The Need for and Importance of Thorough and Comprehensive Studies on the Molecular Mechanisms of Action of Animal Toxins, Venoms, and Antivenoms
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; et al. The toxicogenomic multiverse: Convergent recruitment of proteins into animal venoms. Annu. Rev. Genom. Hum. Genet. 2009, 10, 483–511. [Google Scholar] [CrossRef]
- Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 2013, 28, 219–229. [Google Scholar] [CrossRef]
- Nelsen, D.R.; Nisani, Z.; Cooper, A.M.; Fox, G.A.; Gren, E.C.; Corbit, A.G.; Hayes, W.K. Poisons, toxungens, and venoms: Redefining and classifying toxic biological secretions and the organisms that employ them. Biol. Rev. Camb. Philos. Soc. 2014, 89, 450–465. [Google Scholar] [CrossRef]
- Jenner, R.A.; Casewell, N.R.; Undheim, E.A.B. What is animal venom? Rethinking a manipulative weapon. Trends Ecol. Evol. 2025, 40, 852–861. [Google Scholar] [CrossRef]
- Herzig, V. ‘Venom’—A manipulative weapon for overcoming the victim’s protective barriers. Trends Ecol. Evol. 2025, 40, 1044–1045. [Google Scholar] [CrossRef]
- Bordon, K.d.C.F.; Cologna, C.T.; Fornari-Baldo, E.C.; Pinheiro-Júnior, E.L.; Cerni, F.A.; Amorim, F.G.; Anjolette, F.A.P.; Cordeiro, F.A.; Wiezel, G.A.; Cardoso, I.A.; et al. From Animal Poisons and Venoms to Medicines: Achievements, Challenges and Perspectives in Drug Discovery. Front. Pharmacol. 2020, 11, 1132. [Google Scholar] [CrossRef]
- Kim, E.; Hwang, D.H.; Mohan Prakash, R.L.; Asirvatham, R.D.; Lee, H.; Heo, Y.; Munawir, A.; Seyedian, R.; Kang, C. Animal Venom in Modern Medicine: A Review of Therapeutic Applications. Toxins 2025, 17, 371. [Google Scholar] [CrossRef]
- Langenegger, N.; Nentwig, W.; Kuhn-Nentwig, L. Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. Toxins 2019, 11, 611. [Google Scholar] [CrossRef]
- Tasoulis, T.; Isbister, G.K. A current perspective on snake venom composition and constituent protein families. Arch. Toxicol. 2023, 97, 133–153. [Google Scholar] [CrossRef]
- Mouchbahani-Constance, S.; Sharif-Naeini, R. Proteomic and Transcriptomic Techniques to Decipher the Molecular Evolution of Venoms. Toxins 2021, 13, 154. [Google Scholar] [CrossRef]
- Lüddecke, T.; Paas, A.; Harris, R.J.; Talmann, L.; Kirchhoff, K.N.; Billion, A.; Hardes, K.; Steinbrink, A.; Gerlach, D.; Fry, B.G.; et al. Venom biotechnology: Casting light on nature’s deadliest weapons using synthetic biology. Front. Bioeng. Biotechnol. 2023, 11, 1166601. [Google Scholar] [CrossRef]
- Roman-Ramos, H.; Ho, P.L. Current Technologies in Snake Venom Analysis and Applications. Toxins 2024, 16, 458. [Google Scholar] [CrossRef]
- Arrahman, A.; Kazandjian, T.D.; Still, K.B.M.; Slagboom, J.; Somsen, G.W.; Vonk, F.J.; Casewell, N.R.; Kool, J. A Combined Bioassay and Nanofractionation Approach to Investigate the Anticoagulant Toxins of Mamba and Cobra Venoms and Their Inhibition by Varespladib. Toxins 2022, 14, 736. [Google Scholar] [CrossRef]
- Arrahman, A.; Xu, H.; Khan, M.A.; Bos, T.S.; Slagboom, J.; van der Velden, G.C.; Nehrdich, U.; Casewell, N.R.; Richardson, M.K.; Tudorache, C.; et al. Parallel in vitro ion channel and in vivo zebrafish assaying of elapid snake venoms following chromatographic separation of toxin components. SLAS Discov. 2025, 34, 100239. [Google Scholar] [CrossRef]
