An Update on Novel Pharmacotherapies for the Treatment of Neuroendocrine Tumors
Abstract
1. Introduction
2. Somatostatin Receptor Signaling Pathway and Associated Therapies
2.1. Somatostatin Analogs (SSAs)
2.2. Somatostatin Analog (SSA) Adjunct Therapies
2.3. Paltusotine
3. Interferon Therapy
4. Novel Approaches to Targeting NET Growth
4.1. Molecular Alterations and Potential Target Pathways
4.1.1. MEN1 Pathway
4.1.2. The DAXX/ATRX Genes Pathway
4.1.3. mTOR Pathway
4.1.4. VEGF Pathway
4.1.5. Other Emerging RTK Signaling in NETs
- Epidermal Growth factor receptor (EGFR): Dysregulation of EGFR has been implicated in certain types of NETs, namely gastrointestinal carcinoids and GEP-NETs [67]; with increased expression of EGFR, the use of erlotinib in vitro resulted in reduced cell viability and elevated EGFR expression in patients with aggressive PanNETs, correlated with poor prognosis [68]. While infrequent in NETs, EGFR mutations and polymorphism have been shown to drive NET differentiation in clinical cases of non-neuroendocrine tumors [69]. Understanding these genetic alterations may help select patients with a predisposition to develop NETs.
- Insulin-like growth factor receptor (IGF-1R): IGF type 1 receptor (IGF-1R) is a key player in the pathogenesis of NETs [70,71]. Yet, an exact understanding of this mechanism remains unclear, with a potential dual role in NET biology depending on the tumor stage: a tumor promoter at the early stages, facilitating growth and tumor progression, and a tumor suppressor at the later stages [72]. Understanding this stage-specific distinct tole may allow for the better tailoring of targeted therapies to the specific stage of the disease.
- Rearranged-during-transfection (RET) gene: Germline mutations in the RET gene have been identified as the driver alteration in the pathogenesis of medullary thyroid cancer (MTC) [73]. These mutations are constitutively activating, leading to uncontrolled downstream activation of a signaling cascade and net uncontrolled cell proliferation, survival, and tumor progression within the thyroid gland. Among others, the mTOR pathway is activated in these patients with RET mutations [74]. In NETs, including a subset of GEP-NETs, RET mutations or fusions have been implicated in tumorigenesis, including in a case report of successful administration of selpercatinib (a selective RET inhibitor) in a patient with a RET-fusion lung carcinoid tumor [75,76].
- Anaplastic lymphoma kinase (ALK): ALK aberrations lead to the constitutive activation of the downstream oncogenic signaling pathways that promote proliferation, survival, and tumor growth [77]. While commonly found and successfully targeted in non-small cell lung cancer, ALK alterations have been recently reported in a subset of NETs, including patients with pulmonary NETs (5.2%), with successful treatment with crizotinib, a selective ALK inhibitor [78,79].
4.2. Targeted Molecular Therapies
4.2.1. GEP-NET
4.2.2. Non-GEP-NET
4.2.3. Dosing and Toxicity
4.2.4. Challenge of Emerging Resistance
4.3. Immunotherapy
4.3.1. ICI Monotherapy
4.3.2. Combination ICI Therapy
4.3.3. ICI and Targeted Anti-Angiogenesis
4.3.4. Chemo-Immunotherapy Combinations
4.4. Peptide Receptor Radionuclide Therapy (PRRT)
4.5. Systemic Chemotherapy
4.5.1. Alkylating Agents
Streptozotocin-Based Regimens
Dacarbazine-Based Regimens
Temozolomide-Based Regimens
Oxaliplatin-Based Agents
Other Chemotherapy Agents
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Öberg, K.; Castellano, D. Current knowledge on diagnosis and staging of neuroendocrine tumors. Cancer Metastasis Rev. 2011, 30, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y. Incidence trend of neuroendocrine tumors and disparities by sex and race/ethnicity in adults from the United States, 2000–2020. Eur. J. Cancer Prev. 2024, 33, 475–484. [Google Scholar] [CrossRef]
- Klöppel, G.; Perren, A.; Heitz, P.U. The Gastroenteropancreatic Neuroendocrine Cell System and Its Tumors: The WHO Classification. Ann. N. Y. Acad. Sci. 2004, 1014, 13–27. [Google Scholar] [CrossRef]
- Maggard, M.A.; O’Connell, J.B.; Ko, C.Y. Updated population-based review of carcinoid tumors. Ann. Surg. 2004, 240, 117–122. [Google Scholar] [CrossRef]
- Yao, J.C.; Hassan, M.; Phan, A.; Dagohoy, C.; Leary, C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.-N.; Rashid, A.; et al. One hundred years after “carcinoid”: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 2008, 26, 3063–3072. [Google Scholar] [CrossRef]
- Klimstra, D.; Klöppel, G.; La Rosa, S.; Rindi, G. Classification of Neuroendocrine Neoplasms of the Digestive System. In WHO Classification of Tumours, 5th ed.; Digestive System Tumours; IARC Press: Lyon, France, 2019; Volume 1, pp. 16–19. ISBN 92-832-4499-0. [Google Scholar]
- Patel, Y.C. Somatostatin and its receptor family. Front. Neuroendocrinol. 1999, 20, 157–198. [Google Scholar] [CrossRef]
- Bousquet, C.; Lasfargues, C.; Chalabi, M.; Billah, S.M.; Susini, C.; Vezzosi, D.; Caron, P.; Pyronnet, S. Current scientific rationale for the use of somatostatin analogs and mTOR inhibitors in neuroendocrine tumor therapy. J. Clin. Endocrinol. Metab. 2012, 97, 727–737. [Google Scholar] [CrossRef]
- Meyerhof, W. The elucidation of somatostatin receptor functions: A current view. Rev. Physiol. Biochem. Pharmacol. 2005, 133, 55–108. [Google Scholar]
- Öberg, K.E.; Reubi, J.; Kwekkeboom, D.J.; Krenning, E.P. Role of somatostatins in gastroenteropancreatic neuroendocrine tumor development and therapy. Gastroenterology 2010, 139, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Reubi, J.C. Peptide receptor expression in GEP-NET. Virchows Arch. 2007, 451, 47–50. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, D.; Saveanu, A.; Couvelard, A.; Gunz, G.; Enjalbert, A.; Jaquet, P.; Ruszniewski, P.; Barlier, A. The analysis of quantitative expression of somatostatin and dopamine receptors in gastro-entero-pancreatic tumours opens new therapeutic strategies. Eur. J. Endocrinol. 2006, 155, 849–857. [Google Scholar] [CrossRef]
- Schmid, H.A. Pasireotide (SOM230): Development, mechanism of action and potential applications. Mol. Cell. Endocrinol. 2008, 286, 69–74. [Google Scholar] [CrossRef]
- Rinke, A.; Wittenberg, M.; Schade-Brittinger, C.; Aminossadati, B.; Ronicke, E.; Gress, T.M.; Müller, H.-H.; Arnold, R.; PROMID Study Group. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors (PROMID): Results of long-term survival. Neuroendocrinology 2016, 104, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Broder, M.S.; Beenhouwer, D.; Strosberg, J.R.; Neary, M.P.; Cherepanov, D. Gastrointestinal neuroendocrine tumors treated with high dose octreotide-LAR: A systematic literature review. World J. Gastroenterol. WJG 2015, 21, 1945. [Google Scholar] [CrossRef]
- Caplin, M.E.; Pavel, M.; Ćwikła, J.B.; Phan, A.T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 224–233. [Google Scholar] [CrossRef]
- Sandostatin Lar Depot (Octreotide Acetate) Injection. Drug Approval Package. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/98/021008.cfm (accessed on 30 June 2024).
