Current Insights and Future Directions in Scar Management and Skin Regeneration
Abstract
1. Tropocollagen in Skin Regeneration and Scar Modulation
2. Brief Characterization of Collagen and Tropocollagen
3. The Role of the Extracellular Matrix (ECM) in the Skin
4. TC and ECM Remodeling in Wound Healing
5. TC and Other Collagen Forms in Therapeutic Applications
5.1. Hydrolyzed Collagen (Collagen Peptides)
5.2. Denatured Collagen (Gelatin)
5.3. Native Fibrillar Collagens (Types I, II, and III)
| Collagen Form | Molecular Structure | Key Applications | Stability | Bioavailability | Therapeutic Effects |
|---|---|---|---|---|---|
| TC | Triple helix; precursor to fibrils [2] | Tissue engineering, wound healing [7,57] | High [58] | Low [59] | Structural integrity, scaffold formation [7] |
| Hydrolyzed Collagen | Short peptides (3–6 kDa) [60] | Oral supplements, cosmetic products [48] | Moderate [61] | High [60] | Skin elasticity, joint health, and bone density [60,62] |
| Denatured Collagen | Random coil; thermally or chemically treated [63] | Gelling agent, wound dressings [54] | Low [64] | Moderate [65] | Biocompatibility, controlled release [65] |
| Native Fibrillar Collagens | Triple helix; cross-linked fibrils [66] | Tissue scaffolds, regenerative therapies [16] | High [67] | Low [68] | Tissue repair, cellular support [16] |
| Feature/Property | TC | Collagen Hydrolysates | Collagen Gels |
|---|---|---|---|
| Structural characteristics | Native triple helix; able to form fibrils via supramolecular assembly; stabilized by covalent cross-links [2,31] | Short peptides; partial denaturation of triple helix; no fibrillogenesis [40] | Physically or chemically cross-linked gel network; may partially mimic ECM structure [44] |
| Interaction with fibroblasts | Promotes fibroblast adhesion, proliferation, and migration [36] | Limited fibroblast interaction; depends on peptide length and concentration [40] | Supports fibroblast attachment and spreading; bioactivity depends on gel formulation [41] |
| MMP activation | Degraded by MMPs, releasing growth factors such as TGF-β, promoting tissue remodeling [36] | Limited MMP-mediated activity due to small peptide size [40] | Partial MMP-mediated remodeling possible; dependent on network density [44] |
| Angiogenesis stimulation | Indirect via growth factor release; enhances vascularization in wound sites [36] | Minimal effect; small peptides may have weak pro-angiogenic activity [40] | Can support angiogenesis by providing scaffold for endothelial cell migration [41] |
| Therapeutic applications | Wound healing, tissue engineering scaffolds, regenerative medicine [2,31] | Dietary supplements, joint health, skin support [40] | Wound dressings, tissue regeneration scaffolds, drug delivery systems [41,44] |
6. Utilization of TC/Collagen in Experimental Research
| Study | Scar Type | Intervention | Outcome | Reference |
|---|---|---|---|---|
| In Vitro Studies | ||||
| To review and compare different human in vitro skin models applied in the study of wound healing and wound healing disorders | Reconstructed human epidermis (keratinocytes), full-thickness skin equivalents (keratinocytes + fibroblasts), 3D models with immune cells | Type I collagen matrices (often bovine/porcine origin) | Improved scaffold stability and biomimicry; enhanced functional relevance as an alternative to animal models | [70] |
| Evaluation of a biomimetic bilayer antimicrobial scaffold that mimics skin layers and improves complex wound healing | HaCaT keratinocytes; iPSC-derived endothelial cells | Bilayered scaffold: epidermal film (collagen/chitosan) + dermal collagen–glycosaminoglycan scaffold (cross-linked) | Enhanced cell proliferation and migration; enhanced angiogenic potential; improved scaffold stability and biomimicry | [71] |
| Test interaction of fibroblasts with cross-linked collagen-elastin scaffold | HDF | Bovine type I collagen | Improved scaffold stability; enhanced cell proliferation and migration | [72] |
| Effect on fibroblast behavior relevant to wound healing | HDF | EC/PLA/collagen mats loaded with silver sulfadiazine | Maintained cell viability and cytocompatibility; enhanced cell proliferation and migration; antibacterial activity | [73] |
| Electrospun PCL/PLA Scaffolds Are More Suitable Carriers of Placental Mesenchymal Stromal Cells Than Collagen/Elastin Scaffolds | hAMSCs PMSCs | PCL/PLA scaffolds, collagen/elastin scaffolds (Matriderm), Matrigel-coated scaffolds (bovine type I collagen) | Maintained cell viability; enhanced long-term proliferation and migration; enhanced re-epithelialization and wound closure; enhanced angiogenic potential | [74] |
| Antibacterial collagen wound dressing | HDF | Bobine type I collagen | Maintained cell viability; enhanced cell proliferation and migration; enhanced extracellular matrix synthesis | [75] |
| Functionalization of collagen-GAG (glycosaminoglycan) scaffolds with Platelet-Rich Plasma (PRP) | BJ fibroblasts | Bovine type I collagen | Maintained cell viability; enhanced cell proliferation and migration; enhanced re-epithelialization and wound closure | [76] |
| Scratch wound assay | Hemostatic tests; platelet activation analysis; complement system assays; leukocyte activation analysis | Collagen dressings | Enhanced functional tissue regeneration; enhanced wound stabilization and growth factor release; enhanced angiogenic potential | [77] |
| Chronic/non-healing wounds (ischemic chronic wound model) | NIH 3T3 HUVEC | Electrospun silk fibroin scaffold incorporating Type I collagen peptides with nitric oxide release | Enhanced cell proliferation and migration; enhanced re-epithelialization and wound closure; enhanced angiogenic potential | [78] |
| Effect of materials or compounds on cell behavior relevant to wound healing | HaCaT HDF | Collagen/Elastin/PCL scaffold Collagen/PCL scaffold | Enhanced cell proliferation and migration; enhanced extracellular matrix synthesis; enhanced wound closure | [79] |
| Effectiveness of PCL/collagen wound dressings loaded with insulin-chitosan nanoparticles in accelerating wound healing | HDF | Electrospun PCL/Collagen type I scaffolds loaded with insulin-chitosan nanoparticles | Enhanced cell proliferation and migration; enhanced functional regeneration through sustained bioactive release | [80] |
