GnomAD Missense Variants of Uncertain Significance: Implications for p53 Stability and Phosphorylation
Abstract
1. Introduction
2. Results
2.1. Impact of VUS Missense on Phosphorylation Sites
2.2. Stability Analysis of Missense VUSs
2.3. Conservation Analysis of Missense VUSs
3. Discussion
4. Materials and Methods
4.1. Selection of Missense TP53 Variants from gnomAD
4.2. Identification and Classification of Missense VUSs in TP53 According to ACMG/AMP and MetaRNN
4.3. Phosphorylation Site Analysis
4.4. p53 Structure and Macromolecular Interactions
4.5. Stability Analysis
4.6. Conservation Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Francioli, L.C.; Goodrich, J.K.; Collins, R.L.; Kanai, M.; Wang, Q.; Alföldi, J.; Watts, N.A.; Vittal, C.; Gauthier, L.D.; et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 2023, 626, 92–100, Erratum in Nature 2024, 625, 92–100. [Google Scholar] [CrossRef]
- Hoffman-Andrews, L. The known unknown: The challenges of genetic variants of uncertain significance in clinical practice. J. Law. Biosci. 2017, 4, 648–657. [Google Scholar] [CrossRef]
- Hu, C.; Susswein, L.R.; Roberts, M.E.; Yang, H.; Marshall, M.L.; Hiraki, S.; Berkofsky-Fessler, W.; Gupta, S.; Shen, W.; Dunn, C.A.; et al. Classification of BRCA2 Variants of Uncertain Significance (VUS) using an ACMG/AMP model incorporating a homology-directed repair (HDR) functional assay. Clin. Cancer Res. 2022, 28, 3742–3751. [Google Scholar] [CrossRef]
- Coudert, E.; Gehant, S.; de Castro, E.; Pozzato, M.; Baratin, D.; Neto, T.; A Sigrist, C.J.; Redaschi, N.; Bridge, A. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics 2023, 39, btac793. [Google Scholar] [CrossRef]
- Nishimura, M.; Takizawa, Y.; Nozawa, K.; Kurumizaka, H. Structural basis for p53 binding to its nucleosomal target DNA sequence. Proc. Natl. Acad. Sci. USA Nexus. 2022, 1, pgac177. [Google Scholar] [CrossRef]
- Dyson, H.J.; Wright, P.E. How does p53 work? Regulation by the intrinsically disordered domains. Trends Biochem. Sci. 2024, 50, 9–17. [Google Scholar] [CrossRef]
- Piovesan, D.; Del Conte, A.; Mehdiabadi, M.; Aspromonte, M.C.; Blum, M.; Tesei, G.; von Bülow, S.; Lindorff-Larsen, K.; Tosatto, S.C.E. MOBIDB in 2025: Integrating ensemble properties and function annotations for intrinsically disordered proteins. Nucleic Acids Res. 2025, 53, D495–D503. [Google Scholar] [CrossRef]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef]
- Ha, J.H.; Prela, O.; Carpizo, D.R.; Loh, S.N. p53 and zinc: A malleable relationship. Front. Mol. Biosci. 2022, 9, 895887. [Google Scholar] [CrossRef]
- Thayer, K.M.; Stetson, S.; Caballero, F.; Chiu, C.; Han, I.S. Navigating the complexity of p53-DNA binding: Implications for cancer therapy. Biophys. Rev. 2024, 16, 479–496. [Google Scholar] [CrossRef]
- Gencel-Augusto, J.; Lozano, G. p53 tetramerization: At the center of the dominant-negative effect of mutant p53. Genes Dev. 2020, 34, 1128–1146. [Google Scholar] [CrossRef]
- Chen, J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med. 2016, 6, a026104. [Google Scholar] [CrossRef]
