Single-Cell Multi-Omics in Type 2 Diabetes Mellitus: Revealing Cellular Heterogeneity and Mechanistic Insights
Abstract
1. Introduction
2. Methods of Literature Search
3. Computational Frameworks for Decoding Cellular Heterogeneity in T2DM
3.1. Single Cell Insights into Cellular Heterogeneity
3.1.1. Functional Variability in Pancreatic Islet Endocrine Cells
3.1.2. Adipose Tissue as a Driver of Metabolic Inflammation
3.1.3. β-Cell Dedifferentiation and Developmental Reprogramming
3.2. Multi-Omics Approaches in T2DM Mechanism Discovery
4. Computational Toolbox Support Multi-Omics Analysis in T2DM
4.1. Preprocessing Strategies Improve Single-Cell Data Quality
4.2. Integration Techniques Enable Cross-Modal Data Fusion
4.2.1. Horizontal Integration Strategy
4.2.2. Vertical Integration Strategy
4.2.3. Diagonal Integration Strategy
4.2.4. Mosaic Integration
4.3. Machine Learning Guides Cell State Identification and Annotation
5. Multi-Omics Insights Clarify the Mechanisms of β-Cell Failure
5.1. Dissection and Regulatory Mechanisms of β-Cell Differentiation Trajectories
5.2. Dysregulation of Gene Regulatory Networks
5.3. Signaling Communication Between Tissues
6. Adipose Inflammation Shapes the Pathophysiology of T2DM
7. Transformation Challenges from Data to Treatment
7.1. Research-Level Heterogeneity and Reproducibility
7.2. Clinical Transformation from Research to Application
7.3. Future Outlook
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| T2DM | Type 2 diabetes mellitus |
| INS | insulin |
| scRNA-seq | single-cell RNA sequencing |
| scATAC-seq | single-cell ATAC-seq |
| HNF1A | Hepatocyte Nuclear Factor 1 Alpha |
| HNF4A | Hepatocyte Nuclear Factor 4 Alpha |
| BBKNN | Batch Balanced K-Nearest Neighbors |
| WNN | Weighted Nearest Neighbor |
| MOFA+ | Multi-Omics Factor Analysis v2 |
| RFX6 | Regulatory Factor X6 |
| TNF | Tumor Necrosis Factor |
| UMAP | Uniform Manifold Approximation and Projection |
| PCA | Principal Component Analysis |
| LIGER | Linked Inference of Genomic Experimental Relationships |
| totalVI | Total Variational Inference |
| t-SNE | t-distributed Stochastic Neighbor Embedding |
| INS-IGF2 | insulin–insulin-like growth factor 2 |
| CHGA | chromogranin A |
| SCG5 | secretogranin V |
| ER | endoplasmic reticulum |
| MAPK | Mitogen-Activated Protein Kinase |
| APCs | Adipose precursor cells |
| CD55 | Decay-Accelerating Factor |
| CD9 | Cluster of Differentiation 9 |
| ICAM1 | Intercellular Adhesion Molecule 1 |
| CD142 | Tissue Factor-positive |
| HbA1c | glycated hemoglobin |
| MDK | midkine |
| PEDF | pigment epithelium-derived factor |
| PROM1 | Prominin-1 |
| NFIB | Nuclear Factor I B |
| S100A11 | S100 Calcium-Binding Protein A11 |
| S100A6 | S100 Calcium-Binding Protein A6 |
| NKX2-2 | NK2 Homeobox 2 |
| G6PC2 | Glucose-6-Phosphatase Catalytic Subunit 2 |
| CAPS | Calcyphosine |
| PRDX2 | Peroxiredoxin 2 |
| CPM | counts per million |
| TPM | transcripts per million |
| CCA | Canonical Correlation Analysis |
| rIOT | regularized Inverse Optimal Transport |
| MDT | Mosaic Data Topology |
| GNNs | graph neural networks |
| CyTOF | Cytometry by Time-of-Flight |
| CIDR | Clustering through Imputation and Dimensionality Reduction |
| UINMF | Unshared Integrative Non-negative Matrix Factorization |
| U-Net | U-shaped Convolutional Neural Network |
| MACS2 | Model-based Analysis of ChIP-Seq v2 |
| DCA | Deep Count Autoencoder |
| MAGIC | Markov Affinity-based Graph Imputation of Cells |
| JNK | c-Jun N-terminal Kinase |
| NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
| HNF | Hepatocyte Nuclear Factor |
| GLIS3 | GLIS Family Zinc Finger 3 |
| RORA | RAR-Related Orphan Receptor Alpha |
| hESCs | human embryonic stem cells |
| SC-β-cells | stem cell-derived β-like cells |
| T | Brachyury |
| SOX17 | SRY-Box Transcription Factor 17 |
| PDX1 | Pancreatic and Duodenal Homeobox 1 |
| NEUROG3 | Neurogenin 3 |
| IAPP | Islet Amyloid Polypeptide |
| PAX4 | Paired Box 4 |
| TCF7L2 | Transcription Factor 7 Like 2 |
| WGCNA | weighted gene co-expression network analysis |
| GCK | Glucokinase |
| ND | non-diabetic |
| INSR | insulin receptor |
| GCG | glucagon |
| GCGR | glucagon receptor |
| SST | somatostatin |
| SSTR | somatostatin receptor |
| C5AR1 | Complement Component 5a Receptor 1 |
| RPS19 | Ribosomal Protein S19 |
| PBMCs | peripheral blood mononuclear cells |
| CD30 | Cluster of Differentiation 30 |
| CD48 | Cluster of Differentiation 48 |
| TGF-β | Transforming Growth Factor Beta |
| IFN-γ | Interferon Gamma |
| snRNA-seq | single-nucleus RNA sequencing |
| IMAMs | metabolically activated macrophages |
| ATF4 | Activating Transcription Factor 4 |
| PDIA3 | Protein Disulfide Isomerase Family A Member 3 |
| ACSL4 | Acyl-CoA Synthetase Long Chain Family Member 4 |
| CCL2 | C-C Motif Chemokine Ligand 2 |
| ATMs | adipose tissue macrophages |
| VAT | visceral fat |
| SAT | subcutaneous fat |
| SVF | stromal vascular fraction |
| UCP1 | Uncoupling Protein 1 |
| HPAP | Human Pancreas Analysis Program |
| BMI | Body Mass Index |
| XAI | Explainable Artificial Intelligence |
References
- Talchai, C.; Xuan, S.; Lin, H.V.; Sussel, L.; Accili, D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 2012, 150, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Schipper, H.S.; Prakken, B.; Kalkhoven, E.; Boes, M. Adipose tissue-resident immune cells: Key players in immunometabolism. Trends Endocrinol. Metab. TEM 2012, 23, 407–415. [Google Scholar] [CrossRef]
- Li, P.; Liu, S.; Lu, M.; Bandyopadhyay, G.; Oh, D.; Imamura, T.; Johnson, A.M.F.; Sears, D.; Shen, Z.; Cui, B.; et al. Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell 2016, 167, 973–984.e12. [Google Scholar] [CrossRef] [PubMed]
- Rosen, E.D.; Spiegelman, B.M. What We Talk About When We Talk About Fat. Cell 2014, 156, 20–44. [Google Scholar] [CrossRef]