- Somatuline Depot—Drug Package Insert. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022074s022lbl.pdf (accessed on 30 June 2024).
- Saif, M.W.; Parikh, R.; Ray, D.; Kaye, J.A.; Kurosky, S.K.; Thomas, K.; Ramirez, R.A.; Halfdanarson, T.R.; Beveridge, T.J.; Mirakhur, B.; et al. Medical record review of transition to lanreotide following octreotide for neuroendocrine tumors. J. Gastrointest. Oncol. 2019, 10, 674. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.; Ćwikła, J.B.; Lombard-Bohas, C.; Borbath, I.; Shah, T.; Pape, U.F.; Capdevila, J.; Panzuto, F.; Truong Thanh, X.-M.; Houchard, A.; et al. Efficacy and safety of high-dose lanreotide autogel in patients with progressive pancreatic or midgut neuroendocrine tumours: CLARINET FORTE phase 2 study results. Eur. J. Cancer 2021, 157, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Lepage, C.; Dahan, L.; Legoux, J.-L.; Le Malicot, K.; Guimbaud, R.; Tougeron, D.; Cadiot, G.; Di Fiore, F.; Smith, D.M.; Bouhier Leporrier, K.; et al. REMINET: A European, multicentre, PHASE II/III randomized double-blind, placebo-controlled study evaluating lanreotide as maintenance therapy after first-line treatment in patients with non-resectable duodeno-pancreatic neuroendocrine tumours. J. Clin. Oncol. 2016, 34, TPS4148. [Google Scholar] [CrossRef]
- Lepage, C.; Phelip, J.-M.; Lievre, A.; Le-Malicot, K.; Dahan, L.; Tougeron, D.; Toumpanakis, C.; Di-Fiore, F.; Lombard-Bohas, C.; Borbath, I.; et al. Lanreotide as maintenance therapy after first-line treatment in patients with non-resectable duodeno-pancreatic neuroendocrine tumours: An international double-blind, placebo-controlled randomised phase II trial—Prodige 31 REMINET: An FFCD study. Eur. J. Cancer 2022, 175, 31–40. [Google Scholar] [CrossRef]
- Yao, J.C.; Chan, J.A.; Mita, A.C.; Kundu, M.G.; Hermosillo Reséndiz, K.; Hu, K.; Ravichandran, S.; Strosberg, J.R.; Wolin, E.M. Phase I dose-escalation study of long-acting pasireotide in patients with neuroendocrine tumors. OncoTargets Ther. 2017, 10, 3177–3186. [Google Scholar] [CrossRef]
- Cives, M.; Kunz, P.; Morse, B.; Coppola, D.; Schell, M.; Campos, T.; Nguyen, P.; Nandoskar, P.; Khandelwal, V.; Strosberg, J. Phase II clinical trial of pasireotide long-acting repeatable in patients with metastatic neuroendocrine tumors. Endocr. Relat. Cancer 2015, 22, 1–9. [Google Scholar] [CrossRef]
- Wolin, E.M.; Jarzab, B.; Eriksson, B.; Walter, T.; Toumpanakis, C.; Morse, M.A.; Tomassetti, P.; Weber, M.M.; Fogelman, D.R.; Ramage, J.; et al. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des. Devel. Ther. 2015, 9, 5075–5086. [Google Scholar] [CrossRef]
- Alexandraki, K.I.; Angelousi, A.; Chatzellis, E.; Chrisoulidou, A.; Kalogeris, N.; Kanakis, G.; Savvidis, C.; Vassiliadi, D.; Spyroglou, A.; Kostopoulos, G.; et al. The Role of Somatostatin Analogues in the Control of Diarrhea and Flushing as Markers of Carcinoid Syndrome: A Systematic Review and Meta-Analysis. J. Pers. Med. 2023, 13, 304. [Google Scholar] [CrossRef]
- European Commission. Granting Marketing Authorisation Under Regulation (EC) No 726/2004 of the European Parliament and of the Council for “Xermelo-Telotristat”, an Orphan Medicinal Product for Human Use. 2023. Available online: https://ec.europa.eu/health/documents/community-register/2023/20231129161334/dec_161334_en.pdf (accessed on 15 April 2024).
- NCCN Panel. NCCN Guidelines Version 1.2023 Neuroendocrine and Adrenal Tumors. NCCN Guidelines. National Comprehensive Cancer Network. 2023. Available online: www.nccn.org/professionals/physician_gls/pdf/neuroendocrine.pdf (accessed on 15 April 2024).
- Kulke, M.H.; Hörsch, D.; Caplin, M.E.; Anthony, L.B.; Bergsland, E.; Öberg, K.; Welin, S.; Warner, R.R.; Lombard-Bohas, C.; Kunz, P.L.; et al. Telotristat ethyl, a tryptophan hydroxylase inhibitor for the treatment of carcinoid syndrome. J. Clin. Oncol. 2017, 35, 14–23. [Google Scholar] [CrossRef]
- Kulke, M.; Hörsch, D.; Caplin, M.; Anthony, L.; Bergsland, E.; Oberg, K.; Welin, S.; Warner, R.; Bohas, C.L.; Kunz, P.; et al. Integrated placebo-controlled safety analysis from clinical studies of telotristat ethyl for the treatment of carcinoid syndrome. Ann. Oncol. 2016, 27, vi138. [Google Scholar] [CrossRef][Green Version]
- Hörsch, D.; Anthony, L.; Gross, D.J.; Valle, J.W.; Welin, S.; Benavent, M.; Caplin, M.; Pavel, M.; Bergsland, E.; Öberg, K.; et al. Long-Term Treatment with Telotristat Ethyl in Patients with Carcinoid Syndrome Symptoms: Results from the TELEPATH Study. Neuroendocrinology 2021, 112, 298–310. [Google Scholar] [CrossRef]
- Morse, M.A.; Liu, E.; Joish, V.N.; Huynh, L.; Cheng, M.; Duh, M.S.; Seth, K.; Lapuerta, P.; Metz, D.C. Antiproliferative Effects of Telotristat Ethyl in Patients with Neuroendocrine Tumors: The TELEACE Real-World Chart Review Study. Cancer Manag. Res. 2020, 12, 6607–6614. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, T.Z.; Muzahir, S.; Murphy, K.D.; Akce, M.; Alese, O.B.; Diab, M.; Gbolahan, O.B.; Shaib, W.L. Telotristat ethyl with PRRT in the treatment of well differentiated neuroendocrine tumors. J. Clin. Oncol. 2022, 40, e16205. [Google Scholar] [CrossRef]
- Vashchenko, N.; Abrahamsson, P.-A. Neuroendocrine differentiation in prostate cancer: Implications for new treatment modalities. Eur. Urol. 2005, 47, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, S.; Markison, S.; Kim, S.H.; Han, S.; Chen, M.; Kusnetzow, A.K.; Rico-Bautista, E.; Johns, M.; Luo, R. Discovery of paltusotine (CRN00808), a potent, selective, and orally bioavailable non-peptide SST2 agonist. ACS Med. Chem. Lett. 2022, 14, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Burke, G.; Mui, C.; Shakib, S.; Ferrara-Cook, C.; Krasner, A.; Madan, A. Pharmacokinetics and safety of an improved oral formulation of paltusotine, a selective, non-peptide somatostatin receptor 2 (SST2) agonist for the treatment of acromegaly. J. Endocr. Soc. 2021, 5, A524. [Google Scholar] [CrossRef]