- Palermo, G.; Schouten, W.M.; Alonso, L.L.; Ulens, C.; Kool, J.; Slagboom, J. Acetylcholine-Binding Protein Affinity Profiling of Neurotoxins in Snake Venoms with Parallel Toxin Identification. Int. J. Mol. Sci. 2023, 24, 16769. [Google Scholar] [CrossRef]
- Del Brutto, O.H. Neurological effects of venomous bites and stings: Snakes, spiders, and scorpions. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 114, pp. 349–368. [Google Scholar] [CrossRef]
- Osipov, A.; Utkin, Y. Effects of snake venom polypeptides on central nervous system. Cent. Nerv. Syst. Agents Med. Chem. 2012, 12, 315–328. [Google Scholar] [CrossRef]
- Seneci, L.; Mikheyev, A.S. Sodium Channel β Subunits—An Additional Element in Animal Tetrodotoxin Resistance? Int. J. Mol. Sci. 2024, 25, 1478. [Google Scholar] [CrossRef]
- Rebello Horta, C.C.; Chatzaki, M.; Rezende, B.A.; de Freitas Magalhães, B.; Duarte, C.G.; Felicori, L.F.; Ribeiro Oliveira-Mendes, B.B.; do Carmo, A.O.; Chávez-Olórtegui, C.; Kalapothakis, E. Cardiovascular-Active Venom Toxins: An Overview. Curr. Med. Chem. 2016, 23, 603–622. [Google Scholar] [CrossRef]
- Frangieh, J.; Rima, M.; Fajloun, Z.; Henrion, D.; Sabatier, J.M.; Legros, C.; Mattei, C. Snake Venom Components: Tools and Cures to Target Cardiovascular Diseases. Molecules 2021, 26, 2223. [Google Scholar] [CrossRef]
- Herzig, V.; Cristofori-Armstrong, B.; Israel, M.R.; Nixon, S.A.; Vetter, I.; King, G.F. Animal toxins—Nature’s evolutionary-refined toolkit for basic research and drug discovery. Biochem. Pharmacol. 2020, 181, 114096. [Google Scholar] [CrossRef]
- Green, D. Hematology products from snake venoms. Thromb. Res. 2025, 245, 109215. [Google Scholar] [CrossRef]
- Camargo, A.C.; Ianzer, D.; Guerreiro, J.R.; Serrano, S.M. Bradykinin-potentiating peptides: Beyond captopril. Toxicon 2012, 59, 516–523. [Google Scholar] [CrossRef]
- Sachetto, A.T.A.; Mackman, N. Modulation of the mammalian coagulation system by venoms and other proteins from snakes, arthropods, nematodes and insects. Thromb. Res. 2019, 178, 145–154. [Google Scholar] [CrossRef]
- Gao, J.; Yang, D.; Wang, W.; Huang, X.; Guo, R.; Cao, K.; Lu, Q.; Wang, Z.; Lai, R.; Li, J. Discovery of a Novel Antithrombotic Cystine Knot Peptide from Spider Venom Gland Transcriptome. Int. J. Mol. Sci. 2025, 26, 10154. [Google Scholar] [CrossRef]
- Avalo, Z.; Barrera, M.C.; Agudelo-Delgado, M.; Tobón, G.J.; Cañas, C.A. Biological Effects of Animal Venoms on the Human Immune System. Toxins 2022, 14, 344. [Google Scholar] [CrossRef]
- Vogel, C.W.; Hew, B.E.; Fritzinger, D.C. Cobra venom factor: Structure, function, biology, research tool, and drug lead. In Handbook of Venoms and Toxins of Reptiles, 2nd ed.; Mackessy, S.P., Ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 323–338. [Google Scholar]
