First Latin American Case of MLASA2 Caused by a Pathogenic Variant in the Anticodon-Binding Domain of YARS2
Abstract
1. Introduction
2. Results
2.1. Clinical Case Presentation
2.2. In Silico Prediction of Pathogenicity
2.3. p.(Asp311Glu) PV Interpretation According to ACMG/AMP
2.4. Estimation of Runs of Homozygosity (ROH)
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Abbreviation | Meaning |
| ACMG | American College of Medical Genetics and Genomics |
| AMP | Association for Molecular Pathology |
| CADD | Combined Annotation Dependent Depletion |
| CI | Confidence Interval |
| CRIT | Centro de Rehabilitación Infantil Teletón |
| DNA | Deoxyribonucleic Acid |
| DMS2 | Diabetes in Mexico Study 2 |
| EDTA | Ethylenediaminetetraacetic Acid |
| FATHMM | Functional Analysis Through Hidden Markov Models |
| GEBRA | Genetic Evidence BRowsing and Analysis |
| GRCh37 | Genome Reference Consortium Human Build 37 |
| Hb | Hemoglobin |
| LIST-S2 | Local Indicator of Statistical Dependence using Spatial Smoothing |
| MLASA | Myopathy, Lactic Acidosis, and Sideroblastic Anemia |
| MLASA2 | Myopathy, Lactic Acidosis, and Sideroblastic Anemia Type 2 |
| mtTyrRS | Mitochondrial Tyrosyl-tRNA Synthetase |
| M-CAP | Mendelian Clinically Applicable Pathogenicity score |
| MutPred2 | Mutation Prediction 2 (pathogenicity prediction tool) |
| n.d. | Not Determined |
| OMIM | Online Mendelian Inheritance in Man |
| PCR | Polymerase Chain Reaction |
| PUS1 | Pseudouridine Synthase 1 gene |
| PV | Pathogenic Variant |
| RC | Respiratory chain |
| ROH | Runs of Homozygosity |
| RT-PCR | Reverse Transcriptase–Polymerase Chain Reaction |
| rCRS | Revised Cambridge Reference Sequence (mitochondrial genome) |
| SNP | Single Nucleotide Polymorphism |
| SIFT | Sorting Intolerant From Tolerant (in silico predictor) |
| tRNA | Transfer Ribonucleic Acid |
| TyrRS | Tyrosyl-tRNA Synthetase |
| WES | Whole Exome Sequencing |
| WGS | Whole Genome Sequencing |
| ΔΔG | Change in Gibbs Free Energy (protein stability difference) |
| ΔΔSVib | Change in Vibrational Entropy (protein flexibility difference) |
Appendix A
| Tool | Prediction | Interpretation |
|---|---|---|
| SIFT | 0.000 | Damaging |
| Polyphen2 | 0.999 | Probably damaging |
| Mutation taster | 0.99789 | Disease causing |
| FATHMM | 0.14848 | Deleterious |
| Mendelian Clinically Applicable Pathogenicity (M-CAP) Score | 0.561 | Possibly pathogenic |
| MutPred2 | 0.628 | Pathogenic |
| LIST-S2 | 0.91221 | Deleteriousness effect |
| CADD | 17.39 | Deleterious |
| ESM1b | −11.8056 | Deleterious |
| Alphafold score | 0.7814 | Pathogenic |
References
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University. Myopathy, Lactic Acidosis, and Sideroblastic Anemia 2; MLASA2—Entry—# 613561 OMIM. Available online: https://www.omim.org/entry/613561 (accessed on 21 October 2025).