| Supporting the proliferation and viability of fibroblasts as key cells involved in wound healing | NIH 3T3 | Bovine fibrous collagen type I-based cream | Maintained cell viability; enhanced cell proliferation and migration; enhanced extracellular matrix synthesis | [81] |
| Study | Scar Type | Intervention | Outcome | Reference |
|---|---|---|---|---|
| In Vivo Studies | ||||
| Animal Model | Wound/Scar Type | Tropocollagen/ Collagen Preparation | Results/ Observations | Reference |
| Rats (Wistar) | Full-thickness skin defects excisional skin | Different collagen forms (native, hydrolyzed, semidenatured, commercial gels/creams) | Improved wound healing efficacy; enhanced collagen deposition and ECM remodeling; enhanced fibroblast activity | [82] |
| Rats (Wistar) | Full-thickness skin wounds | Fish scale tropocollagen peptides | Improved wound healing efficacy; enhanced fibroblast activity; enhanced ECM remodeling | [83] |
| Rats (Sprague-Dawley) (diabetic wound model) | Full-skin defect wounds | Radiation-crosslinked bilayer bovine collagen type I scaffold | Improved wound healing efficacy; enhanced collagen deposition and angiogenesis; reduced inflammation; maintained biocompatibility | [84] |
| Rats (Sprague–Dawley) | Full-thickness skin defect | Fish collagen sponge (tilapia) | Maintained biocompatibility; enhanced angiogenesis; enhanced collagen deposition and re-epithelialization | [85] |
| Rats (Wistar) | Full-thickness wound model | EC/PLA/collagen mats loaded with silver sulfadiazine | Improved wound healing efficacy; enhanced collagen deposition and angiogenesis | [73] |
| BALB/c mice | Full-thickness skin wounds | Bovine type I collagen | Improved mechanical and degradation properties; improved wound healing potential | [72] |
| Mice | Full-thickness skin wounds | Electrospun PCL/PLA scaffolds, Collagen/Elastin scaffolds, Matriderm | Improved wound healing efficacy | [74] |
| Rats (Wistar) | Burn wounds | Rabbit skin collagen hydrogel | Improved wound healing efficacy | [86] |
| Rats (Wistar) | Third-degree burns | Bovine collagen and zinc oxide | Improved wound healing efficacy | [87] |
| Rats Mice | Excisional wound Full-thickness wound | Collagen/Elastin/PCL scaffold Collagen/PCL scaffold | Improved wound healing efficacy; enhanced tissue regeneration | [79] |
| Rats | Full-thickness skin wounds | Collagen type I | Improved wound healing efficacy; enhanced re-epithelialization, collagen deposition, angiogenesis; reduced fibrosis | [88] |
| New Zealand White rabbit | Burn wounds | Porous sponge scaffold of porcine skin–derived collagen and fish scale–derived collagen | Improved wound healing efficacy; reduced scarring; improved physicochemical wound environment | [90] |
| Rats | Full-thickness skin wounds | Collagen peptides derived from the jellyfish Rhopilema esculentum | Improved wound healing efficacy; enhanced fibroblast proliferation; enhanced collagen deposition; angiogenesis | [92] |
| Rats | Full-thickness skin wounds on the dorsum of the rats | Fish collagen | Improved wound healing efficacy; enhanced collagen deposition; re-epithelialization | [119] |
| New Zealand rabbits | Skin burns | Sponges of carboxymethyl chitosan grafted with collagen peptides | Improved wound healing efficacy; enhanced collagen deposition; epidermal regeneration | [57] |
| Rats | Full-thickness skin wounds | Pepsin-soluble collagen from the skin of Lophius litulo | Improved wound healing efficacy; enhanced fibroblast proliferation; enhanced collagen deposition | [94] |
| Rats (Wistar) | Full-thickness excisional and linear incisional wounds | Astaxanthin-incorporated collagen hydrogel film and gentamicin-incorporated collagen hydrogel film | Improved wound healing efficacy; enhanced fibroblast proliferation; enhanced collagen deposition; re-epithelialization; enhanced angiogenesis | [96] |
| Rats (Sprague–Dawley) | Full-thickness excisional wound | Electrospun PCL/Collagen type I (1:1 w/w) scaffolds loaded with insulin-chitosan nanoparticles | Enhanced tissue regeneration; enhanced collagen deposition | [80] |
| Dogs and cats | Skin lesions of different etiologies (equivalent to 2nd–3rd degree burns), difficult-to-heal lesions | Collagen type I biomembrane | Improved wound healing efficacy; enhanced angiogenesis | [97] |
| Rats (Wistar) | Skin burns | Chitosan hydrogel combined with marine peptides from tilapia | Improved wound healing efficacy; enhanced fibroblast proliferation; increased expression of FGF2 and VEGF | [98] |
| Rats | Full-thickness skin wounds | Chitosan-collagen-alginate composite dressing | Enhanced re-epithelialization and granulation; increased expression of EGF, bFGF, TGF-β, and CD31; enhanced tissue regeneration | [99] |
| Rats (Sprague-Dawley) | Seawater immersion wounds | Shark-skin collagen sponge with polyurethane film | Improved wound healing efficacy; enhanced re-epithelialization, angiogenesis, and granulation; increased expression of TGF-β and CD31 | [100] |
| Rats (Wistar) | Full-thickness burn wound model | PCL–chitosan nanofibers coated with fish scale-derived collagen type I | Improved wound healing efficacy; enhanced collagen deposition and re-epithelialization; enhanced angiogenesis; enhanced tissue regeneration | [101] |
| Rabbits | Full-thickness skin wounds | Marine collagen peptides derived from Nile tilapia skin | Improved wound healing efficacy; enhanced fibroblast proliferation; enhanced collagen deposition and re-epithelialization | [102] |
| Göttingen minipigs | Full-thickness skin wounds | Novel collagen-gelatin fleece | Improved wound healing efficacy; enhanced tissue regeneration | [103] |
| Mouse (diabetic wound model) | Full-thickness wounds | Atelocollagen hydrogel (protease-sensitive, UV-crosslinked)(tilapia) | Improved wound healing efficacy; enhanced collagen deposition; enhanced angiogenesis | [104] |
| Rat (Sprague-Dawley) | Full-thickness skin defects | Bilayer dermal substitute composed of a polyurethane membrane + knitted mesh-reinforced collagen-chitosan scaffold | Improved wound healing efficacy; enhanced angiogenesis; enhanced tissue regeneration | [105] |
| Rats | Full-thickness skin wounds | Fish (mrigal) scale collagen | Improved wound healing efficacy; enhanced fibroblast proliferation; enhanced re-epithelialization; | [106] |
| Mice | Full-thickness skin wounds | Acid-soluble collagen and its hydrolysates from haddock (Melanogrammus aeglefinus) skin | Improved wound healing efficacy; enhanced collagen deposition and re-epithelialization; enhanced angiogenesis | [107] |
