The Latest Advances in Omics Technology for Assessing Tissue Damage: Implications for the Study of Sudden Cardiac Death
Abstract
1. Introduction
2. Proteomics in Tissue Damage and Sudden Cardiac Death
2.1. Proteomic Analysis Techniques
2.1.1. Two-Dimensional Gel Electrophoresis (2D-GE)
2.1.2. Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)
2.1.3. Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH)
2.1.4. Microarray Technology
2.1.5. Protein–Protein Interactions (PPIs)
2.2. Proteomic Markers: Profiling, Stability, Degradation, and Forensic Implications
3. Metabolomics: Insights into Biochemical Changes
3.1. General Considerations
3.2. Metabolomic Markers: Main Applications and Forensic Use
4. Transcriptomics—Uncovering Gene Expression in Cardiovascular Dysfunction
5. The Role of Genetics in Understanding and Preventing Sudden Cardiac Deaths
6. Integration of Multi-Omics Approaches in Postmortem Forensic Diagnostics
6.1. Benefits of Combined Analysis (The Multi-Omics Approach)
6.2. Using Artificial Intelligence and Bioinformatics in Pattern Recognition
7. Challenges and Limitations
7.1. Technical Challenges
7.2. Data Interpretation and Reproducibility Issues
7.3. Ethical and Forensic Considerations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kong, M.H.; Fonarow, G.C.; Peterson, E.D.; Curtis, A.B.; Hernandez, A.F.; Sanders, G.D.; Thomas, K.L.; Hayes, D.L.; Al-Khatib, S.M. Systematic Review of the Incidence of Sudden Cardiac Death in the United States. J. Am. Coll. Cardiol. 2011, 57, 794–801. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Wu, J.; Su, R.; Kong, J.; Yu, X. Metabolic risk factors associated with sudden cardiac death (SCD) during acute myocardial ischemia. Forensic Sci. Res. 2017, 2, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Avishay, D.M.; Jones, C.R.; Shaikh, J.D.; Kaur, R.; Aljadah, M.; Kichloo, A.; Shiwalkar, N.; Keshavamurthy, S. Sudden cardiac death: Epidemiology, pathogenesis and management. Rev. Cardiovasc. Med. 2021, 22, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Behr, E.R.; Casey, A.; Sheppard, M.; Wright, M.; Bowker, T.J.; Davies, M.J.; McKenna, W.J.; Wood, D.A. Sudden arrhythmic death syndrome: A national survey of sudden unexplained cardiac death. Heart 2007, 93, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Doolan, A.; Langlois, N.; Semsarian, C. Causes of sudden cardiac death in young Australians. Med. J. Aust. 2004, 180, 110–112. [Google Scholar] [CrossRef]
- Puranik, R.; Chow, C.K.; Duflou, J.A.; Kilborn, M.J.; McGuire, M.A. Sudden death in the young. Heart Rhythm 2005, 2, 1277–1282. [Google Scholar] [CrossRef]
- Bagnall, R.D.; Weintraub, R.G.; Ingles, J.; Duflou, J.; Yeates, L.; Lam, L.; Davis, A.M.; Thompson, T.; Connell, V.; Wallace, J.; et al. A prospective study of sudden cardiac death among children and young adults. N. Engl. J. Med. 2016, 374, 2441–2452. [Google Scholar] [CrossRef]
- Margey, R.; Roy, A.; Tobin, S.; O’Keane, C.J.; McGorrian, C.; Morris, V.; Jennings, S.; Galvin, J. Sudden cardiac death in 14- to 35-year olds in Ireland from 2005 to 2007: A retrospective registry. Europace 2011, 13, 1411–1418. [Google Scholar] [CrossRef]
- Winkel, B.G.; Holst, A.G.; Theilade, J.; Kristensen, I.B.; Thomsen, J.L.; Ottesen, G.L.; Bundgaard, H.; Svendsen, J.H.; Haunsø, S.; Tfelt-Hansen, J. Nationwide study of sudden cardiac death in persons aged 1-35 years. Eur. Heart J. 2011, 32, 983–990. [Google Scholar] [CrossRef]
- Corrado, D.; Basso, C.; Thiene, G. Sudden cardiac death in young people with apparently normal heart. Cardiovasc. Res. 2001, 50, 399–408. [Google Scholar] [CrossRef]
- de Noronha, S.V.; Sharma, S.; Papadakis, M.; Desai, S.; Whyte, G.; Sheppard, M.N. Aetiology of sudden cardiac death in athletes in the United Kingdom: A pathological study. Heart 2009, 95, 1409–1414. [Google Scholar] [CrossRef]
- Semsarian, C.; Ingles, J.; Wilde, A.A.M. Sudden cardiac death in the young: The molecular autopsy and a practical approach to surviving relatives. Eur. Heart J. 2015, 36, 1290–1296. [Google Scholar] [CrossRef]
- Campuzano, O.; Sarquella-Brugada, G. Molecular autopsy in sudden cardiac death. Glob. Cardiol. Sci. Pract. 2023, 2023, e202308. [Google Scholar] [CrossRef] [PubMed]