- Wang, H.; Guo, M.; Wei, H.; Chen, Y. Targeting p53 pathways: Mechanisms, structures, and advances in therapy. Signal Transduct. Target Ther. 2023, 8, 92. [Google Scholar] [CrossRef]
- Wen, J.; Wang, D. Deciphering the PTM codes of the tumor suppressor p53. J. Mol. Cell Biol. 2021, 13, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Su, Z.; Tavana, O.; Gu, W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024, 42, 946–967. [Google Scholar] [CrossRef]
- Hao, Q.; Chen, J.; Lu, H.; Zhou, X. The ARTS of p53-dependent mitochondrial apoptosis. J. Mol. Cell Biol. 2022, 14, mjac074. [Google Scholar] [CrossRef]
- Baugh, E.H.; Ke, H.; Levine, A.J.; Bonneau, R.A.; Chan, C.S. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 2018, 25, 154–160. [Google Scholar] [CrossRef]
- Zhu, G.; Pan, C.; Bei, J.X.; Li, B.; Liang, C.; Xu, Y.; Fu, X. Mutant p53 in cancer progression and targeted therapies. Front. Oncol. 2020, 10, 595187. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, T.; Su, W.; Dou, Z.; Zhao, D.; Jin, X.; Di, C. Mutant p53 in cancer: From molecular mechanism to therapeutic modulation. Cell Death Dis. 2022, 13, 974. [Google Scholar] [CrossRef]
- de Andrade, K.C.; Lee, E.E.; Tookmanian, E.M.; Kesserwan, C.A.; Manfredi, J.J.; Hatton, J.N.; Loukissas, J.K.; Zavadil, J.; Zhou, L.; Olivier, M.; et al. The TP53 Database: Transition from the International Agency for Research on Cancer to the US National Cancer Institute. Cell Death Differ. 2022, 29, 1071–1073. [Google Scholar] [CrossRef]
- Degn, K.; Beltrame, L.; Hede, F.D.; Sora, V.; Nicolaci, V.; Vabistsevits, M.; Schmiegelow, K.; Wadt, K.; Tiberti, M.; Lambrughi, M.; et al. Cancer-related mutations with local or long-range effects on an allosteric loop of p53. J. Mol. Biol. 2022, 434, 167663. [Google Scholar] [CrossRef]
- Butz, H.; Bozsik, A.; Grolmusz, V.; Szőcs, E.; Papp, J.; Patócs, A. Challenging interpretation of germline TP53 variants based on the experience of a national comprehensive cancer centre. Sci. Rep. 2023, 13, 14259. [Google Scholar] [CrossRef]
- Soussi, T.; Leroy, B.; Devir, M.; Rosenberg, S. High prevalence of cancer-associated TP53 variants in the gnomAD database: A word of caution concerning the use of variant filtering. Hum. Mutat. 2019, 40, 516–524. [Google Scholar] [CrossRef]
- Gerasimavicius, L.; Livesey, B.J.; Marsh, J.A. Correspondence between functional scores from deep mutational scans and predicted effects on protein stability. Protein Sci. 2023, 32, e4688. [Google Scholar] [CrossRef]
- Vihinen, M. Functional effects of protein variants. Biochimie 2021, 180, 104–120. [Google Scholar] [CrossRef]
- Hernández Borrero, L.J.; El-Deiry, W.S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188556. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef]
- de Bruijn, I.; Kundra, R.; Mastrogiacomo, B.; Tran, T.N.; Sikina, L.; Mazor, T.; Li, X.; Ochoa, A.; Zhao, G.; Lai, B.; et al. Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cBioPortal. Cancer Res. 2023, 83, 3861–3867. [Google Scholar] [CrossRef]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [Google Scholar] [CrossRef]