| Guinea pigs | Full-thickness excisional skin wounds | Chitosan-collagen membrane | Improved wound healing efficacy; enhanced epithelial proliferation | [108] |
| Mice | Full-thickness round wounds | VitriBand”—a cell-free bandage made of adhesive film, silicone-coated polyester, and a dried collagen (porcine) vitrigel membrane | Enhanced re-epithelialization; reduced inflammation; | [109] |
| Rats (Wistar) | Full-thickness skin wounds | Bovine collagen type I | Improved wound healing efficacy; enhanced fibroblast proliferation; enhanced collagen deposition and re-epithelialization; enhanced angiogenesis | [110] |
| Rats (Wistar) | Full-thickness skin wounds | Collagen and elastin sponge derived from salmon | Improved wound healing efficacy; enhanced fibroblast proliferation; enhanced collagen deposition and re-epithelialization; enhanced angiogenesis | [111] |
| Rat (Sprague-Dawley) | Full-thickness skin wounds | Chitosan membrane containing collagen I nanospheres | Improved wound healing efficacy; enhanced re-epithelialization; | [112] |
| Rabbits | Skin wounds (burns or ulcers) | Agar/type I collagen composite membrane | Improved wound healing efficacy | [113] |
| Study | Scar Type | Intervention | Outcome | Reference |
|---|---|---|---|---|
| Clinical Studies | ||||
| Venous leg ulcers treated with fish tropocollagen gel in a 12-week randomized controlled trial | Venous leg ulcers | Topical fish-derived tropocollagen/collagen gel | Improved wound healing efficacy; reduced local inflammation | [115] |
| Venous leg ulcers with fish tropocollagen gel around the wound in a 12 week 12-week randomized controlled trial | Venous leg ulcers | Topical fish-derived tropocollagen/collagen gel | Improved wound healing efficacy; reduced pain and discomfort; | [116] |
| The clinical efficacy of collagen dressing on chronic wounds: A meta-analysis of 11 randomized controlled trials | Chronic wounds (e.g., diabetic foot ulcers, venous leg ulcers) | Collagen dressing vs. standard of care | Improved wound healing efficacy | [120] |
| The effect of collagen on wound healing in patients with burn: A randomized double-blind pilot clinical trial | Burns (20–30% total body surface area) | hydrolyzed collagen-based supplement | Improved wound healing efficacy; improved clinical parameters (serum pre-albumin, shorter hospitalization) | [121] |
| Acellular fish skin matrix on thin-skin graft donor sites | Patients with split-thickness skin graft donor sites (radial forearm free flap reconstructions) | The fish-skin matrix is an acellular ECM device containing fish skin proteins, lipids; collagen used as a wound covering/scaffold | Improved wound healing efficacy; reduced pain and infection rates | [122] |
| Treatment of diabetic foot wounds with acellular fish skin graft rich in omega-3 | Patients with postsurgical diabetic foot wounds | Fish skin extracellular matrix, rich in type I collagen and omega-3 fatty acids | Improved wound healing efficacy; no adverse or immune reactions | [117] |
| Comparison of two ECM-based dermal substitutes: 1. Fish skin acellular dermal matrix 2. Porcine small-intestine submucosa | Full-thickness wounds in patients | Scaffolds are ECM-based, primarily composed of type I collagen, plus elastin and glycosaminoglycans | Improved wound healing efficacy; no adverse or immune reactions (fish skin dermal matrix) | [118] |
| Clinical trial of the temporary biosynthetic dermal skin substitute based on collagen and hyaluronic acid | Split-thickness skin graft (STSG) donor sites in humans | Topical membrane collagen and hyaluronic acid-based biosynthetic dermal skin | Accelerated wound epithelialization | [123] |
7. Clinical Applications and Bioavailability of Collagen/TC in Scar Therapy
8. Challenges, Standardization, and Future Perspectives of Collagen/TC in Wound and Scar Management
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| 3D | three-dimensional |
| AgNPs | silver nanoparticles |
| bFGF | fibroblast growth factor basic |
| BJ | normal human foreskin fibroblasts |
| EC | ethyl cellulose |
| ECM | extracellular matrix |
| EGF | epidermal growth factor |
| FGF2 | fibroblast growth factor 2 |
| GAG | glycosaminoglycan |
| HaCaT | human adult low calcium high temperature keratinocytes |
| HAMSCs | human amnion-derived mesenchymal stromal cells |
| HDF | human dermal fibroblasts |
| HUVEC | human umbilical vein endothelial cells |
| MMPs | matrix metalloproteinases |
| NIH 3T3 | mouse embryonic fibroblast cell line |
| PCL | polycaprolactone |
| PLA | poly(lactic acid) |
| PMSCs | placental mesenchymal stromal cells. |
| POSAS | Patient and Observer Scar Assessment Scale |
| PRP | platelet-rich plasma |
| RCTs | randomized controlled trials |
| STSG | split-thickness skin graft |
| TC | tropocollagen |
| TGF-β | transforming growth factor beta |
| TIMPs | tissue inhibitors of metalloproteinases |
| VEGF | vascular endothelial growth factor |
References
- Kadler, K.E.; Baldock, C.; Bella, J.; Boot-Handford, R.P. Collagens at a glance. J. Cell Sci. 2007, 120, 1955–1958. [Google Scholar] [CrossRef]
- Shoulders, M.D.; Raines, R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef]
- Meyer, M. Processing of collagen based biomaterials and the resulting materials properties. Biomed. Eng. Online 2019, 18, 24. [Google Scholar] [CrossRef]
- Naomi, R.; Ridzuan, P.M.; Bahari, H. Current Insights into Collagen Type I. Polymers 2021, 13, 2642. [Google Scholar] [CrossRef]
- Perra, A. Molecular bases of collagen-based compounds’ action mechanisms. Rheumatology 2025, 62 (Suppl. 2), 6. [Google Scholar] [CrossRef]
- Bednarczyk-Kocwa, D. The use of tropocollagen in aesthetic medicine. Rheumatology 2025, 62 (Suppl. 2), 21. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Raines, R.T. Collagen-based biomaterials for wound healing. Biopolymers 2014, 101, 821–833. [Google Scholar] [CrossRef]
- Kryczka, M. Tropocollagen in the regeneration of oral soft tissues—The latest reports. Rheumatology 2025, 62 (Suppl. 2), 22. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, Z.; Yuan, D.; Yu, M.; Min, J. Tissue engineering applications of recombinant human collagen: A review of recent progress. Front. Bioeng. Biotechnol. 2024, 12, 1358246. [Google Scholar] [CrossRef]
