Adaptations in Mitochondrial Function Induced by Exercise: A Therapeutic Route for Treatment-Resistant Depression
Abstract
1. Introduction
2. Pathophysiology of Major Depressive Disorder
3. Does Chronic Stress Induce Mitochondrial Dysfunction in Patients with Depressive Disorders?
3.1. Mitochondrial Dysfunction
3.2. Mitochondrial Biogenesis
3.3. Oxidative Stress and Mitochondrial Dynamics
3.4. Neuroplasticity and Depression
3.5. Role of BDNF
3.6. Nutrients in Individuals with Depressive Disorders
4. Does Physical Exercise Protect Against Depressive Disorder?
4.1. Sedentarism and Depression
4.2. Sedentarism and Mitochondrial Dysfunction
4.3. Effects of Different Types of Exercise on Mitochondrial Function and Depression
4.3.1. Aerobic Exercise
4.3.2. Resistance Exercise
4.3.3. High-Intensity Interval Training
4.4. Duration, Frequency, and Intensity of Exercise
5. Summary
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AMPAR | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor |
AMPK | AMP-activated protein kinase |
ATP | Adenosine triphosphate |
BDNF | Brain-derived neurotrophic factor |
CAT | Catalase |
CYFIP1 | Cytoplasmic FMRP-associated protein 1 |
Cox | Cytochrome C oxidase |
CREB | cAMP response element-binding protein |
CS mRNA | Citrate synthase microRNA |
DCX | Doublecortin |
DNA | Deoxyribonucleic acid |
DRP1 | Dynamin-Related Protein 1 |
ETC | Electron transport chain |
FIS1 | Fission Protein 1 |
GSH-Px | Glutathione peroxidase |
HIIT | High-intensity interval training |
IDO | Indoleamine 2,3-dioxygenase |
IL | Interleukin |
IMM | Inner mitochondrial membrane |
LTP | Long-term potentiation |
MCT | Monocarboxylate transporters |
MDD | Major depressive disorder |
MFN1, 2 | Mitofusin 1 and 2 |
mtDNA | Mitochondrial DNA |
NCAM | neural cell adhesion molecule |
NF-κB | Nuclear factor kappa B |
OPA | Optic Atrophy |
p-JNK | Protein JUN N-terminal kinases |
p38 MAPK | p38 mitogen-activated protein kinase, |
Parkin | Ubiquitin-protein ligase |
PBMC | Peripheral blood mononuclear cell |
PGC-1α | Active peroxisome proliferator-activated receptor-γ coactivator-1α |
PINK1/Parkin | putative kinase 1/Parkin E3 ubiquitin-protein ligase |
ROS | Reactive oxygen species |
SIRT1 | Silent Information Regulator T1 |
SOD | Superoxide dismutase |
SSRIs | Selective serotonin reuptake inhibitors |
TNF-α | Tumoral necrosis factor α |
TRD | Treatment-resistant depression |
VEGF | Vascular endothelial growth factor |
References
- Marx, W.; Penninx, B.W.J.H.; Solmi, M.; Furukawa, T.A.; Firth, J.; Carvalho, A.F.; Berk, M. Major Depressive Disorder. Nat. Rev. Dis. Primers 2023, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Depressive Disorder (Depression). Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 12 July 2025).
- Fekadu, A.; Wooderson, S.C.; Markopoulo, K.; Donaldson, C.; Papadopoulos, A.; Cleare, A.J. What Happens to Patients with Treatment-Resistant Depression? A Systematic Review of Medium to Long Term Outcome Studies. J. Affect. Disord. 2009, 116, 4–11. [Google Scholar] [CrossRef]
- Mrazek, D.A.; Hornberger, J.C.; Altar, C.A.; Degtiar, I. A Review of the Clinical, Economic, and Societal Burden of Treatment-Resistant Depression: 1996–2013. Psychiatr. Serv. 2014, 65, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Gronemann, F.H.; Jørgensen, M.B.; Nordentoft, M.; Andersen, P.K.; Osler, M. Treatment-Resistant Depression and Risk of All-Cause Mortality and Suicidality in Danish Patients with Major Depression. J. Psychiatr. Res. 2021, 135, 197–202. [Google Scholar] [CrossRef]
- Reutfors, J.; Andersson, T.M.-L.; Brenner, P.; Brandt, L.; DiBernardo, A.; Li, G.; Hägg, D.; Wingård, L.; Bodén, R. Mortality in Treatment-Resistant Unipolar Depression: A Register-Based Cohort Study in Sweden. J. Affect. Disord. 2018, 238, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; et al. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. Am. J. Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef]
- Philippot, A.; Dubois, V.; Lambrechts, K.; Grogna, D.; Robert, A.; Jonckheer, U.; Chakib, W.; Beine, A.; Bleyenheuft, Y.; De Volder, A.G. Impact of Physical Exercise on Depression and Anxiety in Adolescent Inpatients: A Randomized Controlled Trial. J. Affect. Disord. 2022, 301, 145–153. [Google Scholar] [CrossRef]
- Cai, J.; Chen, Y.; She, Y.; He, X.; Feng, H.; Sun, H.; Yin, M.; Gao, J.; Sheng, C.; Li, Q.; et al. Aerobic Exercise Improves Astrocyte Mitochondrial Quality and Transfer to Neurons in a Mouse Model of Alzheimer’s Disease. Brain Pathol. 2025, 35, e13316. [Google Scholar] [CrossRef]
- Steiner, J.L.; Murphy, E.A.; McClellan, J.L.; Carmichael, M.D.; Davis, J.M. Exercise Training Increases Mitochondrial Biogenesis in the Brain. J. Appl. Physiol. 2011, 111, 1066–1071. [Google Scholar] [CrossRef]
- del Pozo Cruz, B.; Alfonso-Rosa, R.M.; McGregor, D.; Chastin, S.F.; Palarea-Albaladejo, J.; del Pozo Cruz, J. Sedentary Behaviour Is Associated with Depression Symptoms: Compositional Data Analysis from a Representative Sample of 3233 US Adults and Older Adults Assessed with Accelerometers. J. Affect. Disord. 2020, 265, 59–62. [Google Scholar] [CrossRef]