- Riley, L.G.; Cooper, S.; Hickey, P.; Rudinger-Thirion, J.; McKenzie, M.; Compton, A.; Lim, S.C.; Thorburn, D.; Ryan, M.T.; Giegé, R.; et al. Mutation of the Mitochondrial Tyrosyl-TRNA Synthetase Gene, YARS2, Causes Myopathy, Lactic Acidosis, and Sideroblastic Anemia--MLASA Syndrome. Am. J. Hum. Genet. 2010, 87, 52–59. [Google Scholar] [CrossRef]
- Sommerville, E.W.; Ng, Y.S.; Alston, C.L.; Dallabona, C.; Gilberti, M.; He, L.; Knowles, C.; Chin, S.L.; Schaefer, A.M.; Falkous, G.; et al. Clinical Features, Molecular Heterogeneity, and Prognostic Implications in YARS2-Related Mitochondrial Myopathy. JAMA Neurol. 2017, 74, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Riley, L.G.; Heeney, M.M.; Rudinger-Thirion, J.; Frugier, M.; Campagna, D.R.; Zhou, R.; Hale, G.A.; Hilliard, L.M.; Kaplan, J.A.; Kwiatkowski, J.L.; et al. The Phenotypic Spectrum of Germline YARS2 Variants: From Isolated Sideroblastic Anemia to Mitochondrial Myopathy, Lactic Acidosis and Sideroblastic Anemia 2. Haematologica 2018, 103, 2008–2015. [Google Scholar] [CrossRef] [PubMed]
- Smith, F.; Hopton, S.; Dallabona, C.; Gilberti, M.; Falkous, G.; Norwood, F.; Donnini, C.; Gorman, G.S.; Clark, B.; Taylor, R.W.; et al. Sideroblastic Anemia with Myopathy Secondary to Novel, Pathogenic Missense Variants in the YARS2 Gene. Haematologica 2018, 103, e564–e566. [Google Scholar] [CrossRef] [PubMed]
- Rudaks, L.I.; Watson, E.; Oboudiyat, C.; Kumar, K.R.; Sullivan, P.; Cowley, M.J.; Davis, R.L.; Sue, C.M. Decompensation of Cardiorespiratory Function and Emergence of Anemia during Pregnancy in a Case of Mitochondrial Myopathy, Lactic Acidosis, and Sideroblastic Anemia 2 with Compound Heterozygous YARS2 Pathogenic Variants. Am. J. Med. Genet. A 2022, 188, 2226–2230. [Google Scholar] [CrossRef]
- Ardissone, A.; Lamantea, E.; Quartararo, J.; Dallabona, C.; Carrara, F.; Moroni, I.; Donnini, C.; Garavaglia, B.; Zeviani, M.; Uziel, G. A Novel Homozygous YARS2 Mutation in Two Italian Siblings and a Review of Literature. JIMD Rep. 2015, 20, 95–101. [Google Scholar] [CrossRef]
- Yadavalli, S.S.; Ibba, M. Quality Control in Aminoacyl-TRNA Synthesis Its Role in Translational Fidelity. Adv. Protein Chem. Struct. Biol. 2012, 86, 1–43. [Google Scholar] [CrossRef]
- Lee, C.E.; Singleton, K.S.; Wallin, M.; Faundez, V. Rare Genetic Diseases: Nature’s Experiments on Human Development. iScience 2020, 23, 101123. [Google Scholar] [CrossRef]
- Inbal, A.; Avissar, N.; Shaklai, M.; Kuritzky, A.; Schejter, A.; Ben-David, E.; Shanske, S.; Garty, B.Z. Myopathy, Lactic Acidosis, and Sideroblastic Anemia: A New Syndrome. Am. J. Med. Genet. 1995, 55, 372–378. [Google Scholar] [CrossRef]
- Holzer, T.; Probst, K.; Etich, J.; Auler, M.; Georgieva, V.S.; Bluhm, B.; Frie, C.; Heilig, J.; Niehoff, A.; Nüchel, J.; et al. Respiratory Chain Inactivation Links Cartilage-Mediated Growth Retardation to Mitochondrial Diseases. J. Cell Biol. 2019, 218, 1853–1870. [Google Scholar] [CrossRef]
- Shahni, R.; Wedatilake, Y.; Cleary, M.A.; Lindley, K.J.; Sibson, K.R.; Rahman, S. A distinct mitochondrial myopathy, lactic acidosis and sideroblastic anemia (MLASA) phenotype associates with YARS2 mutations. Am. J. Med. Genet. A 2013, 161A, 2334–2338. [Google Scholar] [CrossRef]