- Madan, A.; Markison, S.; Betz, S.F.; Krasner, A.; Luo, R.; Jochelson, T.; Lickliter, J.; Struthers, R.S. Paltusotine, a novel oral once-daily nonpeptide SST2 receptor agonist, suppresses GH and IGF-1 in healthy volunteers. Pituitary 2022, 25, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Mohamed, A.; Usiskin, K.; Mui, C.; Dillon, J.; Fan, X.; Shaheen, S.; Manuel, O.J.; Singh, S.; Lagast, H.; et al. Once-Daily Oral Paltusotine in the Treatment of Patients with Carcinoid Syndrome: Interim Results from a Phase 2, Randomized, Parallel-Group Study. In Proceedings of the 26th European Congress of Endocrinology, Stockholm, Sweden, 11–14 May 2024. [Google Scholar]
- Detjen, K.M.; Welzel, M.; Farwig, K.; Brembeck, F.H.; Kaiser, A.; Riecken, E.-O.; Wiedenmann, B.; Rosewicz, S. Molecular mechanism of interferon alfa–Mediated growth inhibition in human neuroendocrine tumor cells. Gastroenterology 2000, 118, 735–748. [Google Scholar] [CrossRef]
- McKendry, R.; John, J.; Flavell, D.; Müller, M.; Kerr, I.M.; Stark, G.R. High-frequency mutagenesis of human cells and characterization of a mutant unresponsive to both alpha and gamma interferons. Proc. Natl. Acad. Sci. USA 1991, 88, 11455–11459. [Google Scholar] [CrossRef]
- Oberg, K. Interferons in the management of neuroendocrine tumors and their possible mechanism of action. Yale J. Biol. Med. 1992, 65, 519. [Google Scholar]
- Grander, D.; Einhorn, S.; Oberg, K.; Lundqvist, M.; Jansson, E.; Eriksson, B. Interferon-induced enhancement of 2′, 5′-oligoadenylate synthetase in mid-gut carcinoid tumours. Lancet 1990, 336, 337–340. [Google Scholar] [CrossRef]
- Bainbridge, H.; Larbi, E.; Middleton, G. Symptomatic Control of Neuroendocrine Tumors with Everolimus. Neuroendocrinology 2012, 6, 254–259. [Google Scholar]
- Dahan, L.; Bonnetain, F.; Rougier, P.; Raoul, J.-L.; Gamelin, E.; Etienne, P.-L.; Cadiot, G.; Mitry, E.; Smith, D.; Cvitkovic, F.; et al. Phase III trial of chemotherapy using 5-fluorouracil and streptozotocin compared with interferon α for advanced carcinoid tumors: FNCLCC–FFCD 9710. Endocr. Relat. Cancer 2009, 16, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- Andreyev, H.J.; Scott-Mackie, P.; Cunningham, D.; Nicolson, V.; Norman, A.R.; Badve, S.S.; Iveson, A.; Nicolson, M.C. Phase II study of continuous infusion fluorouracil and interferon alfa-2b in the palliation of malignant neuroendocrine tumors. J. Clin. Oncol. 1995, 13, 1486–1492. [Google Scholar] [CrossRef]
- Riechelmann, R.P.; Pereira, A.A.; Rego, J.F.; Costa, F.P. Refractory carcinoid syndrome: A review of treatment options. Ther. Adv. Med. Oncol. 2017, 9, 127–137. [Google Scholar] [CrossRef]
- Riechelmann, R.P.; Taboada, R.G.; de Jesus, V.H.F.; Iglesia, M.; Trikalinos, N.A. Therapy sequencing in patients with advanced neuroendocrine neoplasms. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e389278. [Google Scholar] [CrossRef]
- Wang, G.G.; Yao, J.C.; Worah, S.; White, J.A.; Luna, R.; Wu, T.-T.; Hamilton, S.R.; Rashid, A. Comparison of genetic alterations in neuroendocrine tumors: Frequent loss of chromosome 18 in ileal carcinoid tumors. Mod. Pathol. 2005, 18, 1079–1087. [Google Scholar] [CrossRef]
- Kim, D.H.; Nagano, Y.; Choi, I.-S.; White, J.A.; Yao, J.C.; Rashid, A. Allelic alterations in well-differentiated neuroendocrine tumors (carcinoid tumors) identified by genome-wide single nucleotide polymorphism analysis and comparison with pancreatic endocrine tumors. Genes Chromosomes Cancer 2008, 47, 84–92. [Google Scholar] [CrossRef]
- Jones, S.; Zhang, X.; Parsons, D.W.; Lin, J.C.-H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Kamiyama, H.; Jimeno, A.; et al. Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science 2008, 321, 1801–1806. [Google Scholar] [CrossRef]
- Scarpa, A.; Chang, D.K.; Nones, K.; Corbo, V.; Patch, A.-M.; Bailey, P.; Lawlor, R.T.; Johns, A.L.; Miller, D.K.; Mafficini, A.; et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 2017, 543, 65–71, Correction in Nature 2017, 550, 548. https://doi.org/10.1038/nature24026. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, A. The landscape of molecular alterations in pancreatic and small intestinal neuroendocrine tumours. Ann. Endocrinol. 2019, 80, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Shi, C.; Edil, B.H.; de Wilde, R.F.; Klimstra, D.S.; Maitra, A.; Schulick, R.D.; Tang, L.H.; Wolfgang, C.L.; Choti, M.A.; et al. DAXX/ATRX, MEN1, and mTOR Pathway Genes Are Frequently Altered in Pancreatic Neuroendocrine Tumors. Science 2011, 331, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Wang, X.; Lu, X.; Zhao, Y.; Guan, W. Molecular biology of pancreatic neuroendocrine tumors: From mechanism to translation. Front. Oncol. 2022, 12, 967071. [Google Scholar] [CrossRef]
- Corbo, V.; Dalai, I.; Scardoni, M.; Barbi, S.; Beghelli, S.; Bersani, S.; Albarello, L.; Doglioni, C.; Schott, C.; Capelli, P.; et al. MEN1 in pancreatic endocrine tumors: Analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases. Endocr. Relat. Cancer 2010, 17, 771–783. [Google Scholar] [CrossRef]
- Heaphy, C.M.; De Wilde, R.F.; Jiao, Y.; Klein, A.P.; Edil, B.H.; Shi, C.; Bettegowda, C.; Rodriguez, F.J.; Eberhart, C.G.; Hebbar, S. Altered telomeres in tumors with ATRX and DAXX mutations. Science 2011, 333, 425. [Google Scholar] [CrossRef]
- De Wilde, R.F.; Heaphy, C.M.; Maitra, A.; Meeker, A.K.; Edil, B.H.; Wolfgang, C.L.; Ellison, T.A.; Schulick, R.D.; Molenaar, I.Q.; Valk, G.D.; et al. Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod. Pathol. 2012, 25, 1033–1039. [Google Scholar] [CrossRef]
- Missiaglia, E.; Dalai, I.; Barbi, S.; Beghelli, S.; Falconi, M.; Della Peruta, M.; Piemonti, L.; Capurso, G.; Di Florio, A.; Delle Fave, G.; et al. Pancreatic endocrine tumors: Expression profiling evidences a role for AKT-mTOR pathway. J. Clin. Oncol. 2010, 28, 245–255. [Google Scholar] [CrossRef]