- Maestas, M.M.; Ishahak, M.; Augsornworawat, P.; Veronese-Paniagua, D.A.; Maxwell, K.G.; Velazco-Cruz, L.; Marquez, E.; Sun, J.; Shunkarova, M.; Gale, S.E.; et al. Identification of unique cell type responses in pancreatic islets to stress. Nat. Commun. 2024, 15, 5567. [Google Scholar] [CrossRef]
- Weng, C.; Gu, A.; Zhang, S.; Lu, L.; Ke, L.; Gao, P.; Liu, X.; Wang, Y.; Hu, P.; Plummer, D.; et al. Single cell multiomic analysis reveals diabetes-associated β-cell heterogeneity driven by HNF1A. Nat. Commun. 2023, 14, 5400. [Google Scholar] [CrossRef] [PubMed]
- Kharchenko, P.V. The triumphs and limitations of computational methods for scRNA-seq. Nat. Methods 2021, 18, 723–732, Erratum in Nat. Methods 2021, 18, 835. https://doi.org/10.1038/s41592-021-01223-2. [Google Scholar] [CrossRef]
- Li, M.; Peng, W.; Zhu, S.; Chen, X.; Li, L.; Li, X.; Yuan, C. The Role of Glycolipids and their Toxicity in the Context of Nanomaterials and Nanoparticles: A Review of the Literature. Curr. Drug Targets 2025, 26, 571–585. [Google Scholar] [CrossRef]
- Jin, S.; Plikus, M.V.; Nie, Q. CellChat for systematic analysis of cell-cell communication from single-cell transcriptomics. Nat. Protoc. 2025, 20, 180–219. [Google Scholar] [CrossRef]
- Efremova, M.; Vento-Tormo, M.; Teichmann, S.A.; Vento-Tormo, R. CellPhoneDB: Inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 2020, 15, 1484–1506. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, Y.; Miao, R.; Zhang, Y.; Yin, R.; Guan, H.; Huang, X.; Tian, J. Single-cell sequencing: A promising approach for uncovering the characteristic of pancreatic islet cells in type 2 diabetes. Biomed. Pharmacother. 2024, 173, 116292. [Google Scholar] [CrossRef]
- Leenders, F.; de Koning, E.J.P.; Carlotti, F. Pancreatic β-Cell Identity Change through the Lens of Single-Cell Omics Research. Int. J. Mol. Sci. 2024, 25, 4720. [Google Scholar] [CrossRef] [PubMed]
- Chiou, J.; Zeng, C.; Cheng, Z.; Han, J.Y.; Schlichting, M.; Miller, M.; Mendez, R.; Huang, S.; Wang, J.; Sui, Y.; et al. Single cell chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory programs of diabetes risk. Nat. Genet. 2021, 53, 455–466. [Google Scholar] [CrossRef]
- Xin, Y.; Dominguez Gutierrez, G.; Okamoto, H.; Kim, J.; Lee, A.-H.; Adler, C.; Ni, M.; Yancopoulos, G.D.; Murphy, A.J.; Gromada, J. Pseudotime Ordering of Single Human β-Cells Reveals States of Insulin Production and Unfolded Protein Response. Diabetes 2018, 67, 1783–1794. [Google Scholar] [CrossRef]
- Michaud, A.; Tordjman, J.; Pelletier, M.; Liu, Y.; Laforest, S.; Noël, S.; Le Naour, G.; Bouchard, C.; Clément, K.; Tchernof, A. Relevance of omental pericellular adipose tissue collagen in the pathophysiology of human abdominal obesity and related cardiometabolic risk. Int. J. Obes. 2016, 40, 1823–1831. [Google Scholar] [CrossRef] [PubMed]
- Nahmgoong, H.; Jeon, Y.G.; Park, E.S.; Choi, Y.H.; Han, S.M.; Park, J.; Ji, Y.; Sohn, J.H.; Han, J.S.; Kim, Y.Y.; et al. Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics. Cell Metab. 2022, 34, 458–472.e456. [Google Scholar] [CrossRef]
- Merrick, D.; Sakers, A.; Irgebay, Z.; Okada, C.; Calvert, C.; Morley, M.P.; Percec, I.; Seale, P. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 2019, 364, eaav2501. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Du, Y.; Huang, S.; Sun, X.; Ye, Y.; Sun, H.; Chu, X.; Shan, X.; Yuan, Y.; Shen, L.; et al. Single-cell analysis reveals a subpopulation of adipose progenitor cells that impairs glucose homeostasis. Nat. Commun. 2024, 15, 4827. [Google Scholar] [CrossRef]
- Khin, P.-P.; Lee, J.-H.; Jun, H.-S. A Brief Review of the Mechanisms of β-Cell Dedifferentiation in Type 2 Diabetes. Nutrients 2021, 13, 1593. [Google Scholar] [CrossRef]
- Moin, A.S.M.; Butler, A.E. Alterations in Beta Cell Identity in Type 1 and Type 2 Diabetes. Curr. Diabetes Rep. 2019, 19, 83. [Google Scholar] [CrossRef]
- Cinti, F.; Bouchi, R.; Kim-Muller, J.Y.; Ohmura, Y.; Sandoval, P.R.; Masini, M.; Marselli, L.; Suleiman, M.; Ratner, L.E.; Marchetti, P.; et al. Evidence of β-Cell Dedifferentiation in Human Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Avrahami, D.; Wang, Y.J.; Schug, J.; Feleke, E.; Gao, L.; Liu, C.; Naji, A.; Glaser, B.; Kaestner, K.H. Single-cell transcriptomics of human islet ontogeny defines the molecular basis of β-cell dedifferentiation in T2D. Mol. Metab. 2020, 42, 101057. [Google Scholar] [CrossRef] [PubMed]
- Stancill, J.S.; Cartailler, J.-P.; Clayton, H.W.; O’Connor, J.T.; Dickerson, M.T.; Dadi, P.K.; Osipovich, A.B.; Jacobson, D.A.; Magnuson, M.A. Chronic β-Cell Depolarization Impairs β-Cell Identity by Disrupting a Network of Ca2+-Regulated Genes. Diabetes 2017, 66, 2175–2187. [Google Scholar] [CrossRef]
- Huang, Y.; Cai, L.; Liu, X.; Wu, Y.; Xiang, Q.; Yu, R. Exploring biomarkers and transcriptional factors in type 2 diabetes by comprehensive bioinformatics analysis on RNA-Seq and scRNA-Seq data. Ann. Transl. Med. 2022, 10, 1017. [Google Scholar] [CrossRef]
- Lee, J.; Hyeon, D.Y.; Hwang, D. Single-cell multiomics: Technologies and data analysis methods. Exp. Mol. Med. 2020, 52, 1428–1442. [Google Scholar] [CrossRef]
- Ternier, G.; Shahzad, K.; Edirisinghe, O.; Okoto, P.; Alraawi, Z.; Sonnaila, S.; Phan, P.; Adams, P.D.; Thallapuranam, S.K. Fibroblast Growth Factors: Roles and Emerging Therapeutic Applications. Curr. Drug Targets 2025, 26, 551–570. [Google Scholar] [CrossRef]
- Gondane, A.; Itkonen, H.M. Revealing the History and Mystery of RNA-Seq. Curr. Issues Mol. Biol. 2023, 45, 1860–1874. [Google Scholar] [CrossRef]
- Hwang, B.; Lee, J.H.; Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 2018, 50, 96. [Google Scholar] [CrossRef]
- Li, H.; Zou, L.; Long, Z.; Zhan, J. Immunometabolic alterations in type 2 diabetes mellitus revealed by single-cell RNA sequencing: Insights into subtypes and therapeutic targets. Front. Immunol. 2024, 15, 1537909. [Google Scholar] [CrossRef]