- Mellor, C.; Larson, E.A.; Wang, M. Mechanisms of genome instability from cellular folate stress. J Cell Biol. 2025, 224, e202502205. [Google Scholar] [CrossRef]
- Koury, M.J.; Ponka, P. New insights into erythropoiesis: The roles of folate, vitamin B12, and iron. Annu. Rev. Nutr. 2004, 24, 105–131. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, M.A.; Bettle, A.; Berman, J.N.; Price, V.E.; Pambrun, C.; Yu, Z.; Tiller, M.; McMaster, C.R.; Fernandez, C.V. Study of Glycine and Folic Acid Supplementation to Ameliorate Transfusion Dependence in Congenital SLC25A38 Mutated Sideroblastic Anemia. Pediatr. Blood Cancer 2016, 63, 1307–1309. [Google Scholar] [CrossRef]
- Cox, T.C.; Bottomley, S.S.; Wiley, J.S.; Bawden, M.J.; Matthews, C.S.; May, B.K. X-linked pyridoxine-responsive sideroblastic anemia due to a Thr388-to-Ser substitution in erythroid 5-aminolevulinate synthase. N. Engl. J. Med. 1994, 330, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Li, D.; Shan, J.; Liu, S.; Li, W.; Zhao, Y.; Lin, P.; Zheng, J.; Li, D.; Gong, Y.; et al. Increased muscle coenzyme Q10 in riboflavin responsive MADD with ETFDH gene mutations due to secondary mitochondrial proliferation. Mol. Genet. Metab. 2013, 109, 154–160. [Google Scholar] [CrossRef]
- Neergheen, V.; Chalasani, A.; Wainwright, L.; Yubero, D.; Montero, R.; Artuch, R.; Hargreaves, I. Coenzyme Q10 in the Treatment of Mitochondrial Disease. J. Inborn Errors Metab. Screen. 2017, 5, 2326409817707771. [Google Scholar] [CrossRef]
- Drumm, M.L.; Konstan, M.W.; Schluchter, M.D.; Handler, A.; Pace, R.; Zou, F.; Zariwala, M.; Fargo, D.; Xu, A.; Dunn, J.M.; et al. Genetic modifiers of lung disease in cystic fibrosis. N. Engl. J. Med. 2005, 353, 1443–1453. [Google Scholar] [CrossRef]
- Mueller, E.E.; Brunner, S.M.; Mayr, J.A.; Stanger, O.; Sperl, W.; Kofler, B. Functional differences between mitochondrial haplogroup T and haplogroup H in HEK293 cybrid cells. PLoS ONE 2012, 7, e52367. [Google Scholar] [CrossRef]
- Gómez-Durán, A.; Pacheu-Grau, D.; Martínez-Romero, I.; López-Gallardo, E.; López-Pérez, M.J.; Montoya, J.; Ruiz-Pesini, E. Oxidative phosphorylation differences between mitochondrial DNA haplogroups modify the risk of Leber’s hereditary optic neuropathy. Biochim. Biophys. Acta 2012, 1822, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, R.; Malgat, M.; Mazat, J.P.; Letellier, T. Threshold effect and tissue specificity. Implication for mitochondrial cytopathies. J. Biol. Chem. 1999, 274, 33426–33432. [Google Scholar] [CrossRef]
- Sund, K.L.; Zimmerman, S.L.; Thomas, C.; Mitchell, A.L.; Prada, C.E.; Grote, L.; Bao, L.; Martin, L.J.; Smolarek, T.A. Regions of Homozygosity Identified by SNP Microarray Analysis Aid in the Diagnosis of Autosomal Recessive Disease and Incidentally Detect Parental Blood Relationships. Genet. Med. 2013, 15, 70–78. [Google Scholar] [CrossRef] [PubMed]