- Gulyaeva, N.V. Stress-Associated Molecular and Cellular Hippocampal Mechanisms Common for Epilepsy and Comorbid Depressive Disorders. Biochemistry 2021, 86, 641–656. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cai, X.; Ma, Y.; Yang, Y.; Pan, C.-W.; Zhu, X.; Ke, C. Metabolomics on Depression: A Comparison of Clinical and Animal Research. J. Affect. Disord. 2024, 349, 559–568. [Google Scholar] [CrossRef]
- Czarny, P.; Ziółkowska, S.; Kołodziej, Ł.; Watała, C.; Wigner-Jeziorska, P.; Bliźniewska-Kowalska, K.; Wachowska, K.; Gałecka, M.; Synowiec, E.; Gałecki, P.; et al. Single-Nucleotide Polymorphisms in Genes Maintaining the Stability of Mitochondrial DNA Affect the Occurrence, Onset, Severity and Treatment of Major Depressive Disorder. Int. J. Mol. Sci. 2023, 24, 14752. [Google Scholar] [CrossRef]
- Gardner, A.; Johansson, A.; Wibom, R.; Nennesmo, I.; von Döbeln, U.; Hagenfeldt, L.; Hällström, T. Alterations of Mitochondrial Function and Correlations with Personality Traits in Selected Major Depressive Disorder Patients. J. Affect. Disord. 2003, 76, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Katrenčíková, B.; Vaváková, M.; Paduchová, Z.; Nagyová, Z.; Garaiova, I.; Muchová, J.; Ďuračková, Z.; Trebatická, J. Oxidative Stress Markers and Antioxidant Enzymes in Children and Adolescents with Depressive Disorder and Impact of Omega-3 Fatty Acids in Randomised Clinical Trial. Antioxidants 2021, 10, 1256. [Google Scholar] [CrossRef]
- Ni, P.; Ma, Y.; Chung, S. Mitochondrial Dysfunction in Psychiatric Disorders. Schizophr. Res. 2024, 273, 62–77. [Google Scholar] [CrossRef]
- Li, Z.; Shu, Y.; Liu, D.; Xie, S.; Xian, L.; Luo, J.; Huang, X.; Jiang, H. Pink1/Parkin Signaling Mediates Pineal Mitochondrial Autophagy Dysfunction and Its Biological Role in a Comorbid Rat Model of Depression and Insomnia. Brain Res. Bull. 2025, 220, 111141. [Google Scholar] [CrossRef]
- Picard, M.; Juster, R.-P.; McEwen, B.S. Mitochondrial Allostatic Load Puts the “gluc” Back in Glucocorticoids. Nat. Rev. Endocrinol. 2014, 10, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Braz, G.R.F.; de Andrade Silva, S.C.; da Silva Pedroza, A.A.; de Lemos, M.D.; de Lima, F.A.; da Silva, A.I.; Lagranha, C.J. Fluoxetine Administration in Juvenile Overfed Rats Improves Hypothalamic Mitochondrial Respiration and REDOX Status and Induces Mitochondrial Biogenesis Transcriptional Expression. Eur. J. Pharmacol. 2020, 881, 173200. [Google Scholar] [CrossRef]
- Gonçalves, V.F.; Mendes-Silva, A.P.; Koyama, E.; Vieira, E.; Kennedy, J.L.; Diniz, B. Increased Levels of Circulating Cell-Free mtDNA in Plasma of Late Life Depression Subjects. J. Psychiatr. Res. 2021, 139, 25–29. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, L.; Sheng, H. Mitochondria in Depression: The Dysfunction of Mitochondrial Energy Metabolism and Quality Control Systems. CNS Neurosci. Ther. 2024, 30, e14576. [Google Scholar] [CrossRef]
- Teranishi, M.; Ito, M.; Huang, Z.; Nishiyama, Y.; Masuda, A.; Mino, H.; Tachibana, M.; Inada, T.; Ohno, K. Extremely Low-Frequency Electromagnetic Field (ELF-EMF) Increases Mitochondrial Electron Transport Chain Activities and Ameliorates Depressive Behaviors in Mice. Int. J. Mol. Sci. 2024, 25, 11315. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Xu, M.; Xo, R.; Mates, A.; Wilson, G.L.; Pearsall, A.W., IV; Grishko, V. Mitochondrial DNA Damage Is Involved in Apoptosis Caused by Pro-Inflammatory Cytokines in Human OA Chondrocytes. Osteoarthr. Cartil. 2010, 18, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Strawbridge, R.; Hodsoll, J.; Powell, T.R.; Hotopf, M.; Hatch, S.L.; Breen, G.; Cleare, A.J. Inflammatory Profiles of Severe Treatment-Resistant Depression. J. Affect. Disord. 2019, 246, 42–51. [Google Scholar] [CrossRef]
- Cardanho-Ramos, C.; Morais, V.A. Mitochondrial Biogenesis in Neurons: How and Where. Int. J. Mol. Sci. 2021, 22, 13059. [Google Scholar] [CrossRef]
- Wei, Y.-H.; Lee, H.-C. Oxidative Stress, Mitochondrial DNA Mutation, and Impairment of Antioxidant Enzymes in Aging. Exp. Biol. Med. 2002, 227, 671–682. [Google Scholar] [CrossRef]
- Alexeyev, M.; Shokolenko, I.; Wilson, G.; LeDoux, S. The Maintenance of Mitochondrial DNA Integrity—Critical Analysis and Update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Lv, C.; Cheng, L.; Song, X.; Li, X.; Xie, H.; Chen, S.; Wang, X.; Xue, L.; Zhang, C.; et al. Targeting ERS-Mitophagy in Hippocampal Neurons to Explore the Improvement of Memory by Tea Polyphenols in Aged Type 2 Diabetic Rats. Free Radic. Biol. Med. 2024, 213, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Xie, L.; Shi, J.; Liu, T.; Wang, S.; Huang, J.; Wu, D.; Zhang, X. Neuroprotective Effect of Zishen Huoxue Decoction Treatment on Vascular Dementia by Activating PINK1/Parkin Mediated Mitophagy in the Hippocampal CA1 Region. J. Ethnopharmacol. 2024, 319, 117172. [Google Scholar] [CrossRef]
- Berlim, M.T.; Turecki, G. What Is the Meaning of Treatment Resistant/Refractory Major Depression (TRD)? A Systematic Review of Current Randomized Trials. Eur. Neuropsychopharmacol. 2007, 17, 696–707. [Google Scholar] [CrossRef]