- Zhang, Q.; Dou, M.; Su, X.; Yu, Z.; Wei, B.; Zhu, L.; Zhang, J.; Wang, H. Collagen-based biomaterials: Recent advances on regulating cell migration and correlated biomedical applications. Collagen Leather 2025, 7, 17. [Google Scholar] [CrossRef]
- Arakawa, C.; Ng, R.; Tan, S.; Kim, S.; Wu, B.; Lee, M. Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering. J. Tissue Eng. Regen. Med. 2017, 11, 164–174. [Google Scholar] [CrossRef]
- Coppola, D.; Oliviero, M.; Vitale, G.A.; Lauritano, C.; D’Ambra, I.; Iannace, S.; de Pascale, D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar. Drugs 2020, 18, 214. [Google Scholar] [CrossRef]
- Law, J.X.; Liau, L.L.; Saim, A.; Yang, Y.; Idrus, R. Electrospun Collagen Nanofibers and Their Applications in Skin Tissue Engineering. Tissue Eng. Regen. Med. 2017, 14, 699–718. [Google Scholar] [CrossRef]
- Jafari, H.; Lista, A.; Siekapen, M.M.; Ghaffari-Bohlouli, P.; Nie, L.; Alimoradi, H.; Shavandi, A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers 2020, 12, 2230. [Google Scholar] [CrossRef]
- Irawan, V.; Sung, T.-C.; Higuchi, A.; Ikoma, T. Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development. Tissue Eng. Regen. Med. 2018, 15, 673–697. [Google Scholar] [CrossRef]
- Copes, F.; Pien, N.; Van Vlierberghe, S.; Boccafoschi, F.; Mantovani, D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front. Bioeng. Biotechnol. 2019, 7, 00166. [Google Scholar] [CrossRef]
- Lin, K.; Zhang, D.; Macedo, M.H.; Cui, W.; Sarmento, B.; Shen, G. Advanced Collagen-Based Biomaterials for Regenerative Biomedicine. Adv. Funct. Mater. 2019, 29, 1804943. [Google Scholar] [CrossRef]
- Xu, Y.; Kirchner, M. Collagen Mimetic Peptides. Bioengineering 2021, 8, 5. [Google Scholar] [CrossRef]
- Gardeazabal, L.; Izeta, A. Elastin and collagen fibres in cutaneous wound healing. Exp. Dermatol. 2024, 33, e15052. [Google Scholar] [CrossRef]
- Campos, L.D.; Junior, V.D.A.S.; Pimentel, J.D.; Carregã, G.L.F.; Cazarin, C.B.B. Collagen supplementation in skin and orthopedic diseases: A review of the literature. Heliyon 2023, 9, e14961. [Google Scholar] [CrossRef]
- Zuo, X.; Xiao, Y.; Yang, J.; He, Y.; He, Y.; Liu, K.; Chen, X.; Guo, J. Engineering collagen-based biomaterials for cardiovascular medicine. Collagen Leather 2024, 6, 33. [Google Scholar] [CrossRef]
- Rezaei, N.; Lyons, A.; Forde, N.R. Environmentally Controlled Curvature of Single Collagen Proteins. Biophys. J. 2018, 115, 1457–1469. [Google Scholar] [CrossRef] [PubMed]
- Ricard-Blum, S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef]
- Hynes, R.O. The Extracellular Matrix: Not Just Pretty Fibrils. Science 2009, 326, 1216–1219. [Google Scholar] [CrossRef]
- Tracy, L.E.; Minasian, R.A.; Caterson, E.J. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv. Wound Care 2016, 5, 119–136. [Google Scholar] [CrossRef]
- Knoedler, S.; Broichhausen, S.; Guo, R.; Dai, R.; Knoedler, L.; Kauke-Navarro, M.; Diatta, F.; Pomahac, B.; Machens, H.-G.; Jiang, D.; et al. Fibroblasts—The cellular choreographers of wound healing. Front. Immunol. 2023, 14, 1233800. [Google Scholar] [CrossRef]
- Cialdai, F.; Risaliti, C.; Monici, M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front. Bioeng. Biotechnol. 2022, 10, 958381. [Google Scholar] [CrossRef]
- Wynn, T.A.; Vannella, K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44, 450–462. [Google Scholar] [CrossRef]
- Eming, S.A.; Wynn, T.A.; Martin, P. Inflammation and metabolism in tissue repair and regeneration. Science 2017, 356, 1026–1030. [Google Scholar] [CrossRef]
- Lucas, T.; Waisman, A.; Ranjan, R.; Roes, J.; Krieg, T.; Müller, W.; Roers, A.; Eming, S.A. Differential Roles of Macrophages in Diverse Phases of Skin Repair. J. Immunol. 2010, 184, 3964–3977. [Google Scholar] [CrossRef]
- Gelse, K. Collagens—Structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 2003, 55, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Ringer, P.; Weißl, A.; Cost, A.-L.; Freikamp, A.; Sabass, B.; Mehlich, A.; Tramier, M.; Rief, M.; Grashoff, C. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nat. Methods 2017, 14, 1090–1096. [Google Scholar] [CrossRef] [PubMed]
- Hinz, B. The myofibroblast: Paradigm for a mechanically active cell. J. Biomech. 2010, 43, 146–155. [Google Scholar] [CrossRef]
- Yu, D.; Lu, Z.; Nie, F.; Chong, Y. Integrins regulation of wound healing processes: Insights for chronic skin wound therapeutics. Front. Cell. Infect. Microbiol. 2024, 14, 1324441. [Google Scholar] [CrossRef]
- Humphrey, J.D.; Dufresne, E.R.; Schwartz, M.A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 2014, 15, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Rai, V.K.; Agrawal, D. Regulation of Collagen I and Collagen III in Tissue Injury and Regeneration. Cardiol. Cardiovasc. Med. 2023, 7, 5–16. [Google Scholar] [CrossRef]
- Caley, M.P.; Martins, V.L.C.; O’Toole, E.A. Metalloproteinases and Wound Healing. Adv. Wound Care 2015, 4, 225–234. [Google Scholar] [CrossRef]
- Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell 2010, 141, 52–67. [Google Scholar] [CrossRef]
- Ricard-Blum, S. Matricryptins derived from collagens and proteoglycans. Front. Biosci. 2011, 16, 674. [Google Scholar] [CrossRef]
- Amirrah, I.N.; Lokanathan, Y.; Zulkiflee, I.; Wee, M.F.M.R.; Motta, A.; Fauzi, M.B. A Comprehensive Review on Collagen Type I Development of Biomaterials for Tissue Engineering: From Biosynthesis to Bioscaffold. Biomedicines 2022, 10, 2307. [Google Scholar] [CrossRef]
- Alberts, A.; Bratu, A.G.; Niculescu, A.-G.; Grumezescu, A.M. Collagen-Based Wound Dressings: Innovations, Mechanisms, and Clinical Applications. Gels 2025, 11, 271. [Google Scholar] [CrossRef]
- Shook, B.A.; Wasko, R.R.; Rivera-Gonzalez, G.C.; Salazar-Gatzimas, E.; López-Giráldez, F.; Dash, B.C.; Muñoz-Rojas, A.R.; Aultman, K.D.; Zwick, R.K.; Lei, V.; et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 2018, 362, eaar2971. [Google Scholar] [CrossRef]
- Talbott, H.E.; Mascharak, S.; Griffin, M.; Wan, D.C.; Longaker, M.T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 2022, 29, 1161–1180. [Google Scholar] [CrossRef]
- Wosicka-Frąckowiak, H.; Poniedziałek, K.; Woźny, S.; Kuprianowicz, M.; Nyga, M.; Jadach, B.; Milanowski, B. Collagen and Its Derivatives Serving Biomedical Purposes: A Review. Polymers 2024, 16, 2668. [Google Scholar] [CrossRef] [PubMed]
- Shih, B.; Bayat, A. Genetics of keloid scarring. Arch. Dermatol. Res. 2010, 302, 319–339. [Google Scholar] [CrossRef]
- Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016, 97, 4–27. [Google Scholar] [CrossRef]
- Larder, C.E.; Iskandar, M.M.; Kubow, S. Collagen Hydrolysates: A Source of Bioactive Peptides Derived from Food Sources for the Treatment of Osteoarthritis. Medicines 2023, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.M.; Angelinetta, C.; Rizzi, G.; Praticò, A.; Villa, R. Evaluation of the Efficacy of a Hydrolyzed Collagen Supplement for Improving Skin Moisturization, Smoothness, and Wrinkles. J. Clin. Aesthet. Dermatol. 2022, 15, 48–52. [Google Scholar] [PubMed]
- Ahmad, T.; Ismail, A.; Ahmad, S.A.; Khalil, K.A.; Kumar, Y.; Adeyemi, K.D.; Sazili, A.Q. Recent advances on the role of process variables affecting gelatin yield and characteristics with special reference to enzymatic extraction: A review. Food Hydrocoll. 2017, 63, 85–96. [Google Scholar] [CrossRef]
- Gornall, J.L.; Terentjev, E.M. Concentration-Temperature Superposition of Helix Folding Rates in Gelatin. Phys. Rev. Lett. 2007, 99, 028304. [Google Scholar] [CrossRef]
- Forgacs, G.; Newman, S.A.; Hinner, B.; Maier, C.W.; Sackmann, E. Assembly of collagen matrices as a phase transition revealed by structural and rheologic studies. Biophys. J. 2003, 84, 1272–1280. [Google Scholar] [CrossRef]
- Virijević, K.; Živanović, M.; Pavić, J.; Dragačević, L.; Ljujić, B.; Miletić Kovačević, M.; Papić, M.; Živanović, S.; Milenković, S.; Radojević, I.; et al. Electrospun Gelatin Scaffolds with Incorporated Antibiotics for Skin Wound Healing. Pharmaceuticals 2024, 17, 851. [Google Scholar] [CrossRef] [PubMed]
- Naomi, R.; Bahari, H.; Ridzuan, P.M.; Othman, F. Natural-Based Biomaterial for Skin Wound Healing (Gelatin vs. Collagen): Expert Review. Polymers 2021, 13, 2319. [Google Scholar] [CrossRef]
- Cao, H.; Wang, J.; Hao, Z.; Zhao, D. Gelatin-based biomaterials and gelatin as an additive for chronic wound repair. Front. Pharmacol. 2024, 15, 1398939. [Google Scholar] [CrossRef]
- Kushibiki, T.; Mayumi, Y.; Nakayama, E.; Azuma, R.; Ojima, K.; Horiguchi, A.; Ishihara, M. Photocrosslinked gelatin hydrogel improves wound healing and skin flap survival by the sustained release of basic fibroblast growth factor. Sci. Rep. 2021, 11, 23094. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Feng, T.; Xie, Y.; Swamiappan, S.; Zhou, Y.; Zhou, Y.; Zhou, H.; Peng, X. Recent Advances in the Development and Application of Cell-Loaded Collagen Scaffolds. Int. J. Mol. Sci. 2025, 26, 4009. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Hu, Z.; Zhao, Y.; Zou, Z.; Lu, S.; Zhang, B.; Li, S. Sponges of Carboxymethyl Chitosan Grafted with Collagen Peptides for Wound Healing. Int. J. Mol. Sci. 2019, 20, 3890. [Google Scholar] [CrossRef]
- Fujii, K.K.; Taga, Y.; Takagi, Y.K.; Masuda, R.; Hattori, S.; Koide, T. The Thermal Stability of the Collagen Triple Helix Is Tuned According to the Environmental Temperature. Int. J. Mol. Sci. 2022, 23, 2040. [Google Scholar] [CrossRef]
- Holwerda, A.M.; van Loon, L.J.C. The impact of collagen protein ingestion on musculoskeletal connective tissue remodeling: A narrative review. Nutr. Rev. 2022, 80, 1497–1514. [Google Scholar] [CrossRef]
- Carrillo-Norte, J.A.; Gervasini-Rodríguez, G.; Santiago-Triviño, M.Á.; García-López, V.; Guerrero-Bonmatty, R. Oral administration of hydrolyzed collagen alleviates pain and enhances functionality in knee osteoarthritis: Results from a randomized, double-blind, placebo-controlled study. Contemp. Clin. Trials Commun. 2025, 43, 101424. [Google Scholar] [CrossRef]
- Won, J.; Kang, J.; Noh, K.; Chung, H.; Kang, W. Pharmacokinetics of collagen dipeptides (Gly–Pro and Pro–Hyp) and tripeptides (Gly–Pro–Hyp) in rats. J. Food Sci. 2024, 89, 701–709. [Google Scholar] [CrossRef]
- de Miranda, R.B.; Weimer, P.; Rossi, R.C. Effects of hydrolyzed collagen supplementation on skin aging: A systematic review and meta-analysis. Int. J. Dermatol. 2021, 60, 1449–1461. [Google Scholar] [CrossRef]
- Bozec, L.; Odlyha, M. Thermal Denaturation Studies of Collagen by Microthermal Analysis and Atomic Force Microscopy. Biophys. J. 2011, 101, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Baydin, T.; Aarstad, O.A.; Dille, M.J.; Hattrem, M.N.; Draget, K.I. Long-term storage stability of type A and type B gelatin gels: The effect of Bloom strength and co-solutes. Food Hydrocoll. 2022, 127, 107535. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, X.; Wang, Y.; Chen, W.; Zhu, Z.; Wang, S. Hydrogels and hydrogel-based drug delivery systems for promoting refractory wound healing: Applications and prospects. Int. J. Biol. Macromol. 2025, 285, 138098. [Google Scholar] [CrossRef]
- Kadler, K.E.; Hill, A.; Canty-Laird, E.G. Collagen fibrillogenesis: Fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol. 2008, 20, 495–501. [Google Scholar] [CrossRef]
- Herchenhan, A.; Uhlenbrock, F.; Eliasson, P.; Weis, M.; Eyre, D.; Kadler, K.E.; Magnusson, S.P.; Kjaer, M. Lysyl Oxidase Activity Is Required for Ordered Collagen Fibrillogenesis by Tendon Cells. J. Biol. Chem. 2015, 290, 16440–16450. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Mahmoudian, A.; Kalvaityte, U.; Uzieliene, I.; Larder, C.E.; Iskandar, M.M.; Kubow, S.; Hamdan, P.C.; de Almeida, C.S.; Favazzo, L.J.; et al. A White Paper on Collagen Hydrolyzates and Ultrahydrolyzates: Potential Supplements to Support Joint Health in Osteoarthritis? Curr. Rheumatol. Rep. 2021, 23, 78. [Google Scholar] [CrossRef]
- Asgari, M.; Latifi, N.; Heris, H.K.; Vali, H.; Mongeau, L. In vitro fibrillogenesis of tropocollagen type III in collagen type I affects its relative fibrillar topology and mechanics. Sci. Rep. 2017, 7, 1392. [Google Scholar] [CrossRef]
- Hofmann, E.; Fink, J.; Pignet, A.-L.; Schwarz, A.; Schellnegger, M.; Nischwitz, S.P.; Holzer-Geissler, J.C.J.; Kamolz, L.-P.; Kotzbeck, P. Human In Vitro Skin Models for Wound Healing and Wound Healing Disorders. Biomedicines 2023, 11, 1056. [Google Scholar] [CrossRef] [PubMed]
- McGrath, M.; Zimkowska, K.; Genoud, K.J.; Maughan, J.; Gutierrez Gonzalez, J.; Browne, S.; O’Brien, F.J. A Biomimetic, Bilayered Antimicrobial Collagen-Based Scaffold for Enhanced Healing of Complex Wound Conditions. ACS Appl. Mater. Interfaces 2023, 15, 17444–17458. [Google Scholar] [CrossRef] [PubMed]