- García-Ortiz, H.; Barajas-Olmos, F.; Contreras-Cubas, C.; Cid-Soto, M.Á.; Córdova, E.J.; Centeno-Cruz, F.; Mendoza-Caamal, E.; Cicerón-Arellano, I.; Flores-Huacuja, M.; Baca, P.; et al. The Genomic Landscape of Mexican Indigenous Populations Brings Insights into the Peopling of the Americas. Nat. Commun. 2021, 12, 5942. [Google Scholar] [CrossRef]
- Turvey, A.K.; Horvath, G.A.; Cavalcanti, A.R.O. Aminoacyl-tRNA synthetases in human health and disease. Front. Physiol. 2022, 13, 1029218. [Google Scholar] [CrossRef]
- Harrison, S.M.; Biesecker, L.G.; Rehm, H.L. Overview of Specifications to the ACMG/AMP Variant Interpretation Guidelines. Curr. Protoc. Hum. Genet. 2019, 103, e93. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Seo, G.H.; Hyun, S.I.; Kwon, K.; Ryu, S.W.; Khang, R.; Lee, E.; Kim, J.H.; Song, Y.; Jeong, W.C.; et al. Exome Sequencing of 18,994 Ethnically Diverse Patients with Suspected Rare Mendelian Disorders. NPJ Genom. Med. 2025, 10, 6. [Google Scholar] [CrossRef]
- Seo, G.H.; Kim, T.; Choi, I.H.; Park, J.Y.; Lee, J.; Kim, S.; Won, D.G.; Oh, A.; Lee, Y.; Choi, J.; et al. Diagnostic Yield and Clinical Utility of Whole Exome Sequencing Using an Automated Variant Prioritization System, EVIDENCE. Clin. Genet. 2020, 98, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Flannick, J.; Mercader, J.M.; Fuchsberger, C.; Udler, M.S.; Mahajan, A.; Wessel, J.; Teslovich, T.M.; Caulkins, L.; Koesterer, R.; Barajas-Olmos, F.; et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature 2019, 570, 71–76. [Google Scholar] [CrossRef]


| Domain | Feature | Mexican Index Case (Male) | Italian Sibling 1 (Male) [7] | Italian Sibling 2 (Female) [7] | Dutch (Male) [4] |
|---|---|---|---|---|---|
| Birth and Perinatal | Consanguinity; gestational age (GA); perinatal course. | No; 35 weeks; Apgar 3/5/8; adopted at 14 days. | No; GA at birth: NR; uncomplicated. | No; GA at birth: NR; uncomplicated. | No; GA at birth: NR; uncomplicated. |
| Development | Motor milestones | Neck 3 mo [N] Walk 18 mo [N] | Neck [N] Walk 18 mo [N] | Neck [N] Walk [N] | Neck [NR] Walk [NR] |
| Fine motor/speech | [N] | NR | NR | NR | |
| Growth | Stature | Short stature (<P3) | P50 | NR | [N] |
| Hematological | Age at anemia onset [Hb] | 11 y [7 g/dL] The lower 4 g/dL | 2 mo [5.2 g/dL] | 1 mo [10.2 g/dL] | 13 y [6.6 g/dL] |
| Transfusion dependence | No | 2–12 mo; then recovery | 1–9 mo; stable at 14 mo | Yes | |
| Bone marrow | Sideroblastic rings | Erythroblastopenia; vacuolization | NR | Reduced dysplastic erythropoiesis, increased and dysplastic megakaryopoiesis, sideroblastic rings | |
| Thrombocytopenia | Yes | No | No | NR | |
| Metabolic | Lactic acidosis | No [lactate levels 1.4 mmol/L at 16 y] | Yes (3 mo) | Yes (1 mo) | Yes (13 y) |
| Other labs | Low ALP (119 U/L); elevated P (5.9 mg/dL) | NR | NR | High erythropoietin, ferritin and transferrin | |
| Skeletal | Findings | Epiphyseal dysplasia, metaphyseal widening, scoliosis, genu valgum, acetabular–femoral dysplasia, neoacetabulum formation | None reported | None reported | None reported |
| Craniofacial | Dysmorphisms | Multiple | NR | NR | NR |