- Cingarlini, S.; Bonomi, M.; Trentin, C.; Corbo, V.; Scarpa, A.; Tortora, G. Profiling mTOR Pathway in Neuroendocrine Tumors. In Management of Neuroendocrine Tumors of the Pancreas and Digestive Tract: From Surgery to Targeted Therapies: A Multidisciplinary Approach; Springer: Berlin/Heidelberg, Germany, 2014; pp. 9–27. [Google Scholar]
- Yachida, S.; Jones, S.; Bozic, I.; Antal, T.; Leary, R.; Fu, B.; Kamiyama, M.; Hruban, R.H.; Eshleman, J.R.; Nowak, M.A.; et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010, 467, 1114–1117. [Google Scholar] [CrossRef]
- Patel, S.A.; Nilsson, M.B.; Le, X.; Cascone, T.; Jain, R.K.; Heymach, J.V. Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. Clin. Cancer Res. 2023, 29, 30–39. [Google Scholar] [CrossRef]
- Chang, T.-M.; Chu, P.-Y.; Lin, H.-Y.; Huang, K.-W.; Hung, W.-C.; Shan, Y.-S.; Chen, L.-T.; Tsai, H.-J. PTEN regulates invasiveness in pancreatic neuroendocrine tumors through DUSP19-mediated VEGFR3 dephosphorylation. J. Biomed. Sci. 2022, 29, 92. [Google Scholar] [CrossRef] [PubMed]
- Varney, M.L.; Singh, R.K. VEGF-C-VEGFR3/Flt4 axis regulates mammary tumor growth and metastasis in an autocrine manner. Am. J. Cancer Res. 2015, 5, 616–628. [Google Scholar] [PubMed]
- Binkovitz, L.; Johnson, C.; Stephens, D. Islet cell tumors in von Hippel-Lindau disease: Increased prevalence and relationship to the multiple endocrine neoplasias. AJR Am. J. Roentgenol. 1990, 155, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.L. von Hippel-Lindau syndrome: Target for anti-vascular endothelial growth factor (VEGF) receptor therapy. Oncologist 2000, 5, 32–36. [Google Scholar] [CrossRef][Green Version]
- Vitale, L.; Lenzi, L.; Huntsman, S.A.; Canaider, S.; Frabetti, F.; Casadei, R.; Facchin, F.; Carinci, P.; Zannotti, M.; Coppola, D.; et al. Differential expression of alternatively spliced mRNA forms of the insulin-like growth factor 1 receptor in human neuroendocrine tumors. Oncol. Rep. 2006, 15, 1249–1256. [Google Scholar] [CrossRef]
- Papouchado, B.; Erickson, L.A.; Rohlinger, A.L.; Hobday, T.J.; Erlichman, C.; Ames, M.M.; Lloyd, R.V. Epidermal growth factor receptor and activated epidermal growth factor receptor expression in gastrointestinal carcinoids and pancreatic endocrine carcinomas. Mod. Pathol. 2005, 18, 1329–1335. [Google Scholar] [CrossRef]
- Xiao, Z.; Xu, H.; Strosberg, J.R.; Lu, R.; Zhu, X.; Deng, S.; Ding, L.; Ni, Q.; Warshaw, A.L.; Yu, X.; et al. Egfr is a potential therapeutic target for highly glycosylated and aggressive pancreatic neuroendocrine neoplasms. Int. J. Cancer 2023, 153, 164–172. [Google Scholar] [CrossRef]
- Kogo, M.; Shimizu, R.; Uehara, K.; Takahashi, Y.; Kokubo, M.; Imai, Y.; Tomii, K. Transformation to large cell neuroendocrine carcinoma as acquired resistance mechanism of EGFR tyrosine kinase inhibitor. Lung Cancer 2015, 90, 364–368. [Google Scholar] [CrossRef]
- Ludovini, V.; Bellezza, G.; Pistola, L.; Bianconi, F.; Di Carlo, L.; Sidoni, A.; Semeraro, A.; Del Sordo, R.; Tofanetti, F.; Mameli, M.; et al. High coexpression of both insulin-like growth factor receptor-1 (IGFR-1) and epidermal growth factor receptor (EGFR) is associated with shorter disease-free survival in resected non-small-cell lung cancer patients. Ann. Oncol. 2009, 20, 842–849. [Google Scholar] [CrossRef]
- Van Adrichem, R.; De Herder, W.W.; Kamp, K.; Brugts, M.P.; De Krijger, R.R.; Sprij-Mooij, D.M.; Lamberts, S.W.; Van Koetsveld, P.M.; Janssen, J.A.; Hofland, L.J. Effects of somatostatin analogs and dopamine agonists on insulin-like growth factor 2-induced insulin receptor isoform a activation by gastroenteropancreatic neuroendocrine tumor cells. Neuroendocrinology 2016, 103, 815–825. [Google Scholar] [CrossRef]
- Toffoli, L.; Ditsiou, A.; Gagliano, T. Exploring Emerging Therapeutic Targets and Opportunities in Neuroendocrine Tumors: Updates on Receptor Tyrosine Kinases. Receptors 2024, 3, 145–154. [Google Scholar] [CrossRef]
- Salvatore, D.; Santoro, M.; Schlumberger, M. The importance of the RET gene in thyroid cancer and therapeutic implications. Nat. Rev. Endocrinol. 2021, 17, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Tiedje, V.; Ting, S.; Herold, T.; Synoracki, S.; Latteyer, S.; Moeller, L.C.; Zwanziger, D.; Stuschke, M.; Fuehrer, D.; Schmid, K.W. NGS based identification of mutational hotspots for targeted therapy in anaplastic thyroid carcinoma. Oncotarget 2017, 8, 42613–42620. [Google Scholar] [CrossRef]
- Garcia-Carbonero, R.; Anton-Pascual, B.; Modrego, A.; del Carmen Riesco-Martinez, M.; Lens-Pardo, A.; Carretero-Puche, C.; Rubio-Cuesta, B.; Soldevilla, B. Advances in the treatment of gastroenteropancreatic neuroendocrine carcinomas: Are we moving forward? Endocr. Rev. 2023, 44, 724–736. [Google Scholar] [CrossRef]
- Kander, E.M.; Shah, M.H.; Zhou, Y.; Goyal, A.; Palmer, J.D.; Owen, D.H.; Shilo, K.; Patel, G.; Raval, R.R.; Gonzalez, J.; et al. Response to the selective RET inhibitor selpercatinib (LOXO-292) in a patient with RET fusion-positive atypical lung carcinoid. Clin. Lung Cancer 2021, 22, e442–e445. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, J.; Xia, Q.; Liu, K.; Dong, Z. New perspectives for targeting therapy in ALK-positive human cancers. Oncogene 2023, 42, 1959–1969. [Google Scholar] [CrossRef]
- Leal, J.L.; Peters, G.; Szaumkessel, M.; Leong, T.; Asadi, K.; Rivalland, G.; Do, H.; Senko, C.; Mitchell, P.L.; Quing, C.Z.; et al. NTRK and ALK rearrangements in malignant pleural mesothelioma, pulmonary neuroendocrine tumours and non-small cell lung cancer. Lung Cancer 2020, 146, 154–159. [Google Scholar] [CrossRef]