- Gabrili, J.J.M.; Pidde, G.; Magnoli, F.C.; Marques-Porto, R.; Villas-Boas, I.M.; Squaiella-Baptistão, C.C.; Silva-de-França, F.; Burgher, F.; Blomet, J.; Tambourgi, D.V. New Insights into Immunopathology Associated to Bothrops lanceolatus Snake Envenomation: Focus on PLA2 Toxin. Int. J. Mol. Sci. 2023, 24, 9931. [Google Scholar] [CrossRef]
- Hannan, S.; Mortensen, M.; Smart, T.G. Snake neurotoxin α-bungarotoxin is an antagonist at native GABA(A) receptors. Neuropharmacology 2015, 93, 28–40. [Google Scholar] [CrossRef]
- Kudryavtsev, D.S.; Shelukhina, I.V.; Son, L.V.; Ojomoko, L.O.; Kryukova, E.V.; Lyukmanova, E.N.; Zhmak, M.N.; Dolgikh, D.A.; Ivanov, I.A.; Kasheverov, I.E.; et al. Neurotoxins from snake venoms and α-conotoxin ImI inhibit functionally active ionotropic γ-aminobutyric acid (GABA) receptors. J. Biol. Chem. 2015, 290, 22747–22758. [Google Scholar] [CrossRef]
- Xu, L.; Wang, S.; Zhang, L.; Liu, B.; Zheng, S.; Yao, M. Cobratoxin Alleviates Cancer-Induced Bone Pain in Rats via Inhibiting CaMKII Signaling Pathway after Acting on M4 Muscarinic Cholinergic Receptors. ACS Chem. Neurosci. 2022, 13, 1422–1432. [Google Scholar] [CrossRef]
- Vulfius, C.A.; Kasheverov, I.E.; Kryukova, E.V.; Spirova, E.N.; Shelukhina, I.V.; Starkov, V.G.; Andreeva, T.V.; Faure, G.; Zouridakis, M.; Tsetlin, V.I.; et al. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors. PLoS ONE 2017, 12, e0186206. [Google Scholar] [CrossRef]
- Jia, Y.; Vega, C.; Hinojosa, A.; Perales, J. Precise mapping of a snake venom phospholipase A2 interaction with a human nicotinic acetylcholine receptor. Toxicon 2025, 264, 108438. [Google Scholar] [CrossRef] [PubMed]
- Tjong, S.C.; Chen, T.S.; Huang, W.N.; Wu, W.G. Structures of heparin-derived tetrasaccharide bound to cobra cardiotoxins: Heparin binding at a single protein site with diverse side chain interactions. Biochemistry 2007, 46, 9941–9952. [Google Scholar] [CrossRef] [PubMed]
- Osipov, A.V.; Starkov, V.G.; Tsetlin, V.I.; Utkin, Y.N. Cobra Three-Finger Toxins Interact with RNA and DNA: Nucleic Acids as Their Putative Biological Targets. Int. J. Mol. Sci. 2025, 26, 4291. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kini, R.M.; Utkin, Y.N. The Need for and Importance of Thorough and Comprehensive Studies on the Molecular Mechanisms of Action of Animal Toxins, Venoms, and Antivenoms. Int. J. Mol. Sci. 2025, 26, 11007. https://doi.org/10.3390/ijms262211007
Kini RM, Utkin YN. The Need for and Importance of Thorough and Comprehensive Studies on the Molecular Mechanisms of Action of Animal Toxins, Venoms, and Antivenoms. International Journal of Molecular Sciences. 2025; 26(22):11007. https://doi.org/10.3390/ijms262211007
Chicago/Turabian StyleKini, R. Manjunatha, and Yuri N. Utkin. 2025. "The Need for and Importance of Thorough and Comprehensive Studies on the Molecular Mechanisms of Action of Animal Toxins, Venoms, and Antivenoms" International Journal of Molecular Sciences 26, no. 22: 11007. https://doi.org/10.3390/ijms262211007
APA StyleKini, R. M., & Utkin, Y. N. (2025). The Need for and Importance of Thorough and Comprehensive Studies on the Molecular Mechanisms of Action of Animal Toxins, Venoms, and Antivenoms. International Journal of Molecular Sciences, 26(22), 11007. https://doi.org/10.3390/ijms262211007