- Cao, J.; Spielmann, M.; Qiu, X.; Huang, X.; Ibrahim, D.M.; Hill, A.J.; Zhang, F.; Mundlos, S.; Christiansen, L.; Steemers, F.J.; et al. The single cell transcriptional landscape of mammalian organogenesis. Nature 2019, 566, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Street, K.; Risso, D.; Fletcher, R.B.; Das, D.; Ngai, J.; Yosef, N.; Purdom, E.; Dudoit, S. Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom. 2018, 19, 477. [Google Scholar] [CrossRef]
- Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M.; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive integration of single-cell data. Cell 2019, 177, 1888–1902.e21. [Google Scholar] [CrossRef]
- Berest, I.; Tangherloni, A. Integration of scATAC-Seq with scRNA-Seq Data. Methods Mol. Biol. 2023, 2584, 293–310. [Google Scholar] [CrossRef]
- Kim, D.; Tran, A.; Kim, H.J.; Lin, Y.; Yang, J.Y.H.; Yang, P. Gene regulatory network reconstruction: Harnessing the power of single-cell multi-omic data. npj Syst. Biol. Appl. 2023, 9, 51. [Google Scholar] [CrossRef]
- Granja, J.M.; Corces, M.R.; Pierce, S.E.; Bagdatli, S.T.; Choudhry, H.; Chang, H.Y.; Greenleaf, W.J. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 2021, 53, 403–411. [Google Scholar] [CrossRef]
- Stuart, T.; Srivastava, A.; Madad, S.; Lareau, C.A.; Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 2021, 18, 1333–1341, Erratum in Nat. Methods 2022, 19, 257. https://doi.org/10.1038/s41592-022-01393-7. [Google Scholar] [CrossRef]
- Bennett, H.M.; Stephenson, W.; Rose, C.M.; Darmanis, S. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat. Methods 2023, 20, 363–374. [Google Scholar] [CrossRef]
- Ngo, D.; Benson, M.D.; Long, J.Z.; Chen, Z.-Z.; Wang, R.; Nath, A.K.; Keyes, M.J.; Shen, D.; Sinha, S.; Kuhn, E.; et al. Proteomic profiling reveals biomarkers and pathways in type 2 diabetes risk. JCI Insight 2021, 6, e144392. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, A.S. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology. Proteomes 2016, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Iyer, A.; Hamers, A.A.J.; Pillai, A.B. CyTOF® for the Masses. Front. Immunol. 2022, 13, 815828. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-W.; Martin, J.; Shi, X.; Tyznik, A.J. Key Considerations on CITE-Seq for Single-Cell Multiomics. Proteomics 2025, e202400011. [Google Scholar] [CrossRef] [PubMed]
- Vistain, L.F.; Tay, S. Single-Cell Proteomics. Trends Biochem. Sci. 2021, 46, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Stegle, O.; Teichmann, S.A.; Marioni, J.C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 2015, 16, 133–145. [Google Scholar] [CrossRef]
- Chhangawala, S.; Rudy, G.; Mason, C.E.; Rosenfeld, J.A. The impact of read length on quantification of differentially expressed genes and splice junction detection. Genome Biol. 2015, 16, 131. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Lun, A.T.L.; McCarthy, D.J.; Marioni, J.C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Research 2016, 5, 2122. [Google Scholar] [CrossRef]
- Hafemeister, C.; Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019, 20, 296. [Google Scholar] [CrossRef]
- Sokolowski, E.K.; Kursawe, R.; Selvam, V.; Bhuiyan, R.M.; Thibodeau, A.; Zhao, C.; Spracklen, C.N.; Ucar, D.; Stitzel, M.L. Multi-omic human pancreatic islet endoplasmic reticulum and cytokine stress response mapping provides type 2 diabetes genetic insights. Cell Metab. 2024, 36, 2468–2488.e7. [Google Scholar] [CrossRef]
- Lin, P.; Troup, M.; Ho, J.W.K. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 2017, 18, 59. [Google Scholar] [CrossRef]
- Eraslan, G.; Simon, L.M.; Mircea, M.; Mueller, N.S.; Theis, F.J. Single-cell RNA-seq denoising using a deep count autoencoder. Nat. Commun. 2019, 10, 390. [Google Scholar] [CrossRef]
- Dijk, D.; Sharma, R.; Nainys, J.; Yim, K.; Kathail, P.; Carr, A.; Burdziak, C.; Moon, K.R.; Chaffer, C.L.; Pattabiraman, D.; et al. Recovering gene interactions from single-cell data using data diffusion. Cell 2018, 174, 716–729.e27. [Google Scholar] [CrossRef]
- Goh, W.W.B.; Yong, C.H.; Wong, L. Are batch effects still relevant in the age of big data? Trends Biotechnol. 2022, 40, 1029–1040. [Google Scholar] [CrossRef]
- Yu, Y.; Mai, Y.; Zheng, Y.; Shi, L. Assessing and mitigating batch effects in large-scale omics studies. Genome Biol. 2024, 25, 254. [Google Scholar] [CrossRef]
- Tran, H.T.N.; Ang, K.S.; Chevrier, M.; Zhang, X.; Lee, N.Y.S.; Goh, M.; Chen, J. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 2020, 21, 12. [Google Scholar] [CrossRef]
- He, Z.; Hu, S.; Chen, Y.; An, S.; Zhou, J.; Liu, R.; Shi, J.; Wang, J.; Dong, G.; Shi, J.; et al. Mosaic integration and knowledge transfer of single-cell multimodal data with MIDAS. Nat. Biotechnol. 2024, 42, 1594–1605. [Google Scholar] [CrossRef] [PubMed]
- Haghverdi, L.; Lun, A.T.L.; Morgan, M.D.; Marioni, J.C. Batch effects in single-cell RNA sequencing data are corrected by matching mutual nearest neighbours. Nat. Biotechnol. 2018, 36, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Korsunsky, I.; Millard, N.; Fan, J.; Slowikowski, K.; Zhang, F.; Wei, K.; Baglaenko, Y.; Brenner, M.; Loh, P.-r.; Raychaudhuri, S. Fast, sensitive, and accurate integration of single cell data with Harmony. Nat. Methods 2019, 16, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Chazarra-Gil, R.; van Dongen, S.; Kiselev, V.Y.; Hemberg, M. Flexible comparison of batch correction methods for single-cell RNA-se qusing BatchBench. Nucleic Acids Res. 2021, 49, e42. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Stuart, T.; Kowalski, M.H.; Choudhary, S.; Hoffman, P.; Hartman, A.; Srivastava, A.; Molla, G.; Madad, S.; Fernandez-Granda, C.; et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 2024, 42, 293–304. [Google Scholar] [CrossRef]