- Nakajima, M.; Uchiyama, N.; Shigemasa, R.; Matsumura, T.; Matsuoka, R.; Nomura, A. Atypical carcinoid tumor with anaplastic lymphoma kinase (ALK) rearrangement successfully treated by an ALK inhibitor. Intern. Med. 2016, 55, 3151–3153. [Google Scholar] [CrossRef]
- Yao, J.C.; Pavel, M.; Lombard-Bohas, C.; Van Cutsem, E.; Voi, M.; Brandt, U.; He, W.; Chen, D.; Capdevila, J.; De Vries, E.G.; et al. Everolimus for the treatment of advanced pancreatic neuroendocrine tumors: Overall survival and circulating biomarkers from the randomized, phase III RADIANT-3 study. J. Clin. Oncol. 2016, 34, 3906–3913. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.E.; Hainsworth, J.D.; Baudin, E.; Peeters, M.; Hörsch, D.; Winkler, R.E.; Klimovsky, J.; Lebwohl, D.; Jehl, V.; Wolin, E.M.; et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): A randomised, placebo-controlled, phase 3 study. Lancet 2011, 378, 2005–2012. [Google Scholar] [CrossRef] [PubMed]
- Kulke, M.H.; Bergsland, E.K.; Yao, J.C. Glycemic control in patients with insulinoma treated with everolimus. N. Engl. J. Med. 2009, 360, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.C.; Lombard-Bohas, C.; Baudin, E.; Kvols, L.K.; Rougier, P.; Ruszniewski, P.; Hoosen, S.; Peter, J.S.; Haas, T.; Lebwohl, D.; et al. Daily Oral Everolimus Activity in Patients with Metastatic Pancreatic Neuroendocrine Tumors After Failure of Cytotoxic Chemotherapy: A Phase II Trial. J. Clin. Oncol. 2010, 28, 69–76. [Google Scholar] [CrossRef]
- Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.; et al. Everolimus for Advanced Pancreatic Neuroendocrine Tumors. N. Engl. J. Med. 2011, 364, 514–523. [Google Scholar] [CrossRef]
- Yao, J.C.; Fazio, N.; Singh, S.; Buzzoni, R.; Carnaghi, C.; Wolin, E.; Tomasek, J.; Raderer, M.; Lahner, H.; Voi, M.; et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): A randomised, placebo-controlled, phase 3 study. Lancet 2016, 387, 968–977. [Google Scholar] [CrossRef]
- Raymond, E.; Dahan, L.; Raoul, J.-L.; Bang, Y.-J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A.; et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 2011, 364, 501–513, Correction in N. Engl. J. Med. 2011, 364, 1082. https://doi.org/10.1056/NEJMx110017. [Google Scholar] [CrossRef]
- Kulke, M.H.; Lenz, H.-J.; Meropol, N.J.; Posey, J.; Ryan, D.P.; Picus, J.; Bergsland, E.; Stuart, K.; Tye, L.; Huang, X.; et al. Activity of sunitinib in patients with advanced neuroendocrine tumors. J. Clin. Oncol. 2008, 26, 3403–3410. [Google Scholar] [CrossRef]
- Hobday, T.; Rubin, J.; Holen, K.; Picus, J.; Donehower, R.; Marschke, R.; Maples, W.; Lloyd, R.; Mahoney, M.; Erlichman, C. MC044h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): A Phase II Consortium (P2C) study. J. Clin. Oncol. 2007, 25, 4504. [Google Scholar] [CrossRef]
- Phan, A.; Yao, J.; Fogelman, D.; Hess, K.; Ng, C.; Bullock, S.; Malinowski, P.; Regan, E.; Kulke, M. A prospective, multi-institutional phase II study of GW786034 (pazopanib) and depot octreotide (sandostatin LAR) in advanced low-grade neuroendocrine carcinoma (LGNEC). J. Clin. Oncol. 2010, 28, 4001. [Google Scholar] [CrossRef]
- Molina, A.M.; Feldman, D.R.; Voss, M.H.; Ginsberg, M.S.; Baum, M.S.; Brocks, D.R.; Fischer, P.M.; Trinos, M.J.; Patil, S.; Motzer, R.J. Phase 1 trial of everolimus plus sunitinib in patients with metastatic renal cell carcinoma. Cancer 2012, 118, 1868–1876. [Google Scholar] [CrossRef]
- Daskalakis, K.; Tsoli, M.; Angelousi, A.; Kassi, E.; Alexandraki, K.I.; Kolomodi, D.; Kaltsas, G.; Koumarianou, A. Anti-tumour activity of everolimus and sunitinib in neuroendocrine neoplasms. Endocr. Connect. 2019, 8, 641–653. [Google Scholar] [CrossRef]
- Xu, J.; Shen, L.; Bai, C.; Wang, W.; Li, J.; Yu, X.; Li, Z.; Li, E.; Yuan, X.; Chi, Y.; et al. Surufatinib in advanced pancreatic neuroendocrine tumours (SANET-p): A randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020, 21, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shen, L.; Zhou, Z.; Li, J.; Bai, C.; Chi, Y.; Li, Z.; Xu, N.; Li, E.; Liu, T.; et al. Surufatinib in advanced extrapancreatic neuroendocrine tumours (SANET-ep): A randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020, 21, 1500–1512. [Google Scholar] [CrossRef]
- Chan, J.A.; Geyer, S.; Zemla, T.; Knopp, M.V.; Behr, S.; Pulsipher, S.; Ou, F.-S.; Dueck, A.C.; Acoba, J.; Shergill, A.; et al. Phase 3 Trial of Cabozantinib to Treat Advanced Neuroendocrine Tumors. N. Engl. J. Med. 2024, 92, 653–665. [Google Scholar] [CrossRef]
- Yao, J.C.; Phan, A.; Hoff, P.M.; Chen, H.X.; Charnsangavej, C.; Yeung, S.-C.J.; Hess, K.; Ng, C.; Abbruzzese, J.L.; Ajani, J.A. Targeting vascular endothelial growth factor in advanced carcinoid tumor: A random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alfa-2b. J. Clin. Oncol. 2008, 26, 1316–1323. [Google Scholar] [CrossRef]
- Yao, J.C.; Guthrie, K.A.; Moran, C.; Strosberg, J.R.; Kulke, M.H.; Chan, J.A.; LoConte, N.; McWilliams, R.R.; Wolin, E.M.; Mattar, B.; et al. Phase III prospective randomized comparison trial of depot octreotide plus interferon alfa-2b versus depot octreotide plus bevacizumab in patients with advanced carcinoid tumors: SWOG S0518. J. Clin. Oncol. 2017, 35, 1695–1703. [Google Scholar] [CrossRef]
- Dong, M.; Phan, A.T.; Yao, J.C. New Strategies for Advanced Neuroendocrine Tumors in the Era of Targeted Therapy. Clin. Cancer Res. 2012, 18, 1830–1836. [Google Scholar] [CrossRef]
- Yao, J.C.; Phan, A. Overcoming antiangiogenic resistance. Clin. Cancer Res. 2011, 17, 5217–5219. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, Z.; Li, Q.; Wang, L.; Rashid, A.; Zhu, Z.; Evans, D.B.; Vauthey, J.; Xie, K.; Yao, J.C. Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2007, 109, 1478–1486. [Google Scholar] [CrossRef]
