell. Mol. Biol. Lett. 2022, 27, 2. [Google Scholar] [CrossRef] [PubMed]
- Budanov, A.V.; Shoshani, T.; Faerman, A.; Zelin, E.; Kamer, I.; Kalinski, H.; Gorodin, S.; Fishman, A.; Chajut, A.; Einat, P.; et al. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene 2002, 21, 6017–6031. [Google Scholar] [CrossRef]
- Budanov, A.V.; Karin, M. p53 Target Genes Sestrin1 and Sestrin2 Connect Genotoxic Stress and mTOR Signaling. Cell 2008, 134, 451–460. [Google Scholar] [CrossRef]
- Kishimoto, Y.; Kondo, K.; Momiyama, Y. The Protective Role of Sestrin2 in Atherosclerotic and Cardiac Diseases. Int. J. Mol. Sci. 2021, 22, 1200. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, S.; Jayachandran, I.; Balasubramanyam, M.; Mohan, V.; Venkatesan, B.; Manickam, N. Sestrin2 regulates monocyte activation through AMPK-mTOR nexus under high-glucose and dyslipidemic conditions. J. Cell. Biochem. 2019, 120, 8201–8213. [Google Scholar] [CrossRef]
- Kim, M.-J.; Bae, S.H.; Ryu, J.-C.; Kwon, Y.; Oh, J.-H.; Kwon, J.; Moon, J.-S.; Kim, K.; Miyawaki, A.; Lee, M.G.; et al. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 2016, 12, 1272. [Google Scholar] [CrossRef]
- Wang, H.; Xi, J.; Zhang, Z.; Li, J.; Guo, L.; Li, N.; Sun, Y.; Li, X.; Han, X. Sestrin2 Is Increased in Calcific Aortic Disease and Inhibits Osteoblastic Differentiation in Valvular Interstitial Cells via the Nuclear Factor E2–related Factor 2 Pathway. J. Cardiovasc. Pharmacol. 2022, 80, 609. [Google Scholar] [CrossRef]
- Xiao, T.; Zhang, L.; Huang, Y.; Shi, Y.; Wang, J.; Ji, Q.; Ye, J.; Lin, Y.; Liu, H. Sestrin2 increases in aortas and plasma from aortic dissection patients and alleviates angiotensin II-induced smooth muscle cell apoptosis via the Nrf2 pathway. Life Sci. 2019, 218, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, Y.; Aoyama, M.; Saita, E.; Ikegami, Y.; Ohmori, R.; Kondo, K.; Momiyama, Y. Association between Plasma Sestrin2 Levels and the Presence and Severity of Coronary Artery Disease. Dis. Markers 2020, 2020, 7439574. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Gao, Y.; Zhong, M.; Kong, M.; Zhao, L.; Feng, Z.; Sun, Q.; He, J.; Liu, X. The association between serum Sestrin2 and the risk of coronary heart disease in patients with type 2 diabetes mellitus. BMC Cardiovasc. Disord. 2022, 22, 281. [Google Scholar] [CrossRef]
- Van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef]
- Skogseid, E.L.; Khandagale, A.; Siegbahn, A.; Christersson, C. Characterization of extracellular vesicles from patients with severe aortic stenosis undergoing transcatheter aortic valve implantation and assessment of their coagulation potential. Cardiovasc. Res. 2024, 120, cvae088.129. [Google Scholar] [CrossRef]
- Hmadeh, S.; Trimaille, A.; Matsushita, K.; Marchandot, B.; Carmona, A.; Zobairi, F.; Sato, C.; Kindo, M.; Hoang, T.M.; Toti, F.; et al. Human Aortic Stenotic Valve-Derived Extracellular Vesicles Induce Endothelial Dysfunction and Thrombogenicity Through AT1R/NADPH Oxidases/SGLT2 Pro-Oxidant Pathway. JACC Basic. Transl. Sci. 2024, 9, 845–864. [Google Scholar] [CrossRef]
- Blaser, M.C.; Buffolo, F.; Halu, A.; Turner, M.E.; Schlotter, F.; Higashi, H.; Pantano, L.; Clift, C.L.; Saddic, L.A.; Atkins, S.K.; et al. Multiomics of Tissue Extracellular Vesicles Identifies Unique Modulators of Atherosclerosis and Calcific Aortic Valve Stenosis. Circulation 2023, 148, 661–678. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, F.; Mora, S.; Stroes, E.S.G.; Ference, B.A.; Arsenault, B.J.; Berglund, L.; Dweck, M.R.; Koschinsky, M.; Lambert, G.; Mach, F.; et al. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: A European Atherosclerosis Society consensus statement. Eur. Heart J. 2022, 43, 3925–3946. [Google Scholar] [CrossRef] [PubMed]
