Genetically Elevated Selenoprotein S Levels and Risk of Stroke: A Two-Sample Mendelian Randomization Analysis
Abstract
1. Introduction
2. Results
2.1. Attributes of the Genetic Instruments and Their Statistical Power Assessment
2.2. Associations Between Stroke Risk and SELENOS Levels as Determined by Genetic Factors
2.3. Sensitivity Analyses
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Genetic Instruments Selection for Plasma SELENOS Levels
4.3. Data Sources for Outcomes
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MR | Mendelian randomization |
IVW | inverse-variance weighted |
MEGASTROKE | Multiancestry Genome-Wide Association Study of Stroke Consortium Mendelian randomization |
MR-PRESSO | Mendelian randomization pleiotropy residual sum and outlier |
STROBE-MR | Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization |
MR-RAPS | MR robust adjusted profile score |
SNP | single-nucleotide polymorphisms |
IV | instrumental variable |
ICH | intracerebral hemorrhage |
OR | odds ratio |
CI | confidence interval |
References
- Saini, V.; Guada, L.; Yavagal, D.R. Global Epidemiology of Stroke and Access to Acute Ischemic Stroke Interventions. Neurology 2021, 97, S6–S16. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Zhang, Y.; Xia, Y.; Liu, Y.; Deng, X.; Wang, W.; Wang, Y.; Wang, C.; Wang, G. Global, regional, and national epidemiology of ischemic stroke from 1990 to 2021. Eur. J. Neurol. 2024, 31, e16481. [Google Scholar] [CrossRef] [PubMed]
- Ananth, C.V.; Brandt, J.S.; Keyes, K.M.; Graham, H.L.; Kostis, J.B.; Kostis, W.J. Epidemiology and trends in stroke mortality in the USA, 1975–2019. Int. J. Epidemiol. 2023, 52, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Prust, M.L.; Forman, R.; Ovbiagele, B. Addressing disparities in the global epidemiology of stroke. Nat. Rev. Neurol. 2024, 20, 207–221. [Google Scholar] [CrossRef]
- Montellano, F.A.; Ungethüm, K.; Ramiro, L.; Nacu, A.; Hellwig, S.; Fluri, F.; Whiteley, W.N.; Bustamante, A.; Montaner, J.; Heuschmann, P.U. Role of Blood-Based Biomarkers in Ischemic Stroke Prognosis: A Systematic Review. Stroke 2021, 52, 543–551. [Google Scholar] [CrossRef]
- Zhang, J.J.; Sánchez Vidaña, D.I.; Chan, J.N.; Hui, E.S.K.; Lau, K.K.; Wang, X.; Lau, B.W.M.; Fong, K.N.K. Biomarkers for prognostic functional recovery poststroke: A narrative review. Front. Cell Dev. Biol. 2023, 10, 1062807. [Google Scholar] [CrossRef]
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological Activity of Selenium and Its Impact on Human Health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Wise, L.A. Environmental Selenium and Human Health: An Update. Curr. Environ. Health Rep. 2018, 5, 464–485. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease. Antioxid. Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, C.; Hu, H.; Yin, S. Food Sources of Selenium and Its Relationship with Chronic Diseases. Nutrients 2021, 13, 1739. [Google Scholar] [CrossRef]