- Heumos, L.; Schaar, A.C.; Lance, C.; Litinetskaya, A.; Drost, F.; Zappia, L.; Lücken, M.D.; Strobl, D.C.; Henao, J.; Curion, F.; et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 2023, 42, 293–304. [Google Scholar] [CrossRef]
- Hrovatin, K.; Bastidas-Ponce, A.; Bakhti, M.; Zappia, L.; Büttner, M.; Salinno, C.; Sterr, M.; Böttcher, A.; Migliorini, A.; Lickert, H.; et al. Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas. Nat. Metab. 2023, 5, 1615–1637. [Google Scholar] [CrossRef]
- Ding, B.; Zheng, L.; Zhu, Y.; Li, N.; Jia, H.; Ai, R.; Wildberg, A.; Wang, W. Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics 2015, 31, 2225–2227. [Google Scholar] [CrossRef]
- Vallejos, C.A.; Marioni, J.C.; Richardson, S. BASiCS: Bayesian Analysis of Single-Cell Sequencing Data. PLoS Comput. Biol. 2015, 11, e1004333. [Google Scholar] [CrossRef] [PubMed]
- Bacher, R.; Chu, L.-F.; Leng, N.; Gasch, A.P.; Thomson, J.A.; Stewart, R.M.; Newton, M.; Kendziorski, C. SCnorm: Robust normalization of single-cell RNA-seq data. Nat. Methods 2017, 14, 584–586. [Google Scholar] [CrossRef]
- Townes, F.W.; Irizarry, R.A. Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers. Genome Biol. 2020, 21, 160. [Google Scholar] [CrossRef]
- Pierson, E.; Yau, C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015, 16, 241. [Google Scholar] [CrossRef]
- Arisdakessian, C.; Poirion, O.; Yunits, B.; Zhu, X.; Garmire, L.X. DeepImpute: An accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data. Genome Biol. 2019, 20, 211. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhao, H.; Xu, Y.; Wang, Y.; Shang, X.; Peng, J.; Xiao, B. scMultiGAN: Cell-specific imputation for single-cell transcriptomes with multiple deep generative adversarial networks. Brief. Bioinform. 2023, 24, bbad384. [Google Scholar] [CrossRef] [PubMed]
- Polański, K.; Young, M.D.; Miao, Z.; Meyer, K.B.; Teichmann, S.A.; Park, J.-E. BBKNN: Fast batch alignment of single cell transcriptomes. Bioinformatics 2019, 36, 964–965. [Google Scholar] [CrossRef] [PubMed]
- Hie, B.; Bryson, B.; Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 2019, 37, 685–691. [Google Scholar] [CrossRef]
- Li, X.; Wang, K.; Lyu, Y.; Pan, H.; Zhang, J.; Stambolian, D.; Susztak, K.; Reilly, M.P.; Hu, G.; Li, M. Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nat. Commun. 2020, 11, 2338. [Google Scholar] [CrossRef]
- Yu, X.; Xu, X.; Zhang, J.; Li, X. Batch alignment of single-cell transcriptomics data using deep metric learning. Nat. Commun. 2023, 14, 960. [Google Scholar] [CrossRef]
- Luecken, M.D.; Büttner, M.; Chaichoompu, K.; Danese, A.; Interlandi, M.; Mueller, M.F.; Strobl, D.C.; Zappia, L.; Dugas, M.; Colomé-Tatché, M.; et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 2022, 19, 41–50. [Google Scholar] [CrossRef]
- Argelaguet, R.; Cuomo, A.S.E.; Stegle, O.; Marioni, J.C. Computational principles and challenges in single-cell data integration. Nat. Biotechnol. 2021, 39, 1202–1215. [Google Scholar] [CrossRef]
- Sun, F.; Li, H.; Sun, D.; Fu, S.; Gu, L.; Shao, X.; Wang, Q.; Dong, X.; Duan, B.; Xing, F.; et al. Single-cell omics: Experimental workflow, data analyses and applications. Sci. China Life Sci. 2024, 68, 5–102. [Google Scholar] [CrossRef] [PubMed]
- Stuart, T.; Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 2019, 20, 257–272. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M.; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; et al. Integrated analysis of multimodal single-cell data. Cell 2021, 184, 3573–3587.e29. [Google Scholar] [CrossRef] [PubMed]
- Gayoso, A.; Steier, Z.; Lopez, R.; Regier, J.; Nazor, K.L.; Streets, A.; Yosef, N. Joint probabilistic modeling of single-cell multi-omic data with total VI. Nat. Methods 2021, 18, 272–282. [Google Scholar] [CrossRef]
- Samaran, J.; Peyré, G.; Cantini, L. scConfluence: Single-cell diagonal integration with regularized Inverse Optimal Transport on weakly connected features. Nat. Commun. 2024, 15, 7762. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhu, B.; Huang, S.; Hickey, J.W.; Lin, K.Z.; Snyder, M.; Greenleaf, W.J.; Nolan, G.P.; Zhang, N.R.; Ma, Z. Integration of spatial and single-cell data across modalities with weakly linked features. Nat. Biotechnol. 2024, 42, 1096–1106. [Google Scholar] [CrossRef]
- Du, J.-H.; Cai, Z.; Roeder, K. Robust probabilistic modeling for single-cell multimodal mosaic integration and imputation via scVAEIT. Proc. Natl. Acad. Sci. USA 2022, 119, e2214414119. [Google Scholar] [CrossRef]
- Wang, J.; Agarwal, D.; Huang, M.; Hu, G.; Zhou, Z.; Ye, C.; Zhang, N.R. Data Denoising with transfer learning in single-cell transcriptomics. Nat. Methods 2019, 16, 875–878. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, H.; Mariappan, R.; Chen, X.; Chen, X.; Jain, M.S.; Efremova, M.; Teichmann, S.A.; Rajan, V.; Zhang, X. scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection. Nat. Commun. 2023, 14, 384. [Google Scholar] [CrossRef]
- Kriebel, A.R.; Welch, J.D. UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization. Nat. Commun. 2022, 13, 780. [Google Scholar] [CrossRef]
- Maestas, M.M.; Bui, M.H.; Millman, J.R. Recent progress in modeling and treating diabetes using stem cell-derived islets. Stem Cells Transl. Med. 2024, 13, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Ghazanfar, S.; Guibentif, C.; Marioni, J.C. Stabilized mosaic single-cell data integration using unshared features. Nat. Biotechnol. 2024, 42, 284–292. [Google Scholar] [CrossRef]