- Pearson, G.J.; Thanassoulis, G.; Anderson, T.J.; Barry, A.R.; Couture, P.; Dayan, N.; Francis, G.A.; Genest, J.; Grégoire, J.; Grover, S.A.; et al. 2021 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in Adults. Can. J. Cardiol. 2021, 37, 1129–1150. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Chapman, M.J.; Ray, K.; Borén, J.; Andreotti, F.; Watts, G.F.; Ginsberg, H.; Amarenco, P.; Catapano, A.; Descamps, O.S.; et al. Lipoprotein(a) as a cardiovascular risk factor: Current status. Eur. Heart J. 2010, 31, 2844–2853. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Kim, A.-R.; Ahn, J.-M.; Kang, D.-Y.; Jun, T.J.; Sun, B.J.; Kim, H.J.; Kim, J.B.; Kim, D.-H.; Park, D.-W.; Kim, Y.-H.; et al. Association of Lipoprotein(a) With Severe Degenerative Aortic Valve Stenosis. JACC Asia 2024, 4, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Dudum, R.; Huang, Q.; Yan, X.S.; Fonseca, M.A.; Jose, P.; Sarraju, A.; Palaniappan, L.; Rodriguez, F. Lipoprotein(a) Levels in Disaggregated Racial and Ethnic Subgroups Across Atherosclerotic Cardiovascular Disease Risk Levels. JACC Adv. 2024, 3, 100940. [Google Scholar] [CrossRef] [PubMed]
- Lindman, B.R.; Breyley, J.G.; Schilling, J.D.; Vatterott, A.M.; Zajarias, A.; Maniar, H.S.; Damiano, R.J.; Moon, M.R.; Lawton, J.S.; Gage, B.F.; et al. Prognostic utility of novel biomarkers of cardiovascular stress in patients with aortic stenosis undergoing valve replacement. Heart 2015, 101, 1382–1388. [Google Scholar] [CrossRef]
- Duan, X.-P.; Qin, B.-D.; Jiao, X.-D.; Liu, K.; Wang, Z.; Zang, Y.-S. New clinical trial design in precision medicine: Discovery, development and direction. Sig. Transduct. Target. Ther. 2024, 9, 1–29. [Google Scholar] [CrossRef] [PubMed]
Study or Drug Name; Identifier; Status | Phase | Recruitment | Intervention | Mechanism of Action | Primary Outcome |
---|---|---|---|---|---|
OCEAN(a); NCT05581303; Active, not recruiting | 3 |
| Olpasiran; SC injection of 10, 75, or 225 mg every 12 weeks vs. placebo | siRNA that reduces Lp(a) synthesis in the liver | Time to first occurrence of CVD death, myocardial infarction, or urgent coronary revascularisation [56]. |
Zerlasiran; NCT05537571; completed | 2 |
| Zerlasiran (SLN360); SC single-dose injection of 30, 100, 300, or 600 mg vs. placebo | Double-stranded siRNA that targets LPA gene mRNA | Change in Lp(a) plasma levels from baseline [57]. |
KRAKEN; NCT05563246; completed | 2 |
| Muvalaplin (LY3473329); daily oral for 12 weeks (dose unknown) vs. placebo | siRNA that targets hepatic LPA gene | Change in Lp(a) plasma levels from baseline [58]. |
Biomarker | Mechanism of Action | Plasma Levels in Aortic Stenosis | Limitations in Current Understanding | Limitations in Clinical Practicality |
---|---|---|---|---|
Lp(a) conjugated with oxidised phospholipid | Promotes valvular calcification and inflammation via the ATX-LPA pathways. | Positively correlated with disease progression, but may decrease as the disease progresses. | Ethnic/racial disparities |
|
Lp(a) conjugated with apolipoprotein C-III | Induces mitochondrial dysfunction to initiate calcification. | Elevated levels in patients with mild aortic stenosis may indicate a higher risk of rapid progression. | Limited cohort studies | |
Transforming growth factor-β1 | Promotes fibrosis in valvular endothelial cells and interstitial cells. | Elevated levels may indicate left ventricular remodelling. | Primarily based on animal studies |
|