- Handy, D.E.; Joseph, J.; Loscalzo, J. Selenium, a Micronutrient That Modulates Cardiovascular Health via Redox Enzymology. Nutrients 2021, 13, 3238. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, H.; Huang, K. Selenium in the prevention of atherosclerosis and its underlying mechanisms. Metallomics 2017, 9, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Benstoem, C.; Goetzenich, A.; Kraemer, S.; Borosch, S.; Manzanares, W.; Hardy, G.; Stoppe, C. Selenium and its supplementation in cardiovascular disease--what do we know? Nutrients 2015, 7, 3094–3118. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium intake, status, and health: A complex relationship. Hormones 2020, 19, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, B.; Huang, Y.; Li, J.; Cao, D.; Chen, Z.; Li, J.; Ran, B.; Yang, J.; Wang, R.; et al. Selenium intake and multiple health-related outcomes: An umbrella review of meta-analyses. Front. Nutr. 2023, 10, 1263853. [Google Scholar] [CrossRef]
- Chaudière, J. Biological and Catalytic Properties of Selenoproteins. Int. J. Mol. Sci. 2023, 24, 10109. [Google Scholar] [CrossRef]
- Dogaru, C.B.; Muscurel, C.; Duță, C.; Stoian, I. "Alphabet" Selenoproteins: Their Characteristics and Physiological Roles. Int. J. Mol. Sci. 2023, 24, 15992. [Google Scholar] [CrossRef]
- Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science 2003, 300, 1439–1443. [Google Scholar] [CrossRef]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef]
- Zhang, F.; Li, X.; Wei, Y. Selenium and Selenoproteins in Health. Biomolecules 2023, 13, 799. [Google Scholar] [CrossRef]
- Schomburg, L.; Orho-Melander, M.; Struck, J.; Bergmann, A.; Melander, O. Selenoprotein-P Deficiency Predicts Cardiovascular Disease and Death. Nutrients 2019, 11, 1852. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, S.; Dharmaraj, S. Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology 2020, 28, 667–695. [Google Scholar] [CrossRef]
- Ghelichkhani, F.; Gonzalez, F.A.; Kapitonova, M.A.; Schaefer-Ramadan, S.; Liu, J.; Cheng, R.; Rozovsky, S. Selenoprotein S: A versatile disordered protein. Arch. Biochem. Biophys. 2022, 731, 109427. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.S.; Du, J.L. Current views on selenoprotein S in the pathophysiological processes of diabetes-induced atherosclerosis: Potential therapeutics and underlying biomarkers. Diabetol. Metab. Syndr. 2024, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.F.; Stranges, S.; Chan, L.H.M. Circulating Selenium Concentration Is Inversely Associated with the Prevalence of Stroke: Results from the Canadian Health Measures Survey and the National Health and Nutrition Examination Survey. J. Am. Heart Assoc. 2019, 8, e012290. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, Y. Relationship between the Circulating Selenium Level and Stroke: A Meta-Analysis of Observational Studies. J. Am. Nutr. Assoc. 2022, 41, 444–452. [Google Scholar] [CrossRef]
- Shi, W.; Su, L.; Wang, J.; Wang, F.; Liu, X.; Dou, J. Correlation between dietary selenium intake and stroke in the National Health and Nutrition Examination Survey 2003–2018. Ann. Med. 2022, 54, 1395–1402. [Google Scholar] [CrossRef]
- Alanne, M.; Kristiansson, K.; Auro, K.; Silander, K.; Kuulasmaa, K.; Peltonen, L.; Salomaa, V.; Perola, M. Variation in the sele-noprotein S gene locus is associated with coronary heart disease and ischemic stroke in two independent Finnish cohorts. Hum. Genet. 2007, 122, 355–365. [Google Scholar] [CrossRef]