- Sharma, A.; Lysenko, A.; Jia, S.; Boroevich, K.A.; Tsunoda, T. Advances in AI and machine learning for predictive medicine. J. Hum. Genet. 2024, 69, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Goecks, J.; Jalili, V.; Heiser, L.M.; Gray, J.W. How Machine Learning Will Transform Biomedicine. Cell 2020, 181, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Mirza, B.; Wang, W.; Wang, J.; Choi, H.; Chung, N.C.; Ping, P. Machine Learning and Integrative Analysis of Biomedical Big Data. Genes 2019, 10, 87. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Rai, V.; Quang, D.X.; Erdos, M.R.; Cusanovich, D.A.; Daza, R.M.; Narisu, N.; Zou, L.S.; Didion, J.P.; Guan, Y.; Shendure, J.; et al. Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures. Mol. Metab. 2019, 32, 109–121. [Google Scholar] [CrossRef]
- Xi, X.; Li, J.; Jia, J.; Meng, Q.; Li, C.; Wang, X.; Wei, L.; Zhang, X. A mechanism-informed deep neural network enables prioritization of regulators that drive cell state transitions. Nat. Commun. 2025, 16, 1284. [Google Scholar] [CrossRef]
- Wang, G.; Chiou, J.; Zeng, C.; Miller, M.; Matta, I.; Han, J.Y.; Kadakia, N.; Okino, M.-L.; Beebe, E.; Mallick, M.; et al. Integrating genetics with single-cell multiomic measurements across disease states identifies mechanisms of beta cell dysfunction in type 2 diabetes. Nat. Genet. 2023, 55, 984–994. [Google Scholar] [CrossRef]
- Asada, K.; Takasawa, K.; Machino, H.; Takahashi, S.; Shinkai, N.; Bolatkan, A.; Kobayashi, K.; Komatsu, M.; Kaneko, S.; Okamoto, K.; et al. Single-Cell Analysis Using Machine Learning Techniques and Its Application to Medical Research. Biomedicines 2021, 9, 1513. [Google Scholar] [CrossRef]
- Pagliuca, F.W.; Millman, J.R.; Gürtler, M.; Segel, M.; Van Dervort, A.; Ryu, J.H.; Peterson, Q.P.; Greiner, D.; Melton, D.A. Generation of Functional Human Pancreatic β Cells In Vitro. Cell 2014, 159, 428–439. [Google Scholar] [CrossRef]
- Goode, R.A.; Hum, J.M.; Kalwat, M.A. Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement. Endocrinology 2022, 164, bqac193. [Google Scholar] [CrossRef]
- Alves, A.E.F.; Formiga, A.L.D.; Uchoa, A.F.C.; Cardoso, A.; Rodrigues, E.; Pereira, G.M.A.; Leite, J.; da Silva, L.F.A.; de Sousa, N.F.; Sobral, M.D.S.; et al. Targets Involved in the Pharmacology of Bothrops Snakebite: Statu Quo and Future Perspectives. Curr. Drug Targets 2025, 26, 454–469. [Google Scholar] [CrossRef]
- Weng, C.; Xi, J.; Li, H.; Cui, J.; Gu, A.; Lai, S.; Leskov, K.; Ke, L.; Jin, F.; Li, Y. Single-cell lineage analysis reveals extensive multimodal transcriptional control during directed beta-cell differentiation. Nat. Metab. 2020, 2, 1443–1458. [Google Scholar] [CrossRef] [PubMed]
- Aigha, I.I.; Abdelalim, E.M. NKX6.1 transcription factor: A crucial regulator of pancreatic β cell development, identity, and proliferation. Stem Cell Res. Ther. 2020, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- McGrath, P.S.; Watson, C.L.; Ingram, C.; Helmrath, M.A.; Wells, J.M. The Basic Helix-Loop-Helix Transcription Factor NEUROG3 Is Required for Development of the Human Endocrine Pancreas. Diabetes 2015, 64, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Rukstalis, J.M.; Habener, J.F. Neurogenin3: A master regulator of pancreatic islet differentiation an dregeneration. Islets 2009, 1, 177–184. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, G.; Nguyen-Ngoc, K.-V.; Kim, D.; Miller, M.; Goss, G.; Kovsky, J.; Harrington, A.R.; Saunders, D.; Hopkirk, A.L.; et al. Understanding cell fate acquisition in stem cell-derived pancreatic is lets using single-cell multiome-inferred regulomes. Dev. Cell 2023, 58, 727–743.e711. [Google Scholar] [CrossRef]
- Xu, L.; Xu, C.; Zhou, S.; Liu, X.; Wang, J.; Liu, X.; Qian, S.; Xin, Y.; Gao, Y.; Zhu, Y.; et al. PAX4 promotes PDX1-induced differentiation of mesenchymal stem cells into insulin-secreting cells. Am. J. Transl. Res. 2017, 9, 874–886. [Google Scholar]
- Hayes, H.L.; Zhang, L.; Becker, T.C.; Haldeman, J.M.; Stephens, S.B.; Arlotto, M.; Moss, L.G.; Newgard, C.B.; Hohmeier, H.E. A Pdx-1-Regulated Soluble Factor Activates Rat and Human Islet Cell Proliferation. Mol. Cell. Biol. 2016, 36, 2918–2930. [Google Scholar] [CrossRef]
- Helman, A.; Cangelosi, A.L.; Davis, J.C.; Pham, Q.; Rothman, A.; Faust, A.L.; Straubhaar, J.R.; Sabatini, D.M.; Melton, D.A. A nutrient sensing transition at birth triggers glucose-responsive ins ulin secretion. Cell Metab. 2020, 31, 1004–1016.e5. [Google Scholar] [CrossRef]
- Stolovich-Rain, M.; Enk, J.; Vikesa, J.; Nielsen, F.C.; Saada, A.; Glaser, B.; Dor, Y. Weaning triggers a maturation step of pancreatic β cells. Dev. Cell 2015, 32, 535–545. [Google Scholar] [CrossRef]
- Alvarez-Dominguez, J.R.; Donaghey, J.; Rasouli, N.; Kenty, J.H.R.; Helman, A.; Charlton, J.; Straubhaar, J.R.; Meissner, A.; Melton, D.A. Circadian Entrainment Triggers Maturation of Human In Vitro Islets. Cell Stem Cell 2020, 26, 108–122.e110. [Google Scholar] [CrossRef]
- Balboa, D.; Barsby, T.; Lithovius, V.; Saarimäki-Vire, J.; Omar-Hmeadi, M.; Dyachok, O.; Montaser, H.; Lund, P.-E.; Yang, M.; Ibrahim, H.; et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat. Biotechnol. 2022, 40, 1042–1055. [Google Scholar] [CrossRef]
- Augsornworawat, P.; Maxwell, K.G.; Velazco-Cruz, L.; Millman, J.R. Single-Cell Transcriptome Profiling Reveals β Cell Maturation in Stem Cell-Derived Islets after Transplantation. Cell Rep. 2020, 32, 108067. [Google Scholar] [CrossRef]
- Hiyoshi, H.; Sakuma, K.; Tsubooka-Yamazoe, N.; Asano, S.; Mochida, T.; Yamaura, J.; Konagaya, S.; Fujii, R.; Matsumoto, H.; Ito, R.; et al. Characterization and reduction of non-endocrine cells accompanying islet-like endocrine cells differentiated from human iPSC. Sci. Rep. 2022, 12, 4740. [Google Scholar] [CrossRef]