- Maitz, J.; Wang, Y.; Fathi, A.; Ximena Escobar, F.; Parungao, R.; Zuijlen, P.; Maitz, P.; Li, Z. The effects of cross-linking a collagen-elastin dermal template on scaffold bio-stability and degradation. J. Tissue Eng. Regen. Med. 2020, 14, 1189–1200. [Google Scholar] [CrossRef]
- Ahmadian, S.; Ghorbani, M.; Mahmoodzadeh, F. Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nanofibrous mats with antibacterial properties for wound healing. Int. J. Biol. Macromol. 2020, 162, 1555–1565. [Google Scholar] [CrossRef] [PubMed]
- Vonbrunn, E.; Mueller, M.; Pichlsberger, M.; Sundl, M.; Helmer, A.; Wallner, S.A.; Rinner, B.; Tuca, A.-C.; Kamolz, L.-P.; Brislinger, D.; et al. Electrospun PCL/PLA Scaffolds Are More Suitable Carriers of Placental Mesenchymal Stromal Cells Than Collagen/Elastin Scaffolds and Prevent Wound Contraction in a Mouse Model of Wound Healing. Front. Bioeng. Biotechnol. 2020, 8, 604123. [Google Scholar] [CrossRef]
- Amirrah, I.N.; Mohd Razip Wee, M.F.; Tabata, Y.; Bt Hj Idrus, R.; Nordin, A.; Fauzi, M.B. Antibacterial-Integrated Collagen Wound Dressing for Diabetes-Related Foot Ulcers: An Evidence-Based Review of Clinical Studies. Polymers 2020, 12, 2168. [Google Scholar] [CrossRef] [PubMed]
- do Amaral, R.J.F.C.; Zayed, N.M.A.; Pascu, E.I.; Cavanagh, B.; Hobbs, C.; Santarella, F.; Simpson, C.R.; Murphy, C.M.; Sridharan, R.; González-Vázquez, A.; et al. Functionalising Collagen-Based Scaffolds with Platelet-Rich Plasma for Enhanced Skin Wound Healing Potential. Front. Bioeng. Biotechnol. 2019, 7, 00371. [Google Scholar] [CrossRef]
- Wiegand, C.; Abel, M.; Hipler, U.-C.; Elsner, P.; Zieger, M.; Kurz, J.; Wendel, H.P.; Stoppelkamp, S. Hemostatic wound dressings: Predicting their effects by in vitro tests. J. Biomater. Appl. 2019, 33, 1285–1297. [Google Scholar] [CrossRef]
- Ramadass, S.K.; Nazir, L.S.; Thangam, R.; Perumal, R.K.; Manjubala, I.; Madhan, B.; Seetharaman, S. Type I collagen peptides and nitric oxide releasing electrospun silk fibroin scaffold: A multifunctional approach for the treatment of ischemic chronic wounds. Colloids Surf. B Biointerfaces 2019, 175, 636–643. [Google Scholar] [CrossRef]
- Chong, C.; Wang, Y.; Fathi, A.; Parungao, R.; Maitz, P.K.; Li, Z. Skin wound repair: Results of a pre-clinical study to evaluate electropsun collagen–elastin–PCL scaffolds as dermal substitutes. Burns 2019, 45, 1639–1648. [Google Scholar] [CrossRef]
- Ehterami, A.; Salehi, M.; Farzamfar, S.; Vaez, A.; Samadian, H.; Sahrapeyma, H.; Mirzaii, M.; Ghorbani, S.; Goodarzi, A. In vitro and in vivo study of PCL/COLL wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in rats model. Int. J. Biol. Macromol. 2018, 117, 601–609. [Google Scholar] [CrossRef]
- Udhayakumar, S.; Shankar, K.G.; Sowndarya, S.; Rose, C. Novel fibrous collagen-based cream accelerates fibroblast growth for wound healing applications: In vitro and in vivo evaluation. Biomater. Sci. 2017, 5, 1868–1883. [Google Scholar] [CrossRef] [PubMed]
- Benito-Martínez, S.; Pérez-Köhler, B.; Rodríguez, M.; Rivas-Santos, C.; María Izco, J.; Recalde, J.I.; Pascual, G. Assessing New Collagen Therapies for Wound Healing: A Murine Model Approach. Int. Wound J. 2025, 22, e70589. [Google Scholar] [CrossRef]
- Shen, S.; Lin, S.; Gao, D.; Hu, J.; Bao, Z. Investigation of the efficacy of fish scale collagen peptide on wound healing through various administration routes. Food Biosci. 2025, 68, 106605. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.; Ren, K.; Wu, L.; Chen, G.; Xu, L. Qualitative study on diabetic cutaneous wound healing with radiation crosslinked bilayer collagen scaffold in rat model. Sci. Rep. 2023, 13, 6399. [Google Scholar] [CrossRef]
- Wang, L.; Qu, Y.; Li, W.; Wang, K.; Qin, S. Effects and metabolism of fish collagen sponge in repairing acute wounds of rat skin. Front. Bioeng. Biotechnol. 2023, 11, 1087139. [Google Scholar] [CrossRef]
- Rana, M.M.; Rahman, M.S.; Ullah, M.A.; Siddika, A.; Hossain, M.L.; Akhter, M.S.; Hasan, M.Z.; Asaduzzaman, S.M. Amnion and collagen-based blended hydrogel improves burn healing efficacy on a rat skin wound model in the presence of wound dressing biomembrane. Biomed. Mater. Eng. 2020, 31, 1–17. [Google Scholar] [CrossRef]
- Balaure, P.C.; Holban, A.M.; Grumezescu, A.M.; Mogoşanu, G.D.; Bălşeanu, T.A.; Stan, M.S.; Dinischiotu, A.; Volceanov, A.; Mogoantă, L. In vitro and in vivo studies of novel fabricated bioactive dressings based on collagen and zinc oxide 3D scaffolds. Int. J. Pharm. 2019, 557, 199–207. [Google Scholar] [CrossRef]
- Li, J.; Zhou, C.; Luo, C.; Qian, B.; Liu, S.; Zeng, Y.; Hou, J.; Deng, B.; Sun, Y.; Yang, J.; et al. N-acetyl cysteine-loaded graphene oxide-collagen hybrid membrane for scarless wound healing. Theranostics 2019, 9, 5839–5853. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.-F.; Yao, Z.-C.; Ahmad, Z.; Li, J.-S.; Chang, M.-W. Synthesis and Evaluation of Herbal Chitosan from Ganoderma lucidum Spore Powder for Biomedical Applicationsa. Sci. Rep. 2018, 8, 14608. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, H.; Zhang, X.; Chen, Z.; Zhao, D.; Ma, J. A comparative study of two porous sponge scaffolds prepared by collagen derived from porcine skin and fish scales as burn wound dressings in a rabbit model. Regen. Biomater. 2020, 7, 63–70. [Google Scholar] [CrossRef]
- Klionsky, D.J.; Abdel-Aziz, A.K.; Abdelfatah, S.; Abdellatif, M.; Abdoli, A.; Abel, S.; Abeliovich, H.; Abildgaard, M.H.; Abudu, Y.P.; Acevedo-Arozena, A.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy 2021, 17, 1–382. [Google Scholar] [CrossRef]
- Felician, F.F.; Yu, R.-H.; Li, M.-Z.; Li, C.-J.; Chen, H.-Q.; Jiang, Y.; Tang, T.; Qi, W.-Y.; Xu, H.-M. The wound healing potential of collagen peptides derived from the jellyfish Rhopilema esculentum. Chin. J. Traumatol. 2019, 22, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-C.; Chang, L.-H.; Huang, S.-S.; Huang, Y.-J.; Chih, C.-L.; Kuo, H.-C.; Lee, Y.-H.; Lee, I.-H. Aryl hydrocarbon receptor modulates stroke-induced astrogliosis and neurogenesis in the adult mouse brain. J. Neuroinflamm. 2019, 16, 187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zheng, J.; Tian, X.; Tang, Y.; Ding, G.; Yang, Z.; Jin, H. Pepsin-Soluble Collagen from the Skin of Lophius litulo: A Preliminary Study Evaluating Physicochemical, Antioxidant, and Wound Healing Properties. Mar. Drugs 2019, 17, 708. [Google Scholar] [CrossRef]