- Ott, P.A.; Bang, Y.-J.; Piha-Paul, S.A.; Razak, A.R.A.; Bennouna, J.; Soria, J.-C.; Rugo, H.S.; Cohen, R.B.; O’Neil, B.H.; Mehnert, J.M.; et al. T-cell–inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J. Clin. Oncol. 2019, 37, 318–327, Erratum in J. Clin. Oncol. 2019, 37, 688. https://ascopubs.org/doi/10.1200/JCO.19.00207. [Google Scholar] [CrossRef]
- Strosberg, J.; Mizuno, N.; Doi, T.; Grande, E.; Delord, J.-P.; Shapira-Frommer, R.; Bergsland, E.; Shah, M.; Fakih, M.; Takahashi, S.; et al. Efficacy and safety of pembrolizumab in previously treated advanced neuroendocrine tumors: Results from the phase II KEYNOTE-158 study. Clin. Cancer Res. 2020, 26, 2124–2130. [Google Scholar] [CrossRef] [PubMed]
- Vijayvergia, N.; Dasari, A.; Deng, M.; Litwin, S.; Al-Toubah, T.; Alpaugh, R.K.; Dotan, E.; Hall, M.J.; Ross, N.M.; Runyen, M.M.; et al. Pembrolizumab monotherapy in patients with previously treated metastatic high-grade neuroendocrine neoplasms: Joint analysis of two prospective, non-randomised trials. Br. J. Cancer 2020, 122, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhang, P.; Zhang, Y.; Li, Z.; Gong, J.; Li, J.; Li, J.; Li, Y.; Zhang, X.; Lu, Z.; et al. Efficacy, safety, and biomarkers of toripalimab in patients with recurrent or metastatic neuroendocrine neoplasms: A multiple-center phase Ib trial. Clin. Cancer Res. 2020, 26, 2337–2345. [Google Scholar] [CrossRef]
- Yao, J.C.; Strosberg, J.; Fazio, N.; Pavel, M.E.; Bergsland, E.; Ruszniewski, P.; Halperin, D.M.; Li, D.; Tafuto, S.; Raj, N.; et al. Spartalizumab in metastatic, well/poorly differentiated neuroendocrine neoplasms. Endocr. Relat. Cancer 2021, 28, 161–172. [Google Scholar] [CrossRef]
- Patel, S.P.; Othus, M.; Chae, Y.K.; Giles, F.J.; Hansel, D.E.; Singh, P.P.; Fontaine, A.; Shah, M.H.; Kasi, A.; Baghdadi, T.A.; et al. A phase II basket trial of dual anti–CTLA-4 and anti–PD-1 blockade in rare tumors (DART SWOG 1609) in patients with nonpancreatic neuroendocrine tumors. Clin. Cancer Res. 2020, 26, 2290–2296. [Google Scholar] [CrossRef] [PubMed]
- Klein, O.; Kee, D.; Markman, B.; Michael, M.; Underhill, C.; Carlino, M.S.; Jackett, L.; Lum, C.; Scott, C.; Nagrial, A.; et al. Immunotherapy of ipilimumab and nivolumab in patients with advanced neuroendocrine tumors: A subgroup analysis of the CA209-538 clinical trial for rare cancers. Clin. Cancer Res. 2020, 26, 4454–4459. [Google Scholar] [CrossRef]
- Shigeta, K.; Datta, M.; Hato, T.; Kitahara, S.; Chen, I.X.; Matsui, A.; Kikuchi, H.; Mamessier, E.; Aoki, S.; Ramjiawan, R.R.; et al. Dual programmed death receptor-1 and vascular endothelial growth factor receptor-2 blockade promotes vascular normalization and enhances antitumor immune responses in hepatocellular carcinoma. Hepatology 2020, 71, 1247–1261. [Google Scholar] [CrossRef]
- Halperin, D.M.; Liu, S.; Dasari, A.; Fogelman, D.R.; Bhosale, P.; Mahvash, A.; Dervin, S.; Estrella, J.; Cortazar, P.; Maru, D.M.; et al. A phase II trial of atezolizumab and bevacizumab in patients with advanced, progressive neuroendocrine tumors (NETs). J. Clin. Oncol. 2020, 38, 619. [Google Scholar] [CrossRef]
- Halperin, D.M.; Liu, S.; Dasari, A.; Fogelman, D.; Bhosale, P.; Mahvash, A.; Estrella, J.S.; Rubin, L.; Morani, A.C.; Knafl, M. Assessment of clinical response following atezolizumab and bevacizumab treatment in patients with neuroendocrine tumors: A nonrandomized clinical trial. JAMA Oncol. 2022, 8, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.A.; Raj, N.P.; Aggarwal, R.R.; Calabrese, S.; DeMore, A.; Dhawan, M.S.; Fattah, D.; Fong, L.; Grabowsky, J.; Hope, T.A. Phase II study of pembrolizumab-based therapy in previously treated extrapulmonary poorly differentiated neuroendocrine carcinomas: Results of Part B (pembrolizumab + chemotherapy). J. Clin. Oncol. 2021, 39, 4148. [Google Scholar] [CrossRef]
- Martinez, M.R.; Castillon, J.C.; Alonso, V.; Jimenez-Fonseca, P.; Teule, A.; Grande, E.; Sevilla, I.; Benavent, M.; Alonso-Gordoa, T.; Custodio, A.; et al. 496MO Final overall survival results from the NICE-NEC trial (GETNE-T1913): A phase II study of nivolumab and platinum-doublet chemotherapy (CT) in untreated advanced G3 neuroendocrine neoplasms (NENs) of gastroenteropancreatic (GEP) or unknown (UK) origin. Ann. Oncol. 2022, 33, S769. [Google Scholar] [CrossRef]
- Riesco-Martinez, M.; Capdevila, J.; Alonso, V.; Jimenez-Fonseca, P.; Teule, A.; Grande, E.; Sevilla, I.; Viñuales, M.B.; Alonso-Gordoa, T.; Custodio, A.; et al. 1098O Nivolumab plus platinum-doublet chemotherapy as first-line therapy in unresectable, locally advanced or metastatic G3 neuroendocrine Neoplasms (NENs) of the gastroenteropancreatic (GEP) tract or unknown (UK) origin: Preliminary results from the phase II NICE-NEC trial (GETNE T1913). Ann. Oncol. 2021, 32, S908–S909. [Google Scholar]
- Venizelos, A.; Elvebakken, H.; Perren, A.; Nikolaienko, O.; Deng, W.; Lothe, I.M.B.; Couvelard, A.; Hjortland, G.O.; Sundlöv, A.; Svensson, J.; et al. The molecular characteristics of high-grade gastroenteropancreatic neuroendocrine neoplasms. Endocr. Relat. Cancer 2022, 29, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef]
- Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef]
- Cives, M.; Pelle’, E.; Strosberg, J. Emerging Treatment Options for Gastroenteropancreatic Neuroendocrine Tumors. J. Clin. Med. 2020, 9, 3655. [Google Scholar] [CrossRef]
- Capdevila, J.; Hernando, J.; Teule, A.; Lopez, C.; Garcia-Carbonero, R.; Benavent, M.; Custodio, A.; Garcia-Alvarez, A.; Cubillo, A.; Alonso, V.; et al. Durvalumab plus tremelimumab for the treatment of advanced neuroendocrine neoplasms of gastroenteropancreatic and lung origin. Nat. Commun. 2023, 14, 2973. [Google Scholar] [CrossRef] [PubMed]
- Cives, M.; Strosberg, J.; Al Diffalha, S.; Coppola, D. Analysis of the immune landscape of small bowel neuroendocrine tumors. Endocr. Relat. Cancer 2019, 26, 119–130. [Google Scholar] [CrossRef]