- Loughery, J.; Cox, M.; Smith, L.M.; Meek, D.W. Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters. Nucleic Acids Res. 2014, 42, 7666–7680. [Google Scholar] [CrossRef]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Aguilera, M.A.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef]
- Li, C.; Zhi, D.; Wang, K.; Liu, X. MetaRNN: Differentiating rare pathogenic and rare benign missense SNVs and InDels using deep learning. Genome Med. 2022, 14, 115. [Google Scholar] [CrossRef]
- Cheng, J.; Novati, G.; Pan, J.; Bycroft, C.; Žemgulytė, A.; Applebaum, T.; Pritzel, A.; Wong, L.H.; Zielinski, M.; Sargeant, T.; et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 2023, 381, eadg7492. [Google Scholar] [CrossRef]
- Schmidt, R.J.; Steeves, M.; Bayrak-Toydemir, P.; Benson, K.A.; Coe, B.P.; Conlin, L.K.; Ganapathi, M.; Garcia, J.; Gollob, M.H.; Jobanputra, V.; et al. Recommendations for risk allele evidence curation, classification, and reporting from the ClinGen Low Penetrance/Risk Allele Working Group. Genet. Med. 2024, 26, 101036. [Google Scholar] [CrossRef]
- Xia, Y.; Padre, R.C.; De Mendoza, T.H.; Bottero, V.; Tergaonkar, V.B.; Verma, I.M. Phosphorylation of p53 by IkappaB kinase 2 promotes its degradation by beta-TrCP. Proc. Natl. Acad. Sci. USA 2009, 106, 2629–2634. [Google Scholar] [CrossRef]
- Kato, S.; Han, S.-Y.; Liu, W.; Otsuka, K.; Shibata, H.; Kanamaru, R.; Ishioka, C. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl. Acad. Sci. USA 2003, 100, 8424–8429. [Google Scholar] [CrossRef]
- Ou, Y.H.; Chung, P.H.; Sun, T.P.; Shieh, S.Y. p53 C-terminal phosphorylation by CHK1 and CHK2 participates in the regulation of DNA-damage-induced C-terminal acetylation. Mol. Biol. Cell 2005, 4, 1684–1695. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Sade, R.S.; Townsley, F.M.; Fersht, A.R. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Nucleic Acids Res. 2010, 38, 893–906. [Google Scholar] [CrossRef]
- Johnson, J.L.; Yaron, T.M.; Huntsman, E.M.; Kerelsky, A.; Song, J.; Regev, A.; Lin, T.-Y.; Liberatore, K.; Cizin, D.M.; Cohen, B.M.; et al. An atlas of substrate specificities for the human serine/threonine kinome. Nature 2023, 613, 759–766. [Google Scholar] [CrossRef]
- Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res. 2015, 43, D512–D520. [Google Scholar] [CrossRef]
- Chakravarty, D.; Gao, J.; Phillips, S.; Kundra, R.; Zhang, H.; Wang, J.; Rudolph, J.E.; Yaeger, R.; Soumerai, T.; Nissan, M.H.; et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 2017, 2017, PO.17.00011. [Google Scholar] [CrossRef]
- Suehnholz, S.P.; Nissan, M.H.; Zhang, H.; Kundra, R.; Nandakumar, S.; Lu, C.; Carrero, S.; Dhaneshwar, A.; Fernandez, N.; Xu, B.W.; et al. Quantifying the expanding landscape of clinical actionability for patients with cancer. Cancer Discov. 2024, 14, 49–65. [Google Scholar] [CrossRef]