- Tao, L.; Zhang, F.; Hao, L.; Wu, J.; Jia, J.; Liu, J.; Zheng, L.T.; Zhen, X. 1-O-Tigloyl-1-O-deacetyl-nimbolinin B Inhibits LPS-Stimulated Inflammatory Responses by Suppressing NF-κB and JNK Activation in Microglia Cells. J. Pharmacol. Sci. 2014, 125, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Veeruraj, A.; Liu, L.; Zheng, J.; Wu, J.; Arumugam, M. Evaluation of astaxanthin incorporated collagen film developed from the outer skin waste of squid Doryteuthis singhalensis for wound healing and tissue regenerative applications. Mater. Sci. Eng. C 2019, 95, 29–42. [Google Scholar] [CrossRef]
- Kaasi, A.; Lima-Neto, J.F.; Matiello-Filho, J.A.; Calejo, M.H.S.; Jardini, A.L.; Kharmandayan, P. Regenerative collagen biomembrane: Interim results of a Phase I veterinary clinical trial for skin repair. F1000Research 2018, 7, 729. [Google Scholar] [CrossRef]
- Ouyang, Q.-Q.; Hu, Z.; Lin, Z.-P.; Quan, W.-Y.; Deng, Y.-F.; Li, S.-D.; Li, P.-W.; Chen, Y. Chitosan hydrogel in combination with marine peptides from tilapia for burns healing. Int. J. Biol. Macromol. 2018, 112, 1191–1198. [Google Scholar] [CrossRef]
- Xie, H.; Chen, X.; Shen, X.; He, Y.; Chen, W.; Luo, Q.; Ge, W.; Yuan, W.; Tang, X.; Hou, D.; et al. Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. Int. J. Biol. Macromol. 2018, 107, 93–104. [Google Scholar] [CrossRef]
- Shen, X.-R.; Chen, X.-L.; Xie, H.-X.; He, Y.; Chen, W.; Luo, Q.; Yuan, W.-H.; Tang, X.; Hou, D.-Y.; Jiang, D.-W.; et al. Beneficial effects of a novel shark-skin collagen dressing for the promotion of seawater immersion wound healing. Mil. Med. Res. 2017, 4, 33. [Google Scholar] [CrossRef]
- Pal, P.; Dadhich, P.; Srivas, P.K.; Das, B.; Maulik, D.; Dhara, S. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management. Biomater. Sci. 2017, 5, 1786–1799. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, P.; Zhou, C.; Li, S.; Hong, P. Marine Collagen Peptides from the Skin of Nile Tilapia (Oreochromis niloticus): Characterization and Wound Healing Evaluation. Mar. Drugs 2017, 15, 102. [Google Scholar] [CrossRef]
- Petersen, W.; Rahmanian-Schwarz, A.; Werner, J.-O.; Schiefer, J.; Rothenberger, J.; Hübner, G.; Schaller, H.-E.; Held, M. The use of collagen-based matrices in the treatment of full-thickness wounds. Burns 2016, 42, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Tronci, G.; Yin, J.; Holmes, R.A.; Liang, H.; Russell, S.J.; Wood, D.J. Protease-sensitive atelocollagen hydrogels promote healing in a diabetic wound model. J. Mater. Chem. B 2016, 4, 7249–7258. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, P.; Hu, X.; You, C.; Guo, R.; Shi, H.; Guo, S.; Zhou, H.; Chaoheng, Y.; Zhang, Y.; et al. Polyurethane membrane/knitted mesh-reinforced collagen–chitosan bilayer dermal substitute for the repair of full-thickness skin defects via a two-step procedure. J. Mech. Behav. Biomed. Mater. 2016, 56, 120–133. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.; Srivas, P.K.; Dadhich, P.; Das, B.; Maity, P.P.; Moulik, D.; Dhara, S. Accelerating full thickness wound healing using collagen sponge of mrigal fish (Cirrhinus cirrhosus) scale origin. Int. J. Biol. Macromol. 2016, 93, 1507–1518. [Google Scholar] [CrossRef]
- Dang, Q.F.; Liu, H.; Yan, J.Q.; Liu, C.S.; Liu, Y.; Li, J.; Li, J.J. Characterization of collagen from haddock skin and wound healing properties of its hydrolysates. Biomed. Mater. 2015, 10, 015022. [Google Scholar] [CrossRef]
- Amal, B.; Veena, B.; Jayachandran, V.P.; Shilpa, J. Preparation and characterisation of Punica granatum pericarp aqueous extract loaded chitosan-collagen-starch membrane: Role in wound healing process. J. Mater. Sci. Mater. Med. 2015, 26, 181. [Google Scholar] [CrossRef]
- Aoki, S.; Takezawa, T.; Ikeda, S.; Narisawa, Y.; Oshikata-Miyazaki, A.; Miyauchi, S.; Hirayama, H.; Sawaguchi, T.; Chimuro, T.; Toda, S. A new cell-free bandage-type artificial skin for cutaneous wounds. Wound Repair Regen. 2015, 23, 819–829. [Google Scholar] [CrossRef]
- Sinno, H.; Malhotra, M.; Lutfy, J.; Jardin, B.; Winocour, S.; Brimo, F.; Beckman, L.; Watters, K.; Philip, A.; Williams, B.; et al. Accelerated Wound Healing with Topical Application of Complement C5. Plast. Reconstr. Surg. 2012, 130, 523–529. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Ikeda, K.; Yamaya, Y.; Yamashita, K.; Saito, T.; Hoshino, Y.; Koga, T.; Enari, H.; Suto, S.; Yotsuyanagi, T. The usefulness of the collagen and elastin sponge derived from salmon as an artificial dermis and scaffold for tissue engineerin. Biomed. Res. 2011, 32, 29–36. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Liao, W.-J.; Kuo, S.-M.; Tsai, F.-J.; Chen, Y.-S.; Huang, C.-Y.; Yao, C.-H. Asymmetric Chitosan Membrane Containing Collagen I Nanospheres for Skin Tissue Engineering. Biomacromolecules 2009, 10, 1642–1649. [Google Scholar] [CrossRef]
- Bao, L.; Yang, W.; Mao, X.; Mou, S.; Tang, S. Agar/collagen membrane as skin dressing for wounds. Biomed. Mater. 2008, 3, 044108. [Google Scholar] [CrossRef]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound Healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Cwajda-Białasik, J.; Mościcka, P.; T Szewczyk, M.; Hojan-Jezierska, D.; Kawałkiewicz, W.; Majewska, A.; Janus-Kubiak, M.; Kubisz, L.; Jawień, A. Venous leg ulcers treated with fish collagen gel in a 12-week randomized single-centre study. Adv. Dermatol. Allergol. 2022, 39, 714–722. [Google Scholar] [CrossRef]
- Mościcka, P.; Cwajda-Białasik, J.; Szewczyk, M.T.; Jawień, A. Healing Process, Pain, and Health-Related Quality of Life in Patients with Venous Leg Ulcers Treated with Fish Collagen Gel: A 12-Week Randomized Single-Center Study. Int. J. Environ. Res. Public Health 2022, 19, 7108. [Google Scholar] [CrossRef]
- Woodrow, T.; Chant, T.; Chant, H. Treatment of diabetic foot wounds with acellular fish skin graft rich in omega-3: A prospective evaluation. J. Wound Care 2019, 28, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Baldursson, B.T.; Kjartansson, H.; Konrádsdóttir, F.; Gudnason, P.; Sigurjonsson, G.F.; Lund, S.H. Healing Rate and Autoimmune Safety of Full-Thickness Wounds Treated with Fish Skin Acellular Dermal Matrix Versus Porcine Small-Intestine Submucosa. Int. J. Low. Extrem. Wounds 2015, 14, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gao, K.; Liu, S.; Wang, S.; Elango, J.; Bao, B.; Dong, J.; Liu, N.; Wu, W. Fish Collagen Surgical Compress Repairing Characteristics on Wound Healing Process In Vivo. Mar. Drugs 2019, 17, 33. [Google Scholar] [CrossRef]