- Da Silva, A.; Bowden, M.; Zhang, S.; Masugi, Y.; Thorner, A.R.; Herbert, Z.T.; Zhou, C.W.; Brais, L.; Chan, J.A.; Hodi, F.S.; et al. Characterization of the neuroendocrine tumor immune microenvironment. Pancreas 2018, 47, 1123–1129. [Google Scholar] [CrossRef]
- Katz, S.C.; Donkor, C.; Glasgow, K.; Pillarisetty, V.G.; Gönen, M.; Espat, N.J.; Klimstra, D.S.; D’Angelica, M.I.; Allen, P.J.; Jarnagin, W.; et al. T cell infiltrate and outcome following resection of intermediate-grade primary neuroendocrine tumours and liver metastases. HPB 2010, 12, 674–683. [Google Scholar] [CrossRef]
- Anthony, L.B.; Woltering, E.A.; Espenan, G.D.; Cronin, M.D.; Maloney, T.J.; McCarthy, K.E. Indium-111-Pentetreotide Prolongs Survival in Gastroenteropancreatic Malignancies; Elsevier: Amsterdam, The Netherlands, 2002; Volume 32, pp. 123–132. [Google Scholar]
- Valkema, R.; Pauwels, S.; Kvols, L.K.; Barone, R.; Jamar, F.; Bakker, W.H.; Kwekkeboom, D.J.; Bouterfa, H.; Krenning, E.P. Survival and Response After Peptide Receptor Radionuclide Therapy with [90Y-DOTA0, Tyr3] Octreotide in Patients with Advanced Gastroenteropancreatic Neuroendocrine Tumors; Elsevier: Amsterdam, The Netherlands, 2006; Volume 36, pp. 147–156. [Google Scholar]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef]
- Singh, S.; Halperin, D.M.; Myrehaug, S.; Herrmann, K.; Pavel, M.; Kunz, P.L.; Chasen, B.; Capdevila, J.; Tafuto, S.; Oh, D.-Y.; et al. [177Lu] Lu-DOTA-TATE in newly diagnosed patients with advanced grade 2 and grade 3, well-differentiated gastroenteropancreatic neuroendocrine tumors: Primary analysis of the phase 3 randomized NETTER-2 study. J. Clin. Oncol. 2024, 42, LBA588. [Google Scholar] [CrossRef]
- Strosberg, J.R.; Naqvi, S.; Cohn, A.L.; Delpassand, E.; Wagner, V.J.; Torgue, J.; Woloski, R.; Manuel, A.; Maluccio, M.A. Safety, tolerability and efficacy of 212Pb-DOTAMTATE as a targeted alpha therapy for subjects with unresectable or metastatic somatostatin receptor-expressing gastroenteropancreatic neuroendocrine tumors (SSTR + GEP-NETs): A phase 2 study. J. Clin. Oncol. 2024, 42, 4020. [Google Scholar] [CrossRef]
- Broder, L.E.; Carter, S.K. Pancreatic islet cell carcinoma: II. Results of therapy with streptozotocin in 52 patients. Ann. Intern. Med. 1973, 79, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Moertel, C.G.; Hanley, J.A.; Johnson, L.A. Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N. Engl. J. Med. 1980, 303, 1189–1194. [Google Scholar] [CrossRef]
- Moertel, C.G.; Lefkopoulo, M.; Lipsitz, S.; Hahn, R.G.; Klaassen, D. Streptozocin–doxorubicin, streptozocin–fluorouracil, or chlorozotocin in the treatment of advanced islet-cell carcinoma. N. Engl. J. Med. 1992, 326, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, R.; Cnaan, A.; Hahn, R.; Carbone, P.; Haller, D. Phase II trial of dacarbazine (DTIC) in advanced pancreatic islet cell carcinoma. Study of the Eastern Cooperative Oncology Group-E6282. Ann. Oncol. 2001, 12, 1139–1143. [Google Scholar] [CrossRef] [PubMed]
- Mueller, D.; Krug, S.; Majumder, M.; Rinke, A.; Gress, T.M. Low dose DTIC is effective and safe in pretreated patients with well differentiated neuroendocrine tumors. BMC Cancer 2016, 16, 645. [Google Scholar] [CrossRef][Green Version]
- Kunz, P.L.; Graham, N.T.; Catalano, P.J.; Nimeiri, H.S.; Fisher, G.A.; Longacre, T.A.; Suarez, C.J.; Martin, B.A.; Yao, J.C.; Kulke, M.H.; et al. Randomized study of temozolomide or temozolomide and capecitabine in patients with advanced pancreatic neuroendocrine tumors (ECOG-ACRIN E2211). J. Clin. Oncol. 2023, 41, 1359–1369. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; He, J.; Le, X.; Zheng, L.; Cao, D. Application of somatostatin, chemotherapy combined with TAE in heterogeneous glucagonoma presented with necrolytic migratory erythema. OncoTargets Ther. 2019, 12, 11339–11344. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.A.; Stuart, K.; Earle, C.C.; Clark, J.W.; Bhargava, P.; Miksad, R.; Blaszkowsky, L.; Enzinger, P.C.; Meyerhardt, J.A.; Zheng, H.; et al. Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. J. Clin. Oncol. 2012, 30, 2963–2968. [Google Scholar] [CrossRef] [PubMed]
- Middleton, M.R.; Grob, J.; Aaronson, N.; Fierlbeck, G.; Tilgen, W.; Seiter, S.; Gore, M.; Aamdal, S.; Cebon, J.; Coates, A.; et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J. Clin. Oncol. 2000, 18, 158–166, Erratum in J. Clin. Oncol. 2000, 18, 2351. [Google Scholar] [CrossRef]
- De Mestier, L.; Walter, T.; Brixi, H.; Evrard, C.; Legoux, J.-L.; de Boissieu, P.; Hentic, O.; Cros, J.; Hammel, P.; Tougeron, D.; et al. Comparison of temozolomide-capecitabine to 5-fluorouracile-dacarbazine in 247 patients with advanced digestive neuroendocrine tumors using propensity score analyses. Neuroendocrinology 2019, 108, 343–353. [Google Scholar] [CrossRef]
- Xie, H.; Tubbs, R.; Yang, B. Detection of MGMT promoter methylation in glioblastoma using pyrosequencing. Int. J. Clin. Exp. Pathol. 2015, 8, 1790–1796. [Google Scholar]
- Al-Toubah, T.; Morse, B.; Pelle, E.; Strosberg, J. Efficacy of FOLFOX in patients with aggressive pancreatic neuroendocrine tumors after prior capecitabine/temozolomide. Oncologist 2021, 26, 115–119. [Google Scholar] [CrossRef]
- Oziel-Taieb, S.; Zemmour, C.; Raoul, J.-L.; Mineur, L.; Poizat, F.; Charrier, N.; Piana, G.; Cavaglione, G.; Niccoli, P. Efficacy of FOLFOX chemotherapy in metastatic enteropancreatic neuroendocrine tumors. Anticancer Res. 2021, 41, 2071–2078. [Google Scholar] [CrossRef]
- Kunz, P.L.; Balise, R.R.; Fehrenbacher, L.; Pan, M.; Venook, A.P.; Fisher, G.A.; Tempero, M.A.; Ko, A.H.; Korn, W.M.; Hwang, J. Oxaliplatin–fluoropyrimidine chemotherapy plus bevacizumab in advanced neuroendocrine tumors: An analysis of 2 phase II trials. Pancreas 2016, 45, 1394–1400. [Google Scholar] [CrossRef]