- Walker, J.T.; Saunders, D.C.; Rai, V.; Chen, H.-H.; Orchard, P.; Dai, C.; Pettway, Y.D.; Hopkirk, A.L.; Reihsmann, C.V.; Tao, Y.; et al. Genetic risk converges on regulatory networks mediating early type 2 diabetes. Nature 2023, 624, 621–629. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Yu, Z.; Qiu, X.; Jiang, R.; Li, W. Uncovering the gene regulatory network of type 2 diabetes through multi-omic data integration. J. Transl. Med. 2022, 20, 604. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Song, Y.; Zhu, Z.; Huang, X.; Fan, J.; Qiao, J.; Mao, F. Cell-cell communication: New insights and clinical implications. Signal Transduct. Target. Ther. 2024, 9, 196. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.; Menegaz, D.; Caicedo, A. Deciphering the Complex Communication Networks That Orchestrate Pancreatic Islet Function. Diabetes 2021, 70, 17–26. [Google Scholar] [CrossRef]
- Hartig, S.M.; Cox, A.R. Paracrine signaling in islet function and survival. J. Mol. Med. 2020, 98, 451–467. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Anker, C.C.B.; Christiansen, C.B.; Moede, T.; Berggren, P.-O.; Hermansen, K.; Gregersen, S.; Jeppesen, P.B. Pancreatic β Cells Inhibit Glucagon Secretion from α Cells: An In Vitro Demonstration of α-β Cell Interaction. Nutrients 2021, 13, 2281. [Google Scholar] [CrossRef]
- Briant, L.J.B.; Reinbothe, T.M.; Spiliotis, I.; Miranda, C.; Rodriguez, B.; Rorsman, P. δ-cells and β-cells are electrically coupled and regulate α-cell activity via somatostatin. J. Physiol. 2018, 596, 197–215. [Google Scholar] [CrossRef]
- Reissaus, C.A.; Piston, D.W. Reestablishment of Glucose Inhibition of Glucagon Secretion in Small P seudoislets. Diabetes 2017, 66, 960–969. [Google Scholar] [CrossRef]
- Ng, X.W.; Chung, Y.H.; Piston, D.W. Intercellular Communication in the Islet of Langerhans in Health and D isease. Compr. Physiol. 2021, 11, 2191–2225. [Google Scholar] [CrossRef]
- Bosi, E.; Marselli, L.; Suleiman, M.; Tesi, M.; De Luca, C.; Del Guerra, S.; Cnop, M.; Eizirik, D.L.; Marchetti, P. A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes. NAR Genom. Bioinform. 2022, 4, lqac084. [Google Scholar] [CrossRef]
- Atanes, P.; Ruz-Maldonado, I.; Pingitore, A.; Hawkes, R.; Liu, B.; Zhao, M.; Huang, G.C.; Persaud, S.J.; Amisten, S. C3aR and C5aR1 act as key regulators of human and mouse β-cell function. Cell. Mol. Life Sci. CMLS 2017, 75, 715–726. [Google Scholar] [CrossRef]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2019, 10, 1607. [Google Scholar] [CrossRef] [PubMed]
- Blériot, C.; Chakarov, S.; Ginhoux, F. Determinants of Resident Tissue Macrophage Identity and Function. Immunity 2020, 52, 957–970. [Google Scholar] [CrossRef] [PubMed]
- Martinez, F.O.; Gordon, S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 2014, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Meng, Y.; He, S.; Tan, X.; Zhang, Y.; Zhang, X.; Wang, L.; Zheng, W. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells 2022, 11, 3001. [Google Scholar] [CrossRef]
- Luo, J.-H.; Wang, F.-X.; Zhao, J.-W.; Yang, C.-L.; Rong, S.-J.; Lu, W.-Y.; Chen, Q.-J.; Zhou, Q.; Xiao, J.; Wang, Y.-N.; et al. PDIA3 defines a novel subset of adipose macrophages to exacerbate the development of obesity and metabolic disorders. Cell Metab. 2024, 36, 2262–2280.e5. [Google Scholar] [CrossRef]
- Porter, S.A.; Massaro, J.M.; Hoffmann, U.; Vasan, R.S.; O’Donnel, C.J.; Fox, C.S. Abdominal subcutaneous adipose tissue: A protective fat depot? Diabetes Care 2009, 32, 1068–1075. [Google Scholar] [CrossRef]
- Tchernof, A.; Després, J.-P. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef]
- Vijay, J.; Gauthier, M.-F.; Biswell, R.L.; Louiselle, D.A.; Johnston, J.J.; Cheung, W.A.; Belden, B.; Pramatarova, A.; Biertho, L.; Gibson, M.; et al. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat. Metab. 2020, 2, 97–109. [Google Scholar] [CrossRef]
- Wu, J.; Boström, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A.-H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G.; et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012, 150, 366–376. [Google Scholar] [CrossRef]
- Singer, M.; Wang, C.; Cong, L.; Marjanovic, N.D.; Kowalczyk, M.S.; Zhang, H.; Nyman, J.; Sakuishi, K.; Kurtulus, S.; Gennert, D.; et al. A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells. Cell 2016, 166, 1500–1511.e9. [Google Scholar] [CrossRef]
- Wu, H.; Ghosh, S.; Perrard, X.D.; Feng, L.; Garcia, G.E.; Perrard, J.L.; Sweeney, J.F.; Peterson, L.E.; Chan, L.; Smith, C.W.; et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 2007, 115, 1029–1038. [Google Scholar] [CrossRef]
- Coats, B.R.; Schoenfelt, K.Q.; Barbosa-Lorenzi, V.C.; Peris, E.; Cui, C.; Hoffman, A.; Zhou, G.; Fernandez, S.; Zhai, L.; Hall, B.A.; et al. Metabolically activated adipose tissue macrophages perform detrimental and beneficial functions during diet-induced obesity. Cell Rep. 2017, 20, 3149–3161. [Google Scholar] [CrossRef]
- Gloyn, A.L.; Ibberson, M.; Marchetti, P.; Powers, A.C.; Rorsman, P.; Sander, M.; Solimena, M. Every islet matters: Improving the impact of human islet research. Nat. Metab. 2022, 4, 970–977, Erratum in Nat. Metab. 2024, 6, 1415. https://doi.org/10.1038/s42255-024-01091-y. [Google Scholar] [CrossRef]
- Kosaji, N.; Zehra, B.; Nassir, N.; Tambi, R.; Orszulak, A.R.; Lim, E.T.; Berdiev, B.K.; Woodbury-Smith, M.; Uddin, M. Lack of ethnic diversity in single-cell transcriptomics hinders cell type detection and precision medicine inclusivity. Medicine 2023, 4, 217–219. [Google Scholar] [CrossRef]
- Dahmer, M.K.; Cornell, T.; Quasney, M.W. Genetic and epigenetic factors in the regulation of the immune response. Curr. Opin. Pediatr. 2016, 28, 281–286. [Google Scholar] [CrossRef]
- Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 2018, 36, 411–420. [Google Scholar] [CrossRef]
- Zhang, Z.; Mathew, D.; Lim, T.L.; Mason, K.; Martinez, C.M.; Huang, S.; Wherry, E.J.; Susztak, K.; Minn, A.J.; Ma, Z.; et al. Recovery of biological signals lost in single-cell batch integration with CellANOVA. Nat. Biotechnol. 2024; epub ahead of printing. [Google Scholar] [CrossRef]