- Shu, H.; Xia, Z.; Qin, X.; Wang, X.; Lu, W.; Luo, Q.; Zhang, Z.; Xiong, X. The clinical efficacy of collagen dressing on chronic wounds: A meta-analysis of 11 randomized controlled trials. Front. Surg. 2022, 9, 978407. [Google Scholar] [CrossRef]
- Bagheri Miyab, K.; Alipoor, E.; Vaghardoost, R.; Saberi Isfeedvajani, M.; Yaseri, M.; Djafarian, K.; Hosseinzadeh-Attar, M.J. The effect of a hydrolyzed collagen-based supplement on wound healing in patients with burn: A randomized double-blind pilot clinical trial. Burns 2020, 46, 156–163. [Google Scholar] [CrossRef]
- Badois, N.; Bauër, P.; Cheron, M.; Hoffmann, C.; Nicodeme, M.; Choussy, O.; Lesnik, M.; Poitrine, F.C.; Fromantin, I. Acellular fish skin matrix on thin-skin graft donor sites: A preliminary study. J. Wound Care 2019, 28, 624–628. [Google Scholar] [CrossRef]
- Potocká, D.; Kevická, D.; Koller, J. Clinical trial of the temporary biosynthetic dermal skin substitute based on a collagen and hyaluronic acid named Coladerm H/HM, first part. Acta Chir. Plast. 2012, 54, 31–38. [Google Scholar]
- Limandjaja, G.C.; Niessen, F.B.; Scheper, R.J.; Gibbs, S. Hypertrophic scars and keloids: Overview of the evidence and practical guide for differentiating between these abnormal scars. Exp. Dermatol. 2021, 30, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.K.L.; Bhate, K. A global perspective on the epidemiology of acne. Br. J. Dermatol. 2015, 172, 3–12. [Google Scholar] [CrossRef]
- Andrews, J.P.; Marttala, J.; Macarak, E.; Rosenbloom, J.; Uitto, J. Keloid pathogenesis: Potential role of cellular fibronectin with the EDA domain. J. Investig. Dermatol. 2015, 135, 1921–1924. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, C.C.; Jeschke, M.G.; Branski, L.K.; Barret, J.P.; Dziewulski, P.; Herndon, D.N. Hypertrophic scarring: The greatest unmet challenge after burn injury. Lancet 2016, 388, 1427–1436. [Google Scholar] [CrossRef]
- Rullan, P.P.; Olson, R.; Lee, K.C. A Combination Approach to Treating Acne Scars in All Skin Types: Carbolic Chemical Reconstruction of Skin Scars, Blunt Bi-level Cannula Subcision, and Microneedling-A Case Series. J. Clin. Aesthet. Dermatol. 2020, 13, 19–23. [Google Scholar]
- Zhang, M.; Liu, C.; Zhang, S.; Chu, R.; Ren, X. Advances in the treatment of acne scars. Front. Med. 2025, 12, 1643035. [Google Scholar] [CrossRef]
- Bell, J.S.; Hayes, S.; Whitford, C.; Sanchez-Weatherby, J.; Shebanova, O.; Terrill, N.J.; Sørensen, T.L.M.; Elsheikh, A.; Meek, K.M. Tropocollagen springs allow collagen fibrils to stretch elastically. Acta Biomater. 2022, 142, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Gao, J.; Li, L. New challenges in scar therapy: The novel scar therapy strategies based on nanotechnology. Nanomedicine 2024, 19, 2413–2432. [Google Scholar] [CrossRef] [PubMed]
- Sancho, A.; Vázquez, L.; De-Juan-Pardo, E.M. Effect of cold storage on collagen-based hydrogels for the three-dimensional culture of adipose-derived stem cells. Biofabrication 2014, 6, 035017. [Google Scholar] [CrossRef] [PubMed]
- Guest, J.F.; Rana, K.; Singh, H.; Vowden, P. Cost-effectiveness of using a collagen-containing dressing plus compression therapy in non-healing venous leg ulcers. J. Wound Care 2018, 27, 68–78. [Google Scholar] [CrossRef]
- Weigelt, M.A.; Lev-Tov, H.A.; Tomic-Canic, M.; Lee, W.D.; Williams, R.; Strasfeld, D.; Kirsner, R.S.; Herman, I.M. Advanced Wound Diagnostics: Toward Transforming Wound Care into Precision Medicine. Adv. Wound Care 2022, 11, 330–359. [Google Scholar] [CrossRef] [PubMed]
- Rahimnejad, M.; Derakhshanfar, S.; Zhong, W. Biomaterials and tissue engineering for scar management in wound care. Burn. Trauma 2017, 5, 4. [Google Scholar] [CrossRef]
- Fernandes, M.G.; da Silva, L.P.; Cerqueira, M.T.; Ibañez, R.; Murphy, C.M.; Reis, R.L.; O’Brien, F.J.; Marques, A.P. Mechanomodulatory biomaterials prospects in scar prevention and treatment. Acta Biomater. 2022, 150, 22–33. [Google Scholar] [CrossRef]
- Astaneh, M.E.; Fereydouni, N. Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing. ACS Omega 2024, 9, 41107–41129. [Google Scholar] [CrossRef]
- Yayehrad, A.T.; Siraj, E.A.; Matsabisa, M.; Birhanu, G. 3D printed drug loaded nanomaterials for wound healing applications. Regen. Ther. 2023, 24, 361–376. [Google Scholar] [CrossRef]
- Abuhamad, A.Y.; Masri, S.; Fadilah, N.I.M.; Alamassi, M.N.; Maarof, M.; Fauzi, M.B. Application of 3D-Printed Bioinks in Chronic Wound Healing: A Scoping Review. Polymers 2024, 16, 2456. [Google Scholar] [CrossRef]
- Guptha, P.M.; Kanoujia, J.; Kishore, A.; Raina, N.; Wahi, A.; Gupta, P.K.; Gupta, M. A comprehensive review of the application of 3D-bioprinting in chronic wound management. Expert Opin. Drug Deliv. 2024, 21, 1573–1594. [Google Scholar] [CrossRef]
- Khan, A.R.; Grewal, N.S.; Jun, Z.; Tawfiq, F.M.O.; Tchier, F.; Muhammad Zulqarnain, R.; Zhang, H.-J. Raising the Bar: Progress in 3D-Printed Hybrid Bone Scaffolds for Clinical Applications: A Review. Cell Transplant. 2024, 33, 09636897241273562. [Google Scholar] [CrossRef] [PubMed]
- Jonidi Shariatzadeh, F.; Currie, S.; Logsetty, S.; Spiwak, R.; Liu, S. Enhancing wound healing and minimizing scarring: A comprehensive review of nanofiber technology in wound dressings. Prog. Mater. Sci. 2025, 147, 101350. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szlachcikowska, D.; Mazurek, K.; Magiera, M.; Jama, G.; Tabęcka-Łonczyńska, A. Current Insights and Future Directions in Scar Management and Skin Regeneration. Int. J. Mol. Sci. 2025, 26, 10636. https://doi.org/10.3390/ijms262110636
Szlachcikowska D, Mazurek K, Magiera M, Jama G, Tabęcka-Łonczyńska A. Current Insights and Future Directions in Scar Management and Skin Regeneration. International Journal of Molecular Sciences. 2025; 26(21):10636. https://doi.org/10.3390/ijms262110636
Chicago/Turabian StyleSzlachcikowska, Dominika, Katarzyna Mazurek, Monika Magiera, Grzegorz Jama, and Anna Tabęcka-Łonczyńska. 2025. "Current Insights and Future Directions in Scar Management and Skin Regeneration" International Journal of Molecular Sciences 26, no. 21: 10636. https://doi.org/10.3390/ijms262110636
APA StyleSzlachcikowska, D., Mazurek, K., Magiera, M., Jama, G., & Tabęcka-Łonczyńska, A. (2025). Current Insights and Future Directions in Scar Management and Skin Regeneration. International Journal of Molecular Sciences, 26(21), 10636. https://doi.org/10.3390/ijms262110636