- Rezin, G.T.; Amboni, G.; Zugno, A.I.; Quevedo, J.; Streck, E.L. Mitochondrial Dysfunction and Psychiatric Disorders. Neurochem. Res. 2009, 34, 1021–1029. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; MahmoudianDehkordi, S.; Sniatynski, M.J.; Belenky, M.; Marur, V.R.; Rush, A.J.; Craighead, W.E.; Mayberg, H.S.; Dunlop, B.W.; Kristal, B.S.; et al. Metabolomics Signatures of Serotonin Reuptake Inhibitor (Escitalopram), Serotonin Norepinephrine Reuptake Inhibitor (Duloxetine) and Cognitive-Behavioral Therapy on Key Neurotransmitter Pathways in Major Depressive Disorder. J. Affect. Disord. 2025, 375, 397–405. [Google Scholar] [CrossRef]
- Deng, D.; Cui, Y.; Gan, S.; Xie, Z.; Cui, S.; Cao, K.; Wang, S.; Shi, G.; Yang, L.; Bai, S.; et al. Sinisan Alleviates Depression-like Behaviors by Regulating Mitochondrial Function and Synaptic Plasticity in Maternal Separation Rats. Phytomedicine 2022, 106, 154395. [Google Scholar] [CrossRef]
- Javani, G.; Babri, S.; Farajdokht, F.; Ghaffari-Nasab, A.; Mohaddes, G. Mitochondrial Transplantation Improves Anxiety- and Depression-like Behaviors in Aged Stress-Exposed Rats. Mech. Ageing Dev. 2022, 202, 111632. [Google Scholar] [CrossRef]
- Mafikandi, V.; Seyedaghamiri, F.; Hosseinzadeh, N.; Shahabi, P.; Shafiee-Kandjani, A.R.; Babaie, S.; Maghsoumi-Norouzabad, L.; Farajdokht, F.; Hosseini, L. Nasal Administration of Mitochondria Relieves Depressive- and Anxiety-like Behaviors in Male Mice Exposed to Restraint Stress through the Suppression ROS/NLRP3/Caspase-1/IL-1β Signaling Pathway. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025, 398, 3067–3077. [Google Scholar] [CrossRef]
- Teng, T.; Shively, C.A.; Li, X.; Jiang, X.; Neigh, G.N.; Yin, B.; Zhang, Y.; Fan, L.; Xiang, Y.; Wang, M.; et al. Chronic Unpredictable Mild Stress Produces Depressive-like Behavior, Hypercortisolemia, and Metabolic Dysfunction in Adolescent Cynomolgus Monkeys. Transl. Psychiatry 2021, 11, 9. [Google Scholar] [CrossRef]
- Ishikawa, K.; Yamamoto, S.; Hattori, S.; Nishimura, N.; Matsumoto, H.; Miyakawa, T.; Nakada, K. Neuronal Degeneration and Cognitive Impairment Can Be Prevented via the Normalization of Mitochondrial Dynamics. Pharmacol. Res. 2021, 163, 105246. [Google Scholar] [CrossRef]
- Kumar, P.; Liu, C.; Suliburk, J.; Hsu, J.W.; Muthupillai, R.; Jahoor, F.; Minard, C.G.; Taffet, G.E.; Sekhar, R.V. Supplementing Glycine and N-Acetylcysteine (GlyNAC) in Older Adults Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Physical Function, and Aging Hallmarks: A Randomized Clinical Trial. J. Gerontol. Ser. A 2023, 78, 75–89. [Google Scholar] [CrossRef] [PubMed]
- De Jong, N.P.; Rudolph, M.C.; Jackman, M.R.; Sharp, R.R.; Jones, K.; Houck, J.; Pan, Z.; Reusch, J.E.B.; MacLean, P.S.; Bessesen, D.H.; et al. Short-Term Adaptations in Skeletal Muscle Mitochondrial Oxidative Capacity and Metabolic Pathways to Breaking up Sedentary Behaviors in Overweight or Obese Adults. Nutrients 2022, 14, 454. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de la Torre, M.; Fiuza-Luces, C.; Valenzuela, P.L.; Laine-Menéndez, S.; Arenas, J.; Martín, M.A.; Turnbull, D.M.; Lucia, A.; Morán, M. Exercise Training and Neurodegeneration in Mitochondrial Disorders: Insights from the Harlequin Mouse. Front. Physiol. 2020, 11, 594223. [Google Scholar] [CrossRef] [PubMed]
- Tobe, E.H. Mitochondrial Dysfunction, Oxidative Stress, and Major Depressive Disorder. Neuropsychiatr. Dis. Treat. 2013, 9, 567–573. [Google Scholar] [CrossRef]
- Sahafi, E.; Peeri, M.; Hosseini, M.-J.; Azarbyjani, M.A. Cardiac Oxidative Stress Following Maternal Separation Stress Was Mitigated Following Adolescent Voluntary Exercise in Adult Male Rat. Physiol. Behav. 2018, 183, 39–45. [Google Scholar] [CrossRef]
- Picard, M.; McEwen, B.S. Psychological Stress and Mitochondria: A Systematic Review. Biopsychosoc. Sci. Med. 2018, 80, 141. [Google Scholar] [CrossRef] [PubMed]
- Akyuva, Y.; Nazıroğlu, M. Resveratrol Attenuates Hypoxia-Induced Neuronal Cell Death, Inflammation and Mitochondrial Oxidative Stress by Modulation of TRPM2 Channel. Sci. Rep. 2020, 10, 6449. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-S.; Liu, C.-D.; Zheng, M.-C.; Zhao, H.-T.; Liu, X.-J. Propofol Alleviates Hypoxic Neuronal Injury by Inhibiting High Levels of Mitochondrial Fusion and Fission. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9650–9657. [Google Scholar]
- Barden, N. Implication of the Hypothalamic–Pituitary–Adrenal Axis in the Physiopathology of Depression. J. Psychiatry Neurosci. 2004, 29, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Druzhkova, T.A.; Yakovlev, A.A.; Rider, F.K.; Zinchuk, M.S.; Guekht, A.B.; Gulyaeva, N.V. Elevated Serum Cortisol Levels in Patients with Focal Epilepsy, Depression, and Comorbid Epilepsy and Depression. Int. J. Mol. Sci. 2022, 23, 10414. [Google Scholar] [CrossRef]
- Thompson, S.M.; Kallarackal, A.J.; Kvarta, M.D.; Van Dyke, A.M.; LeGates, T.A.; Cai, X. An Excitatory Synapse Hypothesis of Depression. Trends Neurosci. 2015, 38, 279–294. [Google Scholar] [CrossRef]
- Ogata, H.; Higasa, K.; Kageyama, Y.; Tahara, H.; Shimamoto, A.; Takekita, Y.; Koshikawa, Y.; Nonen, S.; Kato, T.; Kinoshita, T.; et al. Relationship between Circulating Mitochondrial DNA and microRNA in Patients with Major Depression. J. Affect. Disord. 2023, 339, 538–546. [Google Scholar] [CrossRef]
- Giorgi, C.; Marchi, S.; Pinton, P. The Machineries, Regulation and Cellular Functions of Mitochondrial Calcium. Nat. Rev. Mol. Cell Biol. 2018, 19, 713–730. [Google Scholar] [CrossRef]