- Nassar, L.R.; Barber, G.P.; Benet-Pagès, A.; Casper, J.; Clawson, H.; Diekhans, M.; Fischer, C.; Gonzalez, J.N.; Hinrichs, A.S.; Lee, B.T.; et al. The UCSC Genome Browser database: 2023 update. Nucleic Acids Res. 2023, 51, 1188–1195. [Google Scholar] [CrossRef]
- Radivojac, P.; Baenziger, P.H.; Kann, M.G.; Mort, M.E.; Hahn, M.W.; Mooney, S.D. Gain and loss of phosphorylation sites in human cancer. Bioinformatics 2008, 24, i241–i247. [Google Scholar] [CrossRef]
- Lagarde, W.H.; Blackwelder, A.J.; Minges, J.T.; Hnat, A.T.; French, F.S.; Wilson, E.M. Androgen receptor exon 1 mutation causes androgen insensitivity by creating phosphorylation site and inhibiting melanoma antigen-A11 activation of NH2- and carboxyl-terminal interaction-dependent transactivation. J. Biol. Chem. 2012, 287, 10905–10915. [Google Scholar] [CrossRef]
- Wang, X.; Mei, D.; Gou, L.; Zhao, S.; Gao, C.; Guo, J.; Luo, S.; Guo, B.; Yang, Z.; Wang, Q.; et al. Functional evaluation of a novel GRIN2B missense variant associated with epilepsy and intellectual disability. NeuroScience 2023, 526, 107–120. [Google Scholar] [CrossRef]
- Costa-Guda, J.; Marinoni, I.; Molatore, S.; Pellegata, N.S.; Arnold, A. Somatic mutation and germline sequence abnormalities in CDKN1B, encoding p27Kip1, in sporadic parathyroid adenomas. J. Clin. Endocrinol. Metab. 2011, 96, 701–706. [Google Scholar] [CrossRef]
- Bencivenga, D.; Stampone, E.; Aulitto, A.; Tramontano, A.; Barone, C.; Negri, A.; Roberti, D.; Perrotta, S.; Della Ragione, F.; Borriello, A. A cancer-associated CDKN1B mutation induces p27 phosphorylation on a novel residue: A new mechanism for tumor suppressor loss-of-function. Mol. Oncol. 2021, 15, 915–941. [Google Scholar] [CrossRef]
- Ma, S.; Menon, R.; Poulos, R.C.; Wong, J.W.H. Proteogenomic analysis prioritises functional single nucleotide variants in cancer samples. Oncotarget 2017, 8, 95841. [Google Scholar] [CrossRef]
- Kamada, R.; Nomura, T.; Anderson, C.W.; Sakaguchi, K. Cancer-associated p53 tetramerization domain mutants: Quantitative analysis reveals a low threshold for tumor suppressor inactivation. J. Biol. Chem. 2011, 286, 252–258. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Kato, S.; Otsuka, K.; Watanabe, G.; Kumabe, T.; Tominaga, T.; Yoshimoto, T.; Ishioka, C. The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene 2005, 24, 6976–6981. [Google Scholar] [CrossRef]
- Gao, J.; Chang, M.T.; Johnsen, H.C.; Gao, S.P.; Sylvester, B.E.; Sumer, S.O.; Zhang, H.; Solit, D.B.; Taylor, B.S.; Schultz, N.; et al. 3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets. Genome Med. 2017, 9, 4. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef]
- Varadi, M.; Bertoni, D.; Magana, P.; Paramval, U.; Pidruchna, I.; Radhakrishnan, M.; Tsenkov, M.; Nair, S.; Mirdita, M.; Yeo, J.; et al. AlphaFold Protein Structure Database in 2024: Providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 2024, 52, 368–375. [Google Scholar] [CrossRef]
- Meng, E.C.; Goddard, T.D.; Pettersen, E.F.; Couch, G.S.; Pearson, Z.J.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 2023, 32, e4792. [Google Scholar] [CrossRef]