- Li, X.X.; Guan, H.J.; Liu, J.P.; Guo, Y.P.; Yang, Y.; Niu, Y.Y.; Yao, L.Y.; Yang, Y.D.; Yue, H.Y.; Meng, L.L.; et al. Association of selenoprotein S gene polymorphism with ischemic stroke in a Chinese case-control study. Blood Coagul. Fibrinolysis 2015, 26, 131–135. [Google Scholar] [CrossRef]
- Cox, A.J.; Lehtinen, A.B.; Xu, J.; Langefeld, C.D.; Freedman, B.I.; Carr, J.J.; Bowden, D.W. Polymorphisms in the Selenoprotein S gene and subclinical cardiovascular disease in the Diabetes Heart Study. Acta Diabetol. 2013, 50, 391–399. [Google Scholar] [CrossRef]
- Davey Smith, G.; Hemani, G. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 2014, 23, R89–R98. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Harbord, R.M.; Sterne, J.A.; Timpson, N.; Davey Smith, G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 2008, 27, 1133–1163. [Google Scholar] [CrossRef] [PubMed]
- Papp, L.V.; Holmgren, A.; Khanna, K.K. Selenium and selenoproteins in health and disease. Antioxid. Redox Signal. 2010, 12, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Fu, F.; Li, X.; Yang, J.; Liu, H. Selenoprotein S Is Highly Expressed in the Blood Vessels and Prevents Vascular Smooth Muscle Cells from Apoptosis. J. Cell. Biochem. 2016, 117, 106–117. [Google Scholar] [CrossRef]
- Taleb, S. Inflammation in atherosclerosis. Arch. Cardiovasc. Dis. 2016, 109, 708–715. [Google Scholar] [CrossRef]
- Razaghi, A.; Poorebrahim, M.; Sarhan, D.; Björnstedt, M. Selenium stimulates the antitumour immunity: Insights to future research. Eur. J. Cancer 2021, 5, 256–267. [Google Scholar] [CrossRef]
- Al-Mubarak, A.A.; van der Meer, P.; Bomer, N. Selenium, Selenoproteins, and Heart Failure: Current Knowledge and Future Perspective. Curr. Heart Fail. Rep. 2021, 18, 122–131. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, L.; Li, S.; Wang, T.; Jiang, K.; Zhao, L.; Zhu, Y.; Zhao, W.; Lei, X.; Sharma, M.; et al. Effect of dietary selenium intake on CVD: A retrospective cohort study based on China Health and Nutrition Survey (CHNS) data. Public Health Nutr. 2024, 27, e122. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, S.; Yu, Y.; Bi, L.; Tian, J.; Zhang, L. Associations of dietary selenium intake with the risk of chronic diseases and mortality in US adults. Front. Nutr. 2024, 11, 1363299. [Google Scholar] [CrossRef]
- Zhang, H.; Qiu, H.; Wang, S.; Zhang, Y. Association of habitually low intake of dietary selenium with new-onset stroke: A retrospective cohort study (2004-2015 China Health and Nutrition Survey). Front. Public Health 2023, 10, 1115908. [Google Scholar] [CrossRef]
- Wang, T.; Liu, H.; Wei, X. Association between the Composite Dietary Antioxidant Index and Stroke: A cross-sectional Study. Biol. Trace Elem. Res. 2024, 202, 4335–4344. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A. Commentary: Two-sample Mendelian randomization: Opportunities and challenges. Int. J. Epidemiol. 2016, 45, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.G.; Tubbs, J.D.; Liu, Z.; Thach, T.Q.; Sham, P.C. Mendelian randomization: Causal inference leveraging genetic data. Psychol. Med. 2024, 54, 1461–1474. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lim, C.Y. Mendelian Randomization Analysis in Observational Epidemiology. J. Lipid Atheroscler. 2019, 8, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.R.; Fraser, A.; Howe, L.D.; Harris, S.; Hughes, A. Why caution should be applied when interpreting and promoting findings from Mendelian randomisation studies. Gen. Psychiatr. 2023, 36, e101047. [Google Scholar] [CrossRef]