- Drevets, W.C.; Price, J.L.; Furey, M.L. Brain Structural and Functional Abnormalities in Mood Disorders: Implications for Neurocircuitry Models of Depression. Brain Struct. Funct. 2008, 213, 93–118. [Google Scholar] [CrossRef]
- Kondo, D.G.; Forrest, L.N.; Shi, X.; Sung, Y.-H.; Hellem, T.L.; Huber, R.S.; Renshaw, P.F. Creatine Target Engagement with Brain Bioenergetics: A Dose-Ranging Phosphorus-31 Magnetic Resonance Spectroscopy Study of Adolescent Females with SSRI-Resistant Depression. Amino Acids 2016, 48, 1941–1954. [Google Scholar] [CrossRef]
- Wen, L.; Jin, Y.; Li, L.; Sun, S.; Cheng, S.; Zhang, S.; Zhang, Y.; Svenningsson, P. Exercise Prevents Raphe Nucleus Mitochondrial Overactivity in a Rat Depression Model. Physiol. Behav. 2014, 132, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-C.; Wang, T.; Tung, Y.-T.; Lin, W.-T. Effect of Exercise Training on Skeletal Muscle SIRT1 and PGC-1α Expression Levels in Rats of Different Age. Int. J. Med. Sci. 2016, 13, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Gureev, A.P.; Shaforostova, E.A.; Popov, V.N. Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1α Signaling Pathways. Front. Genet. 2019, 10, 435. [Google Scholar] [CrossRef]
- Hardie, D.G. AMPK: Positive and Negative Regulation, and Its Role in Whole-Body Energy Homeostasis. Curr. Opin. Cell Biol. 2015, 33, 1–7. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, R.A.L. Exercise-Produced Irisin Effects on Brain-Related Pathological Conditions. Metab. Brain Dis. 2024, 39, 1679–1687. [Google Scholar] [CrossRef]
- Yan, X.; Liu, J.; Ye, Z.; Huang, J.; He, F.; Xiao, W.; Hu, X.; Luo, Z. CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation. PLoS ONE 2016, 11, e0162784. [Google Scholar] [CrossRef]
- Murphy, M.P. How Mitochondria Produce Reactive Oxygen Species. Biochem. J. 2008, 417, 1–13. [Google Scholar] [CrossRef]
- Turrens, J.F. Mitochondrial Formation of Reactive Oxygen Species. J. Physiol. 2003, 552, 335–344. [Google Scholar] [CrossRef]
- Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; et al. Ischaemic Accumulation of Succinate Controls Reperfusion Injury through Mitochondrial ROS. Nature 2014, 515, 431–435. [Google Scholar] [CrossRef]
- Kussmaul, L.; Hirst, J. The Mechanism of Superoxide Production by NADH:Ubiquinone Oxidoreductase (Complex I) from Bovine Heart Mitochondria. Proc. Natl. Acad. Sci. USA 2006, 103, 7607–7612. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef]
- Melo, C.S.; Rocha-Vieira, E.; Freitas, D.A.; Soares, B.A.; Rocha-Gomes, A.; Riul, T.R.; Mendonça, V.A.; Lacerda, A.C.R.; Camargos, A.C.R.; Carvalho, L.E.D.; et al. A Single Session of High-Intensity Interval Exercise Increases Antioxidants Defenses in the Hippocampus of Wistar Rats. Physiol. Behav. 2019, 211, 112675. [Google Scholar] [CrossRef] [PubMed]
- Shirendeb, U.; Reddy, A.P.; Manczak, M.; Calkins, M.J.; Mao, P.; Tagle, D.A.; Hemachandra Reddy, P. Abnormal Mitochondrial Dynamics, Mitochondrial Loss and Mutant Huntingtin Oligomers in Huntington’s Disease: Implications for Selective Neuronal Damage. Hum. Mol. Genet. 2011, 20, 1438–1455. [Google Scholar] [CrossRef]
- Moore, T.M.; Zhou, Z.; Cohn, W.; Norheim, F.; Lin, A.J.; Kalajian, N.; Strumwasser, A.R.; Cory, K.; Whitney, K.; Ho, T.; et al. The Impact of Exercise on Mitochondrial Dynamics and the Role of Drp1 in Exercise Performance and Training Adaptations in Skeletal Muscle. Mol. Metab. 2019, 21, 51–67. [Google Scholar] [CrossRef]
- Innocenti, G.M. Chapter 1—Defining Neuroplasticity. In Handbook of Clinical Neurology; Quartarone, A., Ghilardi, M.F., Boller, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 184, pp. 3–18. ISBN 0072-9752. [Google Scholar]
- Ahmad, R.; Khan, A.; Rehman, I.U.; Lee, H.J.; Khan, I.; Kim, M.O. Lupeol Treatment Attenuates Activation of Glial Cells and Oxidative-Stress-Mediated Neuropathology in Mouse Model of Traumatic Brain Injury. Int. J. Mol. Sci. 2022, 23, 6086. [Google Scholar] [CrossRef] [PubMed]
- Campos, R.M.P.; Barbosa-Silva, M.C.; Ribeiro-Resende, V.T. A Period of Transient Synaptic Density Unbalancing in the Motor Cortex after Peripheral Nerve Injury and the Involvement of Microglial Cells. Mol. Cell. Neurosci. 2023, 124, 103791. [Google Scholar] [CrossRef] [PubMed]
- Durán-Carabali, L.E.; Odorcyk, F.K.; Grun, L.K.; Schmitz, F.; Ramires Junior, O.V.; de Oliveria, M.R.; Campos, K.F.; Hoeper, E.; Carvalho, A.V.S.; Greggio, S.; et al. Maternal Environmental Enrichment Protects Neonatal Brains from Hypoxic-Ischemic Challenge by Mitigating Brain Energetic Dysfunction and Modulating Glial Cell Responses. Exp. Neurol. 2024, 374, 114713. [Google Scholar] [CrossRef]
- Si, Q.; Wu, L.; Pang, D.; Jiang, P. Exosomes in Brain Diseases: Pathogenesis and Therapeutic Targets. MedComm 2023, 4, e287. [Google Scholar] [CrossRef]
- Ongnok, B.; Maneechote, C.; Chunchai, T.; Pantiya, P.; Arunsak, B.; Nawara, W.; Chattipakorn, N.; Chattipakorn, S.C. Modulation of Mitochondrial Dynamics Rescues Cognitive Function in Rats with “doxorubicin-Induced Chemobrain” via Mitigation of Mitochondrial Dysfunction and Neuroinflammation. FEBS J. 2022, 289, 6435–6455. [Google Scholar] [CrossRef]