- Hu, X.; Li, H.; Chen, M.; Qian, J.; Jiang, H. Reference-informed evaluation of batch correction for single-cell omics data with overcorrection awareness. Commun. Biol. 2025, 8, 521. [Google Scholar] [CrossRef] [PubMed]
- Forcato, M.; Romano, O.; Bicciato, S. Computational methods for the integrative analysis of single-cell data. Brief. Bioinform. 2021, 22, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ma, X.; Yuan, L.; Sun, Z.; Wang, P. Evaluating imputation methods for single-cell RNA-seq data. BMC Bioinform. 2023, 24, 302. [Google Scholar] [CrossRef]
- Rubin de Celis, M.F.; Bonner-Weir, S. Improving stem cell-derived pancreatic islets using single-cell multi-inferred regulomes. Dev. Cell 2023, 58, 725–726. [Google Scholar] [CrossRef]
- Wu, X.; Yang, X.; Dai, Y.; Zhao, Z.; Zhu, J.; Guo, H.; Yang, R. Single-cell sequencing to multi-omics: Technologies and applications. Biomark. Res. 2024, 12, 110. [Google Scholar] [CrossRef]
- Boakye Serebour, T.; Cribbs, A.P.; Baldwin, M.J.; Masimirembwa, C.; Chikwambi, Z.; Kerasidou, A.; Snelling, S.J.B. Overcoming barriers to single-cell RNA sequencing adoption in low- and middle-income countries. Eur. J. Hum. Genet. EJHG 2024, 32, 1206–1213. [Google Scholar] [CrossRef]
- Shapira, S.N.; Naji, A.; Atkinson, M.A.; Powers, A.C.; Kaestner, K.H. Understanding islet dysfunction in type 2 diabetes through multidimensional pancreatic phenotyping: The Human Pancreas Analysis Program. Cell Metab. 2022, 34, 1906–1913. [Google Scholar] [CrossRef]
- Craig-Schapiro, R.; Li, G.; Chen, K.; Gomez-Salinero, J.M.; Nachman, R.; Kopacz, A.; Schreiner, R.; Chen, X.; Zhou, Q.; Rafii, S.; et al. Single-cell atlas of human pancreatic islet and acinar endothelial cells in health and diabetes. Nat. Commun. 2025, 16, 1338. [Google Scholar] [CrossRef]
- Toussaint, P.A.; Leiser, F.; Thiebes, S.; Schlesner, M.; Brors, B.; Sunyaev, A. Explainable artificial intelligence for omics data: A systematic mapping study. Brief. Bioinform. 2023, 25, bbad453. [Google Scholar] [CrossRef]
- Dixit, A.; Parnas, O.; Li, B.; Chen, J.; Fulco, C.P.; Jerby-Arnon, L.; Marjanovic, N.D.; Dionne, D.; Burks, T.; Raychowdhury, R.; et al. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell 2016, 167, 1853–1866.e17. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, M.; Shin, Y.; Kim, K.; Kim, T. Spatial Omics in Clinical Research: A Comprehensive Review of Technologies and Guidelines for Applications. Int. J. Mol. Sci. 2025, 26, 3949. [Google Scholar] [CrossRef]
- Kirby, E.; Bernier, A.; Guigó, R.; Wold, B.; Arzuaga, F.; Kusunose, M.; Zawati, M.; Knoppers, B.M. Data sharing ethics toolkit: The Human Cell Atlas. Nat. Commun. 2024, 15, 9901. [Google Scholar] [CrossRef]






| Algorithms | Function | Key Principles | Limitations | Impact on Biological Interpretation |
|---|---|---|---|---|
| GRM [62] | Normalization | Use spike-in ERCC molecules to fit a gamma regression model between sequencing reads and RNA concentrations | Depends on spike-ins; less suitable for non-UMI data | Spike-in-based assumptions can bias low-abundance genes and distort DE analysis |
| BASiCS [63] | Normalization | Apply a unified Bayesian hierarchical framework to concurrently assess both the residual technical noise and the biological variability among cells | Require spike-in data for noise modeling, potentially biasing low-expression genes and limiting applicability to non-spike-in datasets | Over-reliance on spike-I ns may shrink true cell-to-cell variance |
| Scran [46] | Normalization | Group cells and deconvolve pooling size factors to address sparsity | Require careful cell clustering and may need additional batch correction | Mis-grouped cells bias normalization, reducing power to detect rare-cell markers |
| SCnorm [64] | Normalization | Use quantile regression to estimate gene-specific count-depth relationships | Require assumptions about gene grouping | Inaccurate grouping distorts depth corrections and alters downstream analysis |
| SCTransform [47] | Normalization | Regularize negative binomial regression with depth covariates and Pearson residuals | Not suitable for highly heterogeneous data; requires cross-gene parameter pooling to avoid overfitting | Strong regularization can compress biological variability though improves integration consistency |
| QUMI [65] | Normalization | Transform read counts to Poisson-log normal distributed quasi-UMI by quantile normalization to remove PCR amplification bias and simulate the distribution characteristics of the true UMI counts | Shape parameters need to be preset, and the difference in capture efficiency or gene length deviation cannot be completely eliminated | Inaccurate parameterization alters gene-ranking and inferred regulatory programs |
| ZIFA [66] | Recover dropout events | Extend factor analysis with a zero-inflation layer that models dropout events in scRNA-seq data via an exponential decay of dropout probability with latent expression levels | High computational complexity and assumptions that zeros stem purely from technical dropouts may overlook true biological silencing | May over-impute and create false intermediate states if biological zeros misclassified |
| CIDR [49] | Recover dropout events | Mitigate dropout effects by implicitly imputing missing gene expression values using a weighted mean based on estimated dropout probabilities | Unable to distinguish true low expression from technical dropout, and rely on predefined assumptions about the dropout probability relationship | Risk of artificial co-expression and blurred cluster boundaries |
| MAGIC [51] | Recover dropout events | Use data diffusion on a cell similarity graph to propagate gene expression information between similar cells | Over-smooth biologically relevant high-frequency variation and assume low-dimensional manifold structure | Oversmoothing merges distinct cell types and generates false “transition” states |