| Myopathy | Muscle strength/RC enzyme activity | Mild reduced muscle strength and no other symptoms/no RC activity measurement | NAs RC CI/CIII/CIV activity ↓ | NAs/NR | Reduced muscle strength and exercise capacity, fatigue, tiredness/NR |
| Neurology | Clinical exam | [N] | [N] | [N] | [N] |
| Cardiac | Cardiomyopathy | No | No | No | No |
| Respiratory | Insufficiency | Absent | NR | NR | NR |
| Other systems | Ophthalmology | [N] | [N] | NR | NR |
| Genetic findings | Variant | Homozygous p.(Asp311Glu) | Homozygous p.(Asp311Glu) | Homozygous p.(Asp311Glu) | Homozygous p.(Asp311Glu) |
| Domain affected | aACB | aACB | aACB | aACB | |
| Course/ Follow-up | Most recent status | 16 y (currently); stable; alive | 6 y; good evolution; off transfusions; alive | 14 mo; stable, off transfusions; alive | 14 y; stable; alive |
| Criteria | Result | Final Criteria |
|---|---|---|
| PS1 | The same amino acid change is pathogenic. | Strong |
| PM2 | Extremely low frequency in population databases (gnomAD). | Moderate |
| PP3 | Computational tools unanimously support a deleterious effect on the gene. | Supporting |
| PS3 | A patient harboring the same pathogenic variant exhibited decreased muscle activity of the mitochondrial respiratory chain complexes I, III, and IV, as well as a reduction in maximal respiratory rate in fibroblasts. | Strong |
| The ortholog gene:variant [MSY1:p.(Asp333Glu)] in Saccharomyces cerevisiae exhibited defective oxidative phosphorylation phenotype. | Supporting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villafán-Bernal, J.R.; Rosas-Hernández, J.; García-Ortiz, H.; Martínez-Hernández, A.; Contreras-Cubas, C.; Guerrero-Contreras, I.; Lee, H.; Seo, G.H.; Carnevale, A.; Barajas-Olmos, F.; et al. First Latin American Case of MLASA2 Caused by a Pathogenic Variant in the Anticodon-Binding Domain of YARS2. Int. J. Mol. Sci. 2025, 26, 12039. https://doi.org/10.3390/ijms262412039
Villafán-Bernal JR, Rosas-Hernández J, García-Ortiz H, Martínez-Hernández A, Contreras-Cubas C, Guerrero-Contreras I, Lee H, Seo GH, Carnevale A, Barajas-Olmos F, et al. First Latin American Case of MLASA2 Caused by a Pathogenic Variant in the Anticodon-Binding Domain of YARS2. International Journal of Molecular Sciences. 2025; 26(24):12039. https://doi.org/10.3390/ijms262412039
Chicago/Turabian StyleVillafán-Bernal, José Rafael, Jhonatan Rosas-Hernández, Humberto García-Ortiz, Angélica Martínez-Hernández, Cecilia Contreras-Cubas, Israel Guerrero-Contreras, Hane Lee, Go Hun Seo, Alessandra Carnevale, Francisco Barajas-Olmos, and et al. 2025. "First Latin American Case of MLASA2 Caused by a Pathogenic Variant in the Anticodon-Binding Domain of YARS2" International Journal of Molecular Sciences 26, no. 24: 12039. https://doi.org/10.3390/ijms262412039
APA StyleVillafán-Bernal, J. R., Rosas-Hernández, J., García-Ortiz, H., Martínez-Hernández, A., Contreras-Cubas, C., Guerrero-Contreras, I., Lee, H., Seo, G. H., Carnevale, A., Barajas-Olmos, F., & Orozco, L. (2025). First Latin American Case of MLASA2 Caused by a Pathogenic Variant in the Anticodon-Binding Domain of YARS2. International Journal of Molecular Sciences, 26(24), 12039. https://doi.org/10.3390/ijms262412039