- Pathak, D.; Shields, L.Y.; Mendelsohn, B.A.; Haddad, D.; Lin, W.; Gerencser, A.A.; Kim, H.; Brand, M.D.; Edwards, R.H.; Nakamura, K. The Role of Mitochondrially Derived ATP in Synaptic Vesicle Recycling. J. Biol. Chem. 2015, 290, 22325–22336. [Google Scholar] [CrossRef]
- Vos, M.; Lauwers, E.; Verstreken, P. Synaptic Mitochondria in Synaptic Transmission and Organization of Vesicle Pools in Health and Disease. Front. Synaptic Neurosci. 2010, 2, 139. [Google Scholar] [CrossRef]
- Torres-Platas, S.G.; Cruceanu, C.; Chen, G.G.; Turecki, G.; Mechawar, N. Evidence for Increased Microglial Priming and Macrophage Recruitment in the Dorsal Anterior Cingulate White Matter of Depressed Suicides. Brain Behav. Immun. 2014, 42, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.E.; Han, H.J. Glucocorticoid Impairs Mitochondrial Quality Control in Neurons. Neurobiol. Dis. 2021, 152, 105301. [Google Scholar] [CrossRef] [PubMed]
- Clement, A.; Madsen, M.J.; Kastaniegaard, K.; Wiborg, O.; Asuni, A.A.; Stensballe, A. Chronic Stress Induces Hippocampal Mitochondrial Damage in APPPS1 Model Mice and Wildtype Littermates. J. Alzheimer’s Dis. 2022, 87, 259–272. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, T.; Zhou, C.X.; Zhang, Q.B.; Wang, H.; Zhou, Y. The Worsening of Skeletal Muscle Atrophy Induced by Immobilization at the Early Stage of Remobilization Correlates with BNIP3-Dependent Mitophagy. BMC Musculoskelet. Disord. 2023, 24, 632. [Google Scholar] [CrossRef] [PubMed]
- Weger, M.; Alpern, D.; Cherix, A.; Ghosal, S.; Grosse, J.; Russeil, J.; Gruetter, R.; de Kloet, E.R.; Deplancke, B.; Sandi, C. Mitochondrial Gene Signature in the Prefrontal Cortex for Differential Susceptibility to Chronic Stress. Sci. Rep. 2020, 10, 18308. [Google Scholar] [CrossRef]
- Csabai, D.; Sebők-Tornai, A.; Wiborg, O.; Czéh, B. A Preliminary Quantitative Electron Microscopic Analysis Reveals Reduced Number of Mitochondria in the Infralimbic Cortex of Rats Exposed to Chronic Mild Stress. Front. Behav. Neurosci. 2022, 16, 885849. [Google Scholar] [CrossRef]
- Rial, D.; Lemos, C.; Pinheiro, H.; Duarte, J.M.; Gonçalves, F.Q.; Real, J.I.; Prediger, R.D.; Gonçalves, N.; Gomes, C.A.; Canas, P.M.; et al. Depression as a Glial-Based Synaptic Dysfunction. Front. Cell. Neurosci. 2016, 9, 521. [Google Scholar] [CrossRef]
- Yu, L.; Li, Y.; Lv, Y.; Gu, B.; Cai, J.; Liu, Q.-S.; Zhao, L. Treadmill Exercise Facilitates Synaptic Plasticity in APP/PS1 Mice by Regulating Hippocampal AMPAR Activity. Cells 2024, 13, 1608. [Google Scholar] [CrossRef]
- Shen, W.; Jin, L.; Zhu, A.; Lin, Y.; Pan, G.; Zhou, S.; Cheng, J.; Zhang, J.; Tu, F.; Liu, C.; et al. Treadmill Exercise Enhances Synaptic Plasticity in the Ischemic Penumbra of MCAO Mice by Inducing the Expression of Camk2a via CYFIP1 Upregulation. Life Sci. 2021, 270, 119033. [Google Scholar] [CrossRef]
- Xie, Q.; Cheng, J.; Pan, G.; Wu, S.; Hu, Q.; Jiang, H.; Wang, Y.; Xiong, J.; Pang, Q.; Chen, X. Treadmill Exercise Ameliorates Focal Cerebral Ischemia/Reperfusion-Induced Neurological Deficit by Promoting Dendritic Modification and Synaptic Plasticity via Upregulating Caveolin-1/VEGF Signaling Pathways. Exp. Neurol. 2019, 313, 60–78. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, W.; Guo, J.; Liu, W.; Huang, X.; Qiao, Y.; Jia, S.; Tian, L.; Zhou, J.; Wang, G. Efficacy and Acceptability of Supervised Group Exercise for Mild to Moderate Major Depressive Disorder: A Feasibility Study. J. Affect. Disord. 2023, 329, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Swain, M.K.; Soman, S.; Tapia, K.; Dagda, R.Y.; Dagda, R.K. Brain-Derived Neurotrophic Factor Protects Neurons by Stimulating Mitochondrial Function through Protein Kinase A. J. Neurochem. 2023, 167, 104–125. [Google Scholar] [CrossRef] [PubMed]
- Molendijk, M.L.; Spinhoven, P.; Polak, M.; Bus, B.A.A.; Penninx, B.W.J.H.; Elzinga, B.M. Serum BDNF Concentrations as Peripheral Manifestations of Depression: Evidence from a Systematic Review and Meta-Analyses on 179 Associations (N=9484). Mol. Psychiatry 2014, 19, 791–800. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Munteanu, O.; Covache-Busuioc, R.-A.; Enyedi, M.; Ciurea, A.V.; Tataru, C.P. From Synaptic Plasticity to Neurodegeneration: BDNF as a Transformative Target in Medicine. Int. J. Mol. Sci. 2025, 26, 4271. [Google Scholar] [CrossRef]
- Hayek, L.E.; Khalifeh, M.; Zibara, V.; Assaad, R.A.; Emmanuel, N.; Karnib, N.; El-Ghandour, R.; Nasrallah, P.; Bilen, M.; Ibrahim, P.; et al. Lactate Mediates the Effects of Exercise on Learning and Memory through SIRT1-Dependent Activation of Hippocampal Brain-Derived Neurotrophic Factor (BDNF). J. Neurosci. 2019, 39, 2369–2382. [Google Scholar] [CrossRef]
- Sleiman, S.F.; Henry, J.; Al-Haddad, R.; El Hayek, L.; Abou Haidar, E.; Stringer, T.; Ulja, D.; Karuppagounder, S.S.; Holson, E.B.; Ratan, R.R.; et al. Exercise Promotes the Expression of Brain Derived Neurotrophic Factor (BDNF) through the Action of the Ketone Body β-Hydroxybutyrate. eLife 2016, 5, e15092. [Google Scholar] [CrossRef] [PubMed]
- Hu, E.; Du, H.; Zhu, X.; Wang, L.; Shang, S.; Wu, X.; Lu, H.; Lu, X. Beta-Hydroxybutyrate Promotes the Expression of BDNF in Hippocampal Neurons under Adequate Glucose Supply. Neuroscience 2018, 386, 315–325. [Google Scholar] [CrossRef]