| DCA [50] | Recover dropout events | A deep count autoencoder network (DCA) to denoise scRNA-seq datasets; captures nonlinear gene-gene dependencies using a negative binomial noise model | Lead to overimputation in case of inadequate hyperparameter choices such as too low-dimensional bottleneck layer and hence data manifold | Over-imputation compresses variance and can invent pseudo-correlations |
| DeepImpute [67] | Recover dropout events | A deep neural network-based imputation algorithm that uses dropout layers and loss functions to learn patterns in the data | The model fitting step uses most of the computational resources and time | Enhances clustering coherence but may synthesize false co-expression |
| ScMultiGAN [68] | Recover dropout events | Employ a two-stage training process and utilizes multiple collaborative generative adversarial networks (GANs) to achieve cell-specific imputation | Requires significant computational resources and training time | GAN-based smoothing may create biologically implausible uniformity; needs external validation |
| MNN [56] | Correct batch effect | Match mutual nearest neighbors across batches to estimate and remove technical expression differences | Each batch contains at least one shared cell population with another batch | Over-correction merges distinct lineages, masking real biological differences |
| BBKNN [69] | Correct batch effect | Construct a batch-balanced k-nearest neighbor graph by identifying neighbors within each batch independently and merging them | Limit performance when cell type distributions or technical variations are highly uneven | Equalizing batch neighbor counts can blur subcluster boundaries |
| Harmony [57] | Correct batch effect | Follow dimensionality reduction via PCA, iteratively refine the alignment between cell clustering and batch distributions by employing soft clustering and localized linear corrections to mitigate batch effects | Overcorrection in batch effect removal may lead to the erasure of authentic biological differences | Excess alignment erases disease-specific signals |
| Scanorama [70] | Correct batch effect | Use an approximate nearest neighbor search based on hyperplane locality sensitive hashing and random projection trees | Inadvertently remove or blur genuine biological differences between batches | Misalignment possible when shared cell types are scarce |
| DESC [71] | Correct batch effect | Use deep learning with iterative optimization of a clustering objective function, leveraging autoencoders and soft cluster assignments to remove batch effects | Embedding instability can fragment continuous trajectories | |
| scDML [72] | Correct batch effect | Leverage prior clustering information and intra-/inter-batch nearest neighbors within a triplet-based deep metric learning framework to simultaneously remove batch effects | Cannot be applied to datasets with differential structures; it solely creates integrated low-dimensional embeddings and does not provide corrected gene expression values | Gene-level interpretation limited; embeddings alone may hide subtle regulation |
| Category | Representative Methods | Scalability | Interpretability | Biological Validation | Remarks |
|---|---|---|---|---|---|
| Batch correction & integration | Seurat (CCA), Harmony, LIGER, MOFA+ | High | Moderate (latent features difficult to interpret) | Widely used; validated in human islet datasets | Balances accuracy and efficiency; risk of over-correction [57,77] |
| Dropout recovery | MAGIC, DCA, DeepImpute | Moderate | Moderate—Low | Partial validation in benchmarking datasets | Improves signal quality but may introduce artifacts or false-positive intermediate states [140] |
| Multi-modal data fusion | totalVI, scConfluence, MaxFuse | High | Moderate | totalVI and MaxFuse validated on PBMC and pancreas datasets | Enables cross-omics interpretation; computationally intensive [141] |
| Trajectory inference | Monocle, Slingshot | High | High | Extensively validated in β-cell and developmental datasets | Generates well-interpretable biological trajectories [30] |
| Cell–cell communication | CellPhoneDB, CellChat | Moderate | High | Experimentally confirmed in islet–immune interaction studies | Allows mechanistic inference at cell-type level; depends on curated ligand–receptor databases [9] |
| Machine-learning-based regulatory modeling | regX, XGBoost-based classifiers, deep learning models | High | Variable (often low) | Models validated for β-cell dysfunction | Offer powerful prediction but require improved interpretability and transparent feature attribution [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Hong, F.; Xie, S.; Luo, X.; Li, X.; Dao, F.; Deng, K.; Lin, H.; Lyu, H. Single-Cell Multi-Omics in Type 2 Diabetes Mellitus: Revealing Cellular Heterogeneity and Mechanistic Insights. Int. J. Mol. Sci. 2025, 26, 11005. https://doi.org/10.3390/ijms262211005
Wei Y, Hong F, Xie S, Luo X, Li X, Dao F, Deng K, Lin H, Lyu H. Single-Cell Multi-Omics in Type 2 Diabetes Mellitus: Revealing Cellular Heterogeneity and Mechanistic Insights. International Journal of Molecular Sciences. 2025; 26(22):11005. https://doi.org/10.3390/ijms262211005
Chicago/Turabian StyleWei, Yijie, Feitong Hong, Sijia Xie, Xinwei Luo, Xiaolong Li, Fuying Dao, Kejun Deng, Hao Lin, and Hao Lyu. 2025. "Single-Cell Multi-Omics in Type 2 Diabetes Mellitus: Revealing Cellular Heterogeneity and Mechanistic Insights" International Journal of Molecular Sciences 26, no. 22: 11005. https://doi.org/10.3390/ijms262211005
APA StyleWei, Y., Hong, F., Xie, S., Luo, X., Li, X., Dao, F., Deng, K., Lin, H., & Lyu, H. (2025). Single-Cell Multi-Omics in Type 2 Diabetes Mellitus: Revealing Cellular Heterogeneity and Mechanistic Insights. International Journal of Molecular Sciences, 26(22), 11005. https://doi.org/10.3390/ijms262211005