- Davies, N.M.; Holmes, M.V.; Davey Smith, G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ 2018, 362, k601. [Google Scholar] [CrossRef]
- Boehm, F.J.; Zhou, X. Statistical methods for Mendelian randomization in genome-wide association studies: A review. Comput. Struct. Biotechnol. J. 2022, 20, 2338–2351. [Google Scholar] [CrossRef]
- Birney, E. Mendelian Randomization. Cold Spring Harb. Perspect. Med. 2022, 12, a041302. [Google Scholar] [CrossRef]
- Wang, C.; Du, Z.; Ye, N.; Shi, C.; Liu, S.; Geng, D.; Sun, Y. Hyperlipidemia and hypertension have synergistic interaction on ischemic stroke: Insights from a general population survey in China. BMC Cardiovasc. Disord. 2022, 22, 47. [Google Scholar] [CrossRef]
- Mouradian, M.S.; Majumdar, S.R.; Senthilselvan, A.; Khan, K.; Shuaib, A. How well are hypertension, hyperlipidemia, diabetes, and smoking managed after a stroke or transient ischemic attack? Stroke 2002, 33, 1656–1659. [Google Scholar] [CrossRef]
- Liampas, A.; Zis, P.; Hadjigeorgiou, G.; Vavougios, G.D. Selenium, Stroke, and Infection: A Threefold Relationship; Where Do We Stand and Where Do We Go? Nutrients 2023, 15, 1405. [Google Scholar] [CrossRef] [PubMed]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Yarmolinsky, J.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Higgins, J.P.T.; Timpson, N.J.; Dimou, N.; et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA 2021, 326, 1614–1621. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.B.; Maranville, J.C.; Peters, J.E.; Stacey, D.; Staley, J.R.; Blackshaw, J.; Burgess, S.; Jiang, T.; Paige, E.; Surendran, P.; et al. Genomic atlas of the human plasma proteome. Nature 2018, 558, 73–79. [Google Scholar] [CrossRef]
- Malik, R.; Chauhan, G.; Traylor, M.; Sargurupremraj, M.; Okada, Y.; Mishra, A.; Rutten-Jacobs, L.; Giese, A.K.; van der Laan, S.W.; Gretarsdottir, S.; et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 2018, 50, 524–537. [Google Scholar] [CrossRef]
- Sakaue, S.; Kanai, M.; Tanigawa, Y.; Karjalainen, J.; Kurki, M.; Koshiba, S.; Narita, A.; Konuma, T.; Yamamoto, K.; Akiyama, M.; et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 2021, 53, 1415–1424. [Google Scholar] [CrossRef]
- Pierce, B.L.; Burgess, S. Efficient design for Mendelian randomization studies: Subsample and 2-sample instrumental variable estimators. Am. J. Epidemiol. 2013, 178, 1177–1184. [Google Scholar] [CrossRef]
- Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian randomization analysis with multiple genetic variants using sum-marized data. Genet. Epidemiol. 2013, 37, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Holmes, M.V. Meta-analysis and Mendelian randomization: A review. Res. Synth. Methods 2019, 10, 486–496. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef]
- Ong, J.S.; MacGregor, S. Implementing MR-PRESSO and GCTA-GSMR for pleiotropy assessment in Mendelian randomi-zation studies from a practitioner’s perspective. Genet. Epidemiol. 2019, 43, 609–616. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef] [PubMed]
SNP | Chr | Position (Build 37) | Nearest Gene | EA | OA | β | SE | p Value | F Statistic |