- Girot, P.; Baudin, E.; Senellart, H.; Bouarioua, N.; Hentic, O.; Guimbaud, R.; Walter, T.; Ferru, A.; Roquin, G.; Cadiot, G.; et al. Oxaliplatin and 5-fluorouracil (FOLFOX) in advanced well-differentiated digestive neuroendocrine tumors: A multicenter national retrospective study from the French Group of Endocrine Tumors (GTE). J. Clin. Oncol. 2019, 37, 4104. [Google Scholar] [CrossRef]
- Eads, J.R.; Catalano, P.J.; Fisher, G.A.; Rubin, D.; Iagaru, A.; Klimstra, D.S.; Konda, B.; Kwong, M.S.; Chan, J.A.; De Jesus-Acosta, A.; et al. Randomized phase II study of platinum and etoposide (EP) versus temozolomide and capecitabine (CAPTEM) in patients (pts) with advanced G3 non-small cell gastroenteropancreatic neuroendocrine neoplasms (GEPNENs): ECOG-ACRIN EA2142. J. Clin. Oncol. 2022, 40, 4020. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J.; Li, J.; Zhang, X.; Zhou, J.; Wang, X.; Peng, Z.; Shen, L.; Lu, M. Etoposide and cisplatin versus irinotecan and cisplatin as the first-line therapy for patients with advanced, poorly differentiated gastroenteropancreatic neuroendocrine carcinoma: A randomized phase 2 study. Cancer 2020, 126, 2086–2092. [Google Scholar] [CrossRef]
- Yao, J.C.; Phan, A.T.; Fogleman, D.; Ng, C.S.; Jacobs, C.B.; Dagohoy, C.D.; Leary, C.; Hess, K.R. Randomized run-in study of bevacizumab (B) and everolimus (E) in low-to intermediate-grade neuroendocrine tumors (LGNETs) using perfusion CT as functional biomarker. J. Clin. Oncol. 2010, 28, 4002. [Google Scholar] [CrossRef]
- Roldo, C.; Missiaglia, E.; Hagan, J.P.; Falconi, M.; Capelli, P.; Bersani, S.; Calin, G.A.; Volinia, S.; Liu, C.-G.; Scarpa, A.; et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J. Clin. Oncol. 2006, 24, 4677–4684. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-C.; Essaghir, A.; Martijn, C.; Lloyd, R.V.; Demoulin, J.-B.; Öberg, K.; Giandomenico, V. Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod. Pathol. 2013, 26, 685–696. [Google Scholar] [CrossRef]
- Kulke, M.H.; Hornick, J.L.; Frauenhoffer, C.; Hooshmand, S.; Ryan, D.P.; Enzinger, P.C.; Meyerhardt, J.A.; Clark, J.W.; Stuart, K.; Fuchs, C.S.; et al. O 6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin. Cancer Res. 2009, 15, 338–345. [Google Scholar] [CrossRef]
- Yao, J.C.; Pavel, M.; Phan, A.T.; Kulke, M.H.; Hoosen, S.; Peter, J.S.; Cherfi, A.; Öberg, K.E. Chromogranin A and neuron-specific enolase as prognostic markers in patients with advanced pNET treated with everolimus. J. Clin. Endocrinol. Metab. 2011, 96, 3741–3749. [Google Scholar] [CrossRef]
- Malczewska, A.; Oberg, K.; Kos-Kudla, B. NETest is superior to chromogranin A in neuroendocrine neoplasia: A prospective ENETS CoE analysis. Endocr. Connect. 2021, 10, 110–123. [Google Scholar] [CrossRef]


| TRIAL | Phase | Population | Intervention (I) | Control (C) | Outcomes |
|---|---|---|---|---|---|
| RADIANT 1 [83] | 2 | Adv. pNETs, (n = 160) | Everolimus (10 mg/d) +/− octreotide LAR * | N/A | Stratum 1 (n = 115; no LAR): ORR 9.6%; SD: 67.8%; mPFS: 9.7 mo; Stratum 2 (n = 45; +LAR): ORR: 4.4%; SD: 80%; mPFS: 16.7 |
| RADIANT 2 [81] | 3 | LGNETs with CS (n = 429) | Everolimus (10 mg/d) + octreotide LAR * | Octreotide LAR | mPFS: 16.4 (I) vs. 11.3 mo (C) |
| RADIANT 3 [84] | 3 | Adv. pNETs (n = 410) | Everolimus (10 mg/d) | Placebo | mPFS: 11 (I) vs. 4.6 mo (C) mOS: NR in both groups |
| RADIANT 4 [85] | 3 | WD (G1/2) Adv. NETs with no CS ** (n = 302) | Everolimus 10 mg/d | Placebo | mPFS: 11 (I) vs. 3.9 mo (C) DCR: 82.4% (I) vs. 64.9% (C) |
| RADIANT-2 | RADIANT-3 | NCT-00428597 | ||||
|---|---|---|---|---|---|---|
| Adverse Event | Everolimus 10 mg Daily (+ LAR Octreotide) | Everolimus, 10 mg, Daily | Sunitinib 35.5 mg Daily | |||
| Grade | All Grades | Grade ≥ 3 | All Grades | Grade ≥ 3 | All Grades | Grade ≥ 3 |
| Stomatitis | 62% | 3.7% | 64% | 14% | 22% | 4% |
| Rash | 37% | 0.9% | 49% | 1% | 18% | 0% |
| Diarrhea | 27% | 6% | 34% | 3% | 59% | 5% |
| Fatigue | 31% | 7% | 31% | 2% | 32% | 5% |
| Hyperglycemia | 12.1% | 5.1% | 27% | 5% | NR | NR |
| Anemia | 16.3% | 1.8% | 35% | 6% | NR | NR |
| Characteristic | Details |
|---|---|
| Site | GEP (including p-NET vs. e-p-NET, and liver-dominant disease) or non-GI NET |
| Size | Size of ≥20 mm: prognostic for recurrence and metastasis |
| Stage | Resectable vs. locally advanced vs. metastatic |
| Sex (pace of growth/proliferation) | Rate of tumor growth; typically assessed with imaging every 3 months |
| SSTR status | For: STTR+ consider PRRT |
| Secretory (hormone) | Functional/secretory NET: benefit from surgical resection if possible, targeted therapy or PRRT vs. non-functional: can be observed unless advanced (consider chemotherapy) |
| Severity (burden) | Disease burden as a prognostic marker for survival |
| Score (grade) | G3 (vs. G1,2) tumors: consider platinum-etoposide, CAPTEM, and 177Lu-Dotatate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choucair, K.; Odabashian, R.; Reddy, S.N.; Azmi, A.S.; Saif, M.W. An Update on Novel Pharmacotherapies for the Treatment of Neuroendocrine Tumors. Int. J. Mol. Sci. 2025, 26, 11095. https://doi.org/10.3390/ijms262211095
Choucair K, Odabashian R, Reddy SN, Azmi AS, Saif MW. An Update on Novel Pharmacotherapies for the Treatment of Neuroendocrine Tumors. International Journal of Molecular Sciences. 2025; 26(22):11095. https://doi.org/10.3390/ijms262211095
Chicago/Turabian StyleChoucair, Khalil, Roupen Odabashian, Sushmita Nanja Reddy, Asfar Sohail Azmi, and Muhammad Wasif Saif. 2025. "An Update on Novel Pharmacotherapies for the Treatment of Neuroendocrine Tumors" International Journal of Molecular Sciences 26, no. 22: 11095. https://doi.org/10.3390/ijms262211095
APA StyleChoucair, K., Odabashian, R., Reddy, S. N., Azmi, A. S., & Saif, M. W. (2025). An Update on Novel Pharmacotherapies for the Treatment of Neuroendocrine Tumors. International Journal of Molecular Sciences, 26(22), 11095. https://doi.org/10.3390/ijms262211095