- PDBe-KB consortium; Varadi, M.; Berrisford, J.; Deshpande, M.; Nair, S.S.; Gutmanas, A.; Armstrong, D.; Pravda, L.; Al-Lazikani, B.; Anyango, S.; et al. PDBe-KB: A community-driven resource for structural and functional annotations. Nucleic Acids Res. 2020, 48, D344–D353. [Google Scholar] [CrossRef]
- Rodrigues, C.H.M.; Pires, D.E.V.; Ascher, D.B. DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci. 2021, 30, 60–69. [Google Scholar] [CrossRef]
- Broom, A.; Trainor, K.; Jacobi, Z.; Meiering, E.M. Computational modeling of protein stability: Quantitative analysis reveals solutions to pervasive problems. Structure 2020, 28, 717–726. [Google Scholar] [CrossRef]
rs ID. | HGVS Gene | Total Allele Frequency | Exon | HGVS Protein | Domain | ΔΔG Stability (kcal/mol) | PhS Loss and Gain | Site Percentile (%)/Log2 Score | Kinase | PhyloP100way | MetaRNN Classification/Score |
---|---|---|---|---|---|---|---|---|---|---|---|
rs769884991 | c.4G>A | 0.00001315 | 2 | p.Glu2Lys | 0.29 | 1.86485 | U/(0.4533) | ||||
rs781595324 | c.14A>G | 0.000006577 | 2 | p.Gln5Arg | 0.28 | 2.04501 | B. Supporting/(0.2703) | ||||
rs1555527015 | c.26G>A | 0.000006574 | 2 | p.Ser9Asn | TAD1 | 0.1 | Loss of PhS | −1.37798 | B. Moderate/(0.1418) | ||
rs201382018 | c.31G>A | 0.000006579 | 2 | p.Glu11Lys | TAD1 | 0.35 | 2.04501 | U/(0.516) | |||
rs201382018 | c.31G>C | 0.00005922 | 2 | p.Glu11Gln | TAD1 | 0.32 | 2.04501 | B. Moderate/(0.1873) | |||
rs878854070 | c.38C>T | 0.000006573 | 2 | p.Pro13Leu | TAD1 | −0.24 | 5.468 | P. Supporting/(0.7871) | |||
rs2073520420 | c.44G>A | 0.000006573 | 2 | p.Ser15Asn | TAD1 | 0.19 | Loss of PhS | 2.85572 | P. Supporting/(0.8056) | ||
rs786201148 | c.147T>G | 0.00000657 | 4 | p.Asp49Glu | TAD2 | 0.1 | −1.63604 | B. Moderate/(0.1204) | |||
rs2073469226 | c.251C>A | 0.000006571 | 4 | p.Ala84Asp | 0.01 | 2.78094 | B. Supporting/(0.3486) | ||||
rs730882023 | c.289G>T | 0.00000657 | 4 | p.Val97Phe | −0.58 | 1.47592 | P. Moderate/(0.9355) | ||||
rs1373046761 | c.301A>G | 0.000006574 | 4 | p.Lys101Glu | DBD | −0.11 | 1.27515 | B. Moderate/(0.2149) | |||
rs781724995 | c.341T>C | 0.00000657 | 4 | p.Leu114Ser | DBD | 0.44 | Gain of PhS | 97.371/1.433 | NEK7 | 5.1902 | U/(0.4549) |
rs1064794141 | c.353C>T | 0.00000657 | 4 | p.Thr118Ile | DBD | −0.58 | 6.19406 | P. Moderate/(0.8791) | |||
rs730881997 | c.370T>A | 0.000006569 | 4 | p.Cys124Ser | DBD | −1.03 | Gain of PhS | 97.169/1.087 | ULK2 | 5.69213 | P. Supporting/(0.7982) |
rs1438095083 | c.385G>A | 0.000006576 | 5 | p.Ala129Thr | DBD | −0.04 | Gain of PhS | 99.889/3.167 | MST1 * | −4.88432 | B. Moderate/(0.111) |
rs1438095083 | c.385G>T | 0.000006576 | 5 | p.Ala129Ser | DBD | 0.24 | Gain of PhS | 99.9015/1.843 | YSK4 * | −4.88432 | B. Strong/(0.07679) |
rs786202752 | c.464C>G | 0.000001971 | 5 | p.Thr155Ser | DBD | −1.12 | Gain of PhS | 99.979/5.891 | MPSK1 * | 1.03859 | B. Moderate/(0.1525) |
rs730882003 | c.607G>A | 0.00000657 | 6 | p.Val203Met | DBD | −0.49 | 0.238197 | U/(0.5134) | |||