MMP-1 | Degrades extracellular matrix leading to valve thickening. | Increased levels in subclinical patients may indicate a higher risk of progression. | Limited cohort studies |
|
MMP-2 | Unknown | Inconsistent findings due to variable expression patterns in stenotic valves. | Studies have been done on biopsies, not plasma | |
MMP-3 | Unknown | Levels not different between disease stages. | Lack of studies | |
MMP-9 | Unknown | Levels not different among disease stages. | Lack of studies | |
MMP-10 | Contributes to valve extracellular matrix degradation. | Patients with elevated levels may be at higher risk for rapid disease progression to severe stages. | Limited understanding of its expression in early to moderate stages | |
MMP-12 | Degrades elastin contributing to valve stiffening. | Increased levels in patients with early or mild aortic stenosis indicate higher risk for progression to moderate or severe stages. | Pathophysiological mechanisms not clear | |
MMP-28 | Unknown | Increased plasma levels indicate an increasing risk for progression. | Causal role not clear | |
Neutrophil extracellular trap | Associated with valve immune responses. | Elevated plasma levels may be associated with an increased risk of progression to severe stages. | Mechanisms not clear |
|
Follistatin-like 1 | Complex role; may have both beneficial and detrimental roles | Lower levels have been associated with a higher risk of valve calcification. | Mechanisms not clear |
|
Monocytes | Contribute to inflammation and calcification. | Elevated counts associated with rapid disease progression, but decreased in severe stages. | Roles and mechanisms at different disease stages are not known. |
|
Trimethylamine N-oxide | Promotes osteogenic differentiation of valvular interstitial cells. | Higher levels seen in patients with moderate-severe stages. | Causal relationship not clear |
|
Sestrin-2 | Protective role in shifting macrophage polarisation from M1 to M2. | Higher levels are seen in calcific aortic valve disease, and it may delay progression of disease. | Lack of cohort studies. |
|
Extracellular vesicles | Triggers procoagulant activity in cardiac microvascular endothelial cells. | Elevated levels in severe aortic stenosis. | Carry non-specific factors |
|
Podoplanin | Complex role; influenced by angiogenesis and lymphangiogenesis. | More pronounced expression in severely calcified valves compared to early-stage sclerotic valves. | Not heart-specific; may be elevated in other conditions. Limited plasma data. |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, J.Y.-S.; Tan, S.M.L.; Koh, A.S.; Kong, W.; Sia, C.H.; Yeo, T.C.; Quek, S.C.; Poh, K.K. Novel Circulating Biomarkers in Aortic Valve Stenosis. Int. J. Mol. Sci. 2025, 26, 1902. https://doi.org/10.3390/ijms26051902
Ong JY-S, Tan SML, Koh AS, Kong W, Sia CH, Yeo TC, Quek SC, Poh KK. Novel Circulating Biomarkers in Aortic Valve Stenosis. International Journal of Molecular Sciences. 2025; 26(5):1902. https://doi.org/10.3390/ijms26051902
Chicago/Turabian StyleOng, Joy Yi-Shan, Sarah Ming Li Tan, Angela S. Koh, William Kong, Ching Hui Sia, Tiong Cheng Yeo, Swee Chye Quek, and Kian Keong Poh. 2025. "Novel Circulating Biomarkers in Aortic Valve Stenosis" International Journal of Molecular Sciences 26, no. 5: 1902. https://doi.org/10.3390/ijms26051902
APA StyleOng, J. Y.-S., Tan, S. M. L., Koh, A. S., Kong, W., Sia, C. H., Yeo, T. C., Quek, S. C., & Poh, K. K. (2025). Novel Circulating Biomarkers in Aortic Valve Stenosis. International Journal of Molecular Sciences, 26(5), 1902. https://doi.org/10.3390/ijms26051902