- Hu, J.; Cai, M.; Shang, Q.; Li, Z.; Feng, Y.; Liu, B.; Xue, X.; Lou, S. Elevated Lactate by High-Intensity Interval Training Regulates the Hippocampal BDNF Expression and the Mitochondrial Quality Control System. Front. Physiol. 2021, 12, 629914. [Google Scholar] [CrossRef] [PubMed]
- Nasir, A.; Rahman, M.U.; Khan, M.; Zahid, M.; Shahab, M.; Jiao, H.; Zeb, A.; Shah, S.A.; Khan, H. Vitamin B6 Via P-JNK/Nrf-2/NF-κB Signaling Ameliorates Cadmium Chloride-Induced Oxidative Stress Mediated Memory Deficits in Mice Hippocampus. Curr. Neuropharmacol. 2025, 23, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Didangelos, T.; Karlafti, E.; Kotzakioulafi, E.; Margariti, E.; Giannoulaki, P.; Batanis, G.; Tesfaye, S.; Kantartzis, K. Vitamin B12 Supplementation in Diabetic Neuropathy: A 1-Year, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 395. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yu, S.; Long, Y.; Shi, A.; Deng, J.; Ma, Y.; Wen, J.; Li, X.; Liu, S.; Zhang, Y.; et al. Tryptophan Metabolism: Mechanism-Oriented Therapy for Neurological and Psychiatric Disorders. Front. Immunol. 2022, 13, 985378. [Google Scholar] [CrossRef]
- Castro-Portuguez, R.; Sutphin, G.L. Kynurenine Pathway, NAD+ Synthesis, and Mitochondrial Function: Targeting Tryptophan Metabolism to Promote Longevity and Healthspan. Exp. Gerontol. 2020, 132, 110841. [Google Scholar] [CrossRef]
- Liu, G.; Sun, W.; Wang, F.; Jia, G.; Zhao, H.; Chen, X.; Tian, G.; Cai, J.; Wang, J. Dietary Tryptophan Supplementation Enhances Mitochondrial Function and Reduces Pyroptosis in the Spleen and Thymus of Piglets after Lipopolysaccharide Challenge. Animal 2023, 17, 100714. [Google Scholar] [CrossRef]
- Ciria, L.F.; Román-Caballero, R.; Vadillo, M.A.; Holgado, D.; Luque-Casado, A.; Perakakis, P.; Sanabria, D. An Umbrella Review of Randomized Control Trials on the Effects of Physical Exercise on Cognition. Nat. Hum. Behav. 2023, 7, 928–941. [Google Scholar] [CrossRef]
- Caponnetto, P.; Casu, M.; Amato, M.; Cocuzza, D.; Galofaro, V.; La Morella, A.; Paladino, S.; Pulino, K.; Raia, N.; Recupero, F.; et al. The Effects of Physical Exercise on Mental Health: From Cognitive Improvements to Risk of Addiction. Int. J. Environ. Res. Public Health 2021, 18, 13384. [Google Scholar] [CrossRef]
- Albrahim, T.; Alangry, R.; Alotaibi, R.; Almandil, L.; Alburikan, S. Effects of Regular Exercise and Intermittent Fasting on Neurotransmitters, Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Cortex of Ovariectomized Rats. Nutrients 2023, 15, 4270. [Google Scholar] [CrossRef]
- Oliveira, D.M.G.; Aguiar, L.T.; de Oliveira Limones, M.V.; Gomes, A.G.; da Silva, L.C.; de Morais Faria, C.D.C.; Scalzo, P.L. Aerobic Training Efficacy in Inflammation, Neurotrophins, and Function in Chronic Stroke Persons: A Randomized Controlled Trial Protocol. J. Stroke Cerebrovasc. Dis. 2019, 28, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Vaynman, S.; Ying, Z.; Gomez-Pinilla, F. Hippocampal BDNF Mediates the Efficacy of Exercise on Synaptic Plasticity and Cognition. Eur. J. Neurosci. 2004, 20, 2580–2590. [Google Scholar] [CrossRef]
- Haghighi, A.H.; Bandali, M.R.; Askari, R.; Shahrabadi, H.; Barone, R.; Bei, R.; Farsetti, P.; Perrone, M.A. The Effects of Different Exercise Training Protocols on Mitochondrial Dynamics in Skeletal and Cardiac Muscles of Wistar Rats. J. Orthop. Surg. Res. 2025, 20, 395. [Google Scholar] [CrossRef] [PubMed]
- Kwon, I.; Jang, Y.; Lee, Y. Endurance Exercise-Induced Autophagy/Mitophagy Coincides with a Reinforced Anabolic State and Increased Mitochondrial Turnover in the Cortex of Young Male Mouse Brain. J. Mol. Neurosci. 2021, 71, 42–54. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, X.; Tian, K.; Liu, Y.; Xiong, S.; Yu, Q.; Dai, L.; Shi, Y.; Zhang, R.; Zeng, R.; et al. Bioavailable Testosterone Is Associated with Symptoms of Depression in Adult Men. J. Int. Med. Res. 2020, 48, 300060520941715. [Google Scholar] [CrossRef]
- Torabi, F.; Ahmadi, R. The Effect of Exercise Volume on Depressive-Related Behaviors and Levels of Brain-Derived Neurotrophic Factor and Serum Testosterone Levels. Int. J. Sport Stud. Health 2024, 7, 56. [Google Scholar] [CrossRef]
- Zhang, K.J.; Ramdev, R.A.; Tuta, N.J.; Spritzer, M.D. Dose-Dependent Effects of Testosterone on Spatial Learning Strategies and Brain-Derived Neurotrophic Factor in Male Rats. Psychoneuroendocrinology 2020, 121, 104850. [Google Scholar] [CrossRef]
- Stubbs, B.; Vancampfort, D.; Firth, J.; Schuch, F.B.; Hallgren, M.; Smith, L.; Gardner, B.; Kahl, K.G.; Veronese, N.; Solmi, M.; et al. Relationship between Sedentary Behavior and Depression: A Mediation Analysis of Influential Factors across the Lifespan among 42,469 People in Low- and Middle-Income Countries. J. Affect. Disord. 2018, 229, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Hallgren, M.; Nguyen, T.-T.-D.; Owen, N.; Vancampfort, D.; Dunstan, D.W.; Wallin, P.; Andersson, G.; Ekblom-Bak, E. Associations of Sedentary Behavior in Leisure and Occupational Contexts with Symptoms of Depression and Anxiety. Prev. Med. 2020, 133, 106021. [Google Scholar] [CrossRef] [PubMed]
- Endrighi, R.; Steptoe, A.; Hamer, M. The Effect of Experimentally Induced Sedentariness on Mood and Psychobiological Responses to Mental Stress. Br. J. Psychiatry 2016, 208, 245–251. [Google Scholar] [CrossRef]