rs1260903787 | c.611A>G | 0.000006574 | 6 | p.Glu204Gly | DBD | −1.18 | 5.04056 | P. Supporting/(0.8064) | |||
rs35163653 | c.649G>A | 0.00000657 | 6 | p.Val217Met | DBD | −0.79 | −0.402118 | U/(0.5922) | |||
rs146340390 | c.665C>T | 0.00001972 | 6 | p.Pro222Leu | DBD | −0.36 | 2.63938 | U/(0.6596) | |||
rs748891343 | c.861G>C | 0.000006573 | 8 | p.Glu287Asp | DBD | −0.71 | −1.88432 | B. Moderate/(0.177) | |||
rs781490101 | c.872A>G | 0.000006574 | 8 | p.Lys291Arg | −0.95 | 6.24272 | U/(0.6451) | ||||
rs1064794810 | c.970G>C | 0.000006575 | 9 | p.Asp324His | TET | 1.34 | 1.51206 | U/(0.5359) | |||
rs121912659 | c.974G>T | 0.000006574 | 9 | p.Gly325Val | TET | −0.67 | 0.0564646 | P. Supporting/(0.7916) | |||
rs771939956 | c.1004G>A | 0.000006573 | 10 | p.Arg335His | TET | −0.61 | 1.97449 | U/(0.5887) | |||
rs150293825 | c.1014C>G | 0.000006574 | 10 | p.Phe338Leu | TET | −1.73 | −2.6002 | U/(0.6045) | |||
rs1463722976 | c.1020G>T | 0.000006571 | 10 | p.Met340Ile | TET | −0.55 | 0.558512 | B. Moderate/(0.1587) | |||
rs375573770 | c.1027G>C | 0.000006572 | 10 | p.Glu343Gln | TET | −0.22 | 2.51909 | B. Supporting/(0.2829) | |||
rs768046010 | c.1048C>G | 0.000006572 | 10 | p.Leu350Val | TET | 0.1 | 0.449591 | U/(0.5661) | |||
rs768803947 | c.1085G>T | 0.000006571 | 10 | p.Ser362Ile | −0.3 | Loss of PhS | −0.203937 | U/(0.5226) | |||
NR | c.1119G>T | 0.000006577 | 11 | p.Lys373Asn | 0.03 | 1.27169 | B. Supporting/(0.32) | ||||
rs1555524130 | c.1133C>G | 0.000006573 | 11 | p.Ser378Cys | −0.36 | Loss of PhS | 4.292 | B. Supporting/(0.4024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Ayala, F.D.; Ayala-Madrigal, M.d.l.L.; Peregrina-Sandoval, J.; Moreno-Ortiz, J.M.; González-Mercado, A.; Gutiérrez-Angulo, M. GnomAD Missense Variants of Uncertain Significance: Implications for p53 Stability and Phosphorylation. Int. J. Mol. Sci. 2025, 26, 7455. https://doi.org/10.3390/ijms26157455
García-Ayala FD, Ayala-Madrigal MdlL, Peregrina-Sandoval J, Moreno-Ortiz JM, González-Mercado A, Gutiérrez-Angulo M. GnomAD Missense Variants of Uncertain Significance: Implications for p53 Stability and Phosphorylation. International Journal of Molecular Sciences. 2025; 26(15):7455. https://doi.org/10.3390/ijms26157455
Chicago/Turabian StyleGarcía-Ayala, Fernando Daniel, María de la Luz Ayala-Madrigal, Jorge Peregrina-Sandoval, José Miguel Moreno-Ortiz, Anahí González-Mercado, and Melva Gutiérrez-Angulo. 2025. "GnomAD Missense Variants of Uncertain Significance: Implications for p53 Stability and Phosphorylation" International Journal of Molecular Sciences 26, no. 15: 7455. https://doi.org/10.3390/ijms26157455
APA StyleGarcía-Ayala, F. D., Ayala-Madrigal, M. d. l. L., Peregrina-Sandoval, J., Moreno-Ortiz, J. M., González-Mercado, A., & Gutiérrez-Angulo, M. (2025). GnomAD Missense Variants of Uncertain Significance: Implications for p53 Stability and Phosphorylation. International Journal of Molecular Sciences, 26(15), 7455. https://doi.org/10.3390/ijms26157455