---|---|---|---|---|---|---|---|---|---|
rs60049679 | 19 | 45429708 | APOC1 | C | G | 0.26 | 0.05 | 3.31 × 10−8 | 32.35 |
rs117261169 | 19 | 45491032 | CLPTM1 | T | C | −0.55 | 0.10 | 1.20 × 10−8 | 37.43 |
rs2965169 | 19 | 45251156 | BCL3 | C | A | −0.15 | 0.03 | 2.04 × 10−9 | 37.06 |
rs151330717 | 19 | 45196964 | CEACAM16 | A | G | −0.55 | 0.09 | 5.13 × 10−9 | 39.63 |
rs405509 | 19 | 45408836 | APOE | G | T | −0.17 | 0.02 | 1.45 × 10−11 | 45.36 |
rs62117161 | 19 | 45233385 | BCL3 | G | A | −0.40 | 0.05 | 5.62 × 10−18 | 77.13 |
rs28399657 | 19 | 45318351 | BCAM | G | A | −0.54 | 0.07 | 1.78 × 10−14 | 60.40 |
rs28399637 | 19 | 45324138 | BCAM | A | G | 0.15 | 0.03 | 5.62 × 10−9 | 33.87 |
rs7343130 | 19 | 45331103 | BCAM | G | A | 0.19 | 0.03 | 5.25 × 10−15 | 62.52 |
rs11668327 | 19 | 45398633 | TOMM40 | C | G | −0.29 | 0.03 | 8.32 × 10−20 | 84.70 |
rs4263041 | 19 | 45438643 | APOC4 | G | A | −0.21 | 0.03 | 6.92 × 10−12 | 64.10 |
rs429358 | 19 | 45411941 | APOE | C | T | 0.41 | 0.03 | 5.50 × 10−35 | 148.84 |
rs6859 | 19 | 45382034 | NECTIN2 | G | A | −0.15 | 0.03 | 5.01 × 10−9 | 34.10 |
rs7412 | 19 | 45412079 | APOE | T | C | −1.01 | 0.04 | 1.78 × 10−120 | 559.13 |
rs4803759 | 19 | 45327459 | BCAM | C | T | 0.15 | 0.03 | 1.35 × 10−8 | 33.26 |
Outcome | NO. SNPs | Weighted Median | MR-RAPS | MR-PRESSO | MR-Egger | ||||
---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | ||
All-cause stroke | 15 | 1.042 (1.011–1.075) | 0.007 | 1.035 (1.011–1.060) | 0.004 | 1.035 (1.017–1.053) | 0.0001 | 1.040 (1.000–1.081) | 0.052 |
Ischemic stroke | 15 | 1.036 (1.001–1.072) | 0.046 | 1.035 (1.010–1.062) | 0.006 | 1.035 (1.011–1.060) | 0.004 | 1.041 (0.998–1.085) | 0.061 |
ICH | 15 | 1.076 (0.980–1.181) | 0.125 | 1.130 (1.056–1.210) | 0.0004 | 1.129 (1.047–1.218) | 0.002 | 1.095 (0.977–1.228) | 0.119 |
Outcome | MR-PRESSO Global Test | MR-Egger Intercept | ||
---|---|---|---|---|
Observed RSS | p Value | β (se) | p Value | |
All-cause stroke | 4.89 | 0.99 | −0.002 (0.006) | 0.79 |
Ischemic stroke | 10.51 | 0.84 | −0.002 (0.006) | 0.76 |
ICH | 14.62 | 0.61 | 0.010 (0.016) | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Liu, Y.; Meng, H.; Sun, J.; Rui, Y.; Tian, X.; Zhu, Z.; Gao, Y. Genetically Elevated Selenoprotein S Levels and Risk of Stroke: A Two-Sample Mendelian Randomization Analysis. Int. J. Mol. Sci. 2025, 26, 1652. https://doi.org/10.3390/ijms26041652
He Y, Liu Y, Meng H, Sun J, Rui Y, Tian X, Zhu Z, Gao Y. Genetically Elevated Selenoprotein S Levels and Risk of Stroke: A Two-Sample Mendelian Randomization Analysis. International Journal of Molecular Sciences. 2025; 26(4):1652. https://doi.org/10.3390/ijms26041652
Chicago/Turabian StyleHe, Yan, Yi Liu, Haoliang Meng, Jinsheng Sun, Yukun Rui, Xiaoyi Tian, Zhengbao Zhu, and Yuzhen Gao. 2025. "Genetically Elevated Selenoprotein S Levels and Risk of Stroke: A Two-Sample Mendelian Randomization Analysis" International Journal of Molecular Sciences 26, no. 4: 1652. https://doi.org/10.3390/ijms26041652
APA StyleHe, Y., Liu, Y., Meng, H., Sun, J., Rui, Y., Tian, X., Zhu, Z., & Gao, Y. (2025). Genetically Elevated Selenoprotein S Levels and Risk of Stroke: A Two-Sample Mendelian Randomization Analysis. International Journal of Molecular Sciences, 26(4), 1652. https://doi.org/10.3390/ijms26041652