- Schuch, F.; Vancampfort, D.; Firth, J.; Rosenbaum, S.; Ward, P.; Reichert, T.; Bagatini, N.C.; Bgeginski, R.; Stubbs, B. Physical Activity and Sedentary Behavior in People with Major Depressive Disorder: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2017, 210, 139–150. [Google Scholar] [CrossRef]
- Park, H.-S.; Kim, C.-J.; Kwak, H.-B.; No, M.-H.; Heo, J.-W.; Kim, T.-W. Physical Exercise Prevents Cognitive Impairment by Enhancing Hippocampal Neuroplasticity and Mitochondrial Function in Doxorubicin-Induced Chemobrain. Neuropharmacology 2018, 133, 451–461. [Google Scholar] [CrossRef]
- Hallgren, M.; Nguyen, T.-T.-D.; Owen, N.; Stubbs, B.; Vancampfort, D.; Lundin, A.; Dunstan, D.; Bellocco, R.; Lagerros, Y.T. Cross-Sectional and Prospective Relationships of Passive and Mentally Active Sedentary Behaviours and Physical Activity with Depression. Br. J. Psychiatry 2020, 217, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Ji, L.L. Muscle Immobilization and Remobilization Downregulates PGC-1α Signaling and the Mitochondrial Biogenesis Pathway. J. Appl. Physiol. 2013, 115, 1618–1625. [Google Scholar] [CrossRef]
- Miotto, P.M.; Mcglory, C.; Bahniwal, R.; Kamal, M.; Phillips, S.M.; Holloway, G.P. Supplementation with Dietary ω-3 Mitigates Immobilization-Induced Reductions in Skeletal Muscle Mitochondrial Respiration in Young Women. FASEB J. 2019, 33, 8232–8240. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, P.A.; Powers, S.K.; Ferreira, R.M.; Amado, F.; Appell, H.J.; Duarte, J.A. Impact of Lifelong Sedentary Behavior on Mitochondrial Function of Mice Skeletal Muscle. J. Gerontol. Ser. A 2009, 64A, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Gungor-Orhan, I.; Akin, S.; Powers, S.K.; Olgaz-Bingol, S.; Demirel, H.A. Sedentary Lifestyle Induces Oxidative Stress and Atrophy in Rat Skeletal Muscle. Exp. Physiol. 2025, 110, 857–865. [Google Scholar] [CrossRef]
- Liu, S.; Liu, X.; Ke, M.; Wang, J. Sleep Fragmentation Impairs Cognitive Function and Exacerbates Alzheimer’s Disease-Related Pathology in a Mouse Model by Disrupting Mitochondrial Biogenesis. Exp. Neurol. 2025, 386, 115153. [Google Scholar] [CrossRef]
- Fazeli Sani, A.; Matin Homaee, H.; Banaeifar, A. The Effect of 4 Weeks of Aerobic Training on Spatial Learning, Memory Performance and Mitochondrial Dynamics in the Hippocampal Tissue of Old Rats. J. Ardabil Univ. Med. Sci. 2020, 20, 340–351. [Google Scholar] [CrossRef]
- Demarest, T.G.; Varma, V.R.; Estrada, D.; Babbar, M.; Basu, S.; Mahajan, U.V.; Moaddel, R.; Croteau, D.L.; Thambisetty, M.; Mattson, M.P.; et al. Biological Sex and DNA Repair Deficiency Drive Alzheimer’s Disease via Systemic Metabolic Remodeling and Brain Mitochondrial Dysfunction. Acta Neuropathol. 2020, 140, 25–47. [Google Scholar] [CrossRef]
- Burbulla, L.F.; Song, P.; Mazzulli, J.R.; Zampese, E.; Wong, Y.C.; Jeon, S.; Santos, D.P.; Blanz, J.; Obermaier, C.D.; Strojny, C.; et al. Dopamine Oxidation Mediates Mitochondrial and Lysosomal Dysfunction in Parkinson’s Disease. Science 2017, 357, 1255–1261. [Google Scholar] [CrossRef]
- Hyatt, J.-P.K.; Lu, E.J.; McCall, G.E. Temporal Expression of Mitochondrial Life Cycle Markers during Acute and Chronic Overload of Rat Plantaris Muscles. Front. Physiol. 2024, 15, 1420276. [Google Scholar] [CrossRef]
- Koo, J.-H.; Kang, E.-B.; Cho, J.-Y. Resistance Exercise Improves Mitochondrial Quality Control in a Rat Model of Sporadic Inclusion Body Myositis. Gerontology 2019, 65, 240–252. [Google Scholar] [CrossRef]
- Parry, H.A.; Roberts, M.D.; Kavazis, A.N. Human Skeletal Muscle Mitochondrial Adaptations Following Resistance Exercise Training. Int. J. Sports Med. 2020, 41, 349–359. [Google Scholar] [CrossRef]
- Murphy, J.L.; Blakely, E.L.; Schaefer, A.M.; He, L.; Wyrick, P.; Haller, R.G.; Taylor, R.W.; Turnbull, D.M.; Taivassalo, T. Resistance Training in Patients with Single, Large-Scale Deletions of Mitochondrial DNA. Brain 2008, 131, 2832–2840. [Google Scholar] [CrossRef] [PubMed]
- Franchi, M.; Brocca, L.; Sarto, F.; Sirago, G.; Candia, J.; Giacomello, E.; De Vito, G.; Ferrucci, L.; Pellegrino, M.A.; Bottinelli, R.; et al. Resistance Exercise Following Short Term Muscle Disuse Leads to Enhanced Mitochondrial Activity and Dynamics. Physiology 2024, 39, 2251. [Google Scholar] [CrossRef]
- Porter, C.; Reidy, P.T.; Bhattarai, N.; Sidossis, L.S.; Rasmussen, B.B. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle. Med. Sci. Sports Exerc. 2015, 47, 1922. [Google Scholar] [CrossRef]
- Haun, C.T.; Vann, C.G.; Osburn, S.C.; Mumford, P.W.; Roberson, P.A.; Romero, M.A.; Fox, C.D.; Johnson, C.A.; Parry, H.A.; Kavazis, A.N.; et al. Muscle Fiber Hypertrophy in Response to 6 Weeks of High-Volume Resistance Training in Trained Young Men Is Largely Attributed to Sarcoplasmic Hypertrophy. PLoS ONE 2019, 14, e0215267. [Google Scholar] [CrossRef]
- Chrøis, K.M.; Dohlmann, T.L.; Søgaard, D.; Hansen, C.V.; Dela, F.; Helge, J.W.; Larsen, S. Mitochondrial Adaptations to High Intensity Interval Training in Older Females and Males. Eur. J. Sport Sci. 2020, 20, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P.; Van Essen, M.; Wilkin, G.P.; Burgomaster, K.A.; Safdar, A.; Raha, S.; Tarnopolsky, M.A. Short-Term Sprint Interval versus Traditional Endurance Training: Similar Initial Adaptations in Human Skeletal Muscle and Exercise Performance. J. Physiol. 2006, 575, 901–911. [Google Scholar] [CrossRef]
- Jacobs, R.A.; Flück, D.; Bonne, T.C.; Bürgi, S.; Christensen, P.M.; Toigo, M.; Lundby, C. Improvements in Exercise Performance with High-Intensity Interval Training Coincide with an Increase in Skeletal Muscle Mitochondrial Content and Function. J. Appl. Physiol. 2013, 115, 785–793. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, J.R.; Bortolanza, M.; Ferrari, G.D.; Lanfredi, G.P.; do Nascimento, G.C.; Azzolini, A.E.; Del Bel, E.; de Campos, A.C.; Faça, V.M.; Vulczak, A.; et al. One-Week High-Intensity Interval Training Increases Hippocampal Plasticity and Mitochondrial Content without Changes in Redox State. Antioxidants 2020, 9, 445. [Google Scholar] [CrossRef] [PubMed]
- Little, J.P.; Safdar, A.; Wilkin, G.P.; Tarnopolsky, M.A.; Gibala, M.J. A Practical Model of Low-Volume High-Intensity Interval Training Induces Mitochondrial Biogenesis in Human Skeletal Muscle: Potential Mechanisms. J. Physiol. 2010, 588, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P.; MacDonald, M.J.; Hawley, J.A. Physiological Adaptations to Low-Volume, High-Intensity Interval Training in Health and Disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef]
- Spiering, B.A.; Mujika, I.; Sharp, M.A.; Foulis, S.A. Maintaining Physical Performance: The Minimal Dose of Exercise Needed to Preserve Endurance and Strength Over Time. J. Strength Cond. Res. 2021, 35, 1449–1458. [Google Scholar] [CrossRef]
- Correia, É.M.; Monteiro, D.; Bento, T.; Rodrigues, F.; Cid, L.; Vitorino, A.; Figueiredo, N.; Teixeira, D.S.; Couto, N. Analysis of the Effect of Different Physical Exercise Protocols on Depression in Adults: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sports Health 2024, 16, 285–294. [Google Scholar] [CrossRef]
- Wang, X.-Z.; Cai, Z.-D.; Jiang, W.-T.; Fang, Y.-Y.; Sun, W.; Wang, X. Systematic Review and Meta-Analysis of the Effects of Exercise on Depression in Adolescents. Child Adolesc. Psychiatry Ment. Health 2022, 16, 16. [Google Scholar] [CrossRef]
- Cabanas-Sánchez, V.; Lynskey, N.; Ho, F.K.; Pell, J.; Celis-Morales, C. Physical Activity and Risk of Depression: Does the Type and Number of Activities Matter? Lancet 2022, 400, S27. [Google Scholar] [CrossRef]
- Nayor, M.; Shah, R.V.; Miller, P.E.; Blodgett, J.B.; Tanguay, M.; Pico, A.R.; Murthy, V.L.; Malhotra, R.; Houstis, N.E.; Deik, A.; et al. Metabolic Architecture of Acute Exercise Response in Middle-Aged Adults in the Community. Circulation 2020, 142, 1905–1924. [Google Scholar] [CrossRef] [PubMed]
Model | Stress Factor | Intervention | Outcome | Citation |
---|---|---|---|---|
Male Wistar rats | Chronic behaviors stress | Mitochondrial transplantation | Restored mitochondrial function and increased ATP | [34,35,36] |
Sprague–Dawley rats | Maternal separation | Antidepressants | Restores mitochondrial function and increases ATP | [34] |
Adolescent cynomolgus monkeys | Chronic unpredictable mild stress | Chronic stress | Increased metabolic dysfunction and depression | [37] |
Intervention | Model | Effect on Mitochondria | Effects on Depression-Like Behaviors | Citations |
---|---|---|---|---|
Mitochondrial transplantation | Murine | Restores function, increases ATP | Reduces depressive symptoms | [35,36] |
Physical exercise | Murine | Normalizes mitochondrial activity | Improves mood, reduces symptoms | [43,54] |
Herbal treatments (e.g., Sinisan) | Murine | Improves mitochondrial function | Alleviates depressive behaviors | [34] |
Mirtazapine, paroxetine, or sertraline | Human | Improves mitochondrial function | Remission of MDD | [50] |
Creatine supplementation | Human | Increases brain energy stores | Correlates with symptom reduction | [53] |
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Jiménez, A.; Rubio-Valles, M.; Ramos-Hernández, J.A.; González-Rodríguez, E.; Moreno-Brito, V. Adaptations in Mitochondrial Function Induced by Exercise: A Therapeutic Route for Treatment-Resistant Depression. Int. J. Mol. Sci. 2025, 26, 8697. https://doi.org/10.3390/ijms26178697
Ramos-Jiménez A, Rubio-Valles M, Ramos-Hernández JA, González-Rodríguez E, Moreno-Brito V. Adaptations in Mitochondrial Function Induced by Exercise: A Therapeutic Route for Treatment-Resistant Depression. International Journal of Molecular Sciences. 2025; 26(17):8697. https://doi.org/10.3390/ijms26178697
Chicago/Turabian StyleRamos-Jiménez, Arnulfo, Mariazel Rubio-Valles, Javier A. Ramos-Hernández, Everardo González-Rodríguez, and Verónica Moreno-Brito. 2025. "Adaptations in Mitochondrial Function Induced by Exercise: A Therapeutic Route for Treatment-Resistant Depression" International Journal of Molecular Sciences 26, no. 17: 8697. https://doi.org/10.3390/ijms26178697
APA StyleRamos-Jiménez, A., Rubio-Valles, M., Ramos-Hernández, J. A., González-Rodríguez, E., & Moreno-Brito, V. (2025). Adaptations in Mitochondrial Function Induced by Exercise: A Therapeutic Route for Treatment-Resistant Depression. International Journal of Molecular Sciences, 26(17), 8697. https://doi.org/10.3390/ijms26178697