- Bagnall, R.D.; Semsarian, C. Role of the molecular autopsy in the investigation of sudden cardiac death. Prog. Pediatr. Cardiol. 2017, 45, 17–23. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Wang, C.; Zhou, J. Global, regional, and national burden of Cardiovascular disease, 1990-2021: Results from the 2021 Global Burden of Disease Study. Cureus 2024, 16, e74333. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.; Tang, T.; Wu, E.; Zhang, Y.; He, M.; Wu, R.; Bi, C.; Wang, J.; Zhang, Y.; Shen, B. From multi-omics approaches to personalized medicine in myocardial infarction. Front. Cardiovasc. Med. 2023, 10, 1250340. [Google Scholar] [CrossRef]
- Goez, M.M.; Torres-Madroñero, M.C.; Röthlisberger, S.; Delgado-Trejos, E. Preprocessing of 2-dimensional gel electrophoresis images applied to proteomic analysis: A review. Genom. Proteom. Bioinform. 2018, 16, 63–72. [Google Scholar] [CrossRef]
- Shruthi, B.S.; Vinodhkumar, P.; Selvamani. Proteomics: A new perspective for cancer. Adv. Biomed. Res. 2016, 5, 67. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, X.; Chou, H.; Liu, T.; Fu, H.; Li, G. Proteomic sequencing of stellate ganglions in rabbits with myocardial infarction. Front. Physiol. 2021, 12, 687424. [Google Scholar] [CrossRef]
- Klose, J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 1975, 26, 231–243. [Google Scholar] [CrossRef]
- Magdeldin, S.; Enany, S.; Yoshida, Y.; Xu, B.; Zhang, Y.; Zureena, Z.; Lokamani, I.; Yaoita, E.; Yamamoto, T. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clin. Proteom. 2014, 11, 16. [Google Scholar] [CrossRef]
- Smith, R. Two-dimensional electrophoresis: An overview. Methods Mol. Biol. 2009, 519, 1–16. [Google Scholar] [CrossRef]
- Shamekhi, S.; Miran Baygi, M.H.; Azarian, B.; Gooya, A. A novel multi-scale Hessian based spot enhancement filter for two dimensional gel electrophoresis images. Comput. Biol. Med. 2015, 66, 154–169. [Google Scholar] [CrossRef]
- Abramoff, M.D. ImageJ as an image processing tool and library. Microsc. Microanal. 2007, 13, 1672–1673. [Google Scholar] [CrossRef]
- Silva, T.S.; Richard, N.; Dias, J.P.; Rodrigues, P.M. Data visualization and feature selection methods in gel-based proteomics. Curr. Protein Pept. Sci. 2014, 15, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Rabilloud, T.; Lelong, C. Two-dimensional gel electrophoresis in proteomics: A tutorial. J. Proteom. 2011, 74, 1829–1841. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.B.; Hoving, S.; Westermeier, R. Isoelectric focusing and two-dimensional gel electrophoresis. Methods Enzymol. 2009, 463, 515–540. [Google Scholar] [CrossRef] [PubMed]
- Suna, G.; Mayr, M. Proteomics. In Encyclopedia of Cardiovascular Research and Medicine; Elsevier: Amsterdam, The Netherlands, 2018; pp. 166–180. [Google Scholar] [CrossRef]
- Frederick, K.; Ciborowski, P. SWATH-MS. In Proteomic Profiling and Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; pp. 161–173. [Google Scholar] [CrossRef]
- Krasny, L.; Bland, P.; Kogata, N.; Wai, P.; Howard, B.A.; Natrajan, R.C.; Huang, P.H. SWATH mass spectrometry as a tool for quantitative profiling of the matrisome. J. Proteom. 2018, 189, 11–22. [Google Scholar] [CrossRef]
- Gillet, L.C.; Navarro, P.; Tate, S.; Röst, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Mol. Cell. Proteom. 2012, 11, O111.016717. [Google Scholar] [CrossRef]
- Gygi, S.P.; Rochon, Y.; Franza, B.R.; Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 1999, 19, 1720–1730. [Google Scholar] [CrossRef]
- Neagu, M.; Bostan, M.; Constantin, C. Protein microarray technology: Assisting personalized medicine in oncology (Review). World Acad. Sci. J. 2019, 1, 113–124. [Google Scholar] [CrossRef]
- Haab, B.B. Antibody arrays in cancer research. Mol. Cell. Proteom. 2005, 4, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-S.; Zhu, H. Protein microarrays. Biotechniques 2006, 40, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Kopf EZharhary, D. Antibody arrays-An emerging tool cancer proteomics. Int. J. Biochem. Cell. Bio. 2007, 39, 1305–1317. [Google Scholar] [CrossRef] [PubMed]
- Constantin, C.; Surcel, M.; Neagu, M. Protein microarray technology antibody detection associated human pathology. Rom. Arch. Microbiol. Immunol. 2018, 77, 236–244. [Google Scholar]
- Poetz, O.; Schwenk, J.M.; Kramer, S.; Stoll, D.; Templin, M.F.; Joos, T.O. Protein microarrays: Catching the proteome. Mech. Ageing Dev. 2005, 126, 161–170. [Google Scholar] [CrossRef]
- Speer, R.; Wulfkuhle, J.; Espina, V.; Aurajo, R.; Edmiston, K.H.; Liotta, L.A.; Petricoin 3rd, E.F. Development of reverse phase protein microarrays for clinical applications and patient-tailored therapy. Cancer Genom. Proteom. 2007, 4, 157–164. [Google Scholar]
- Angenendt, P.; Kreutzberger, J.; Glökler, J.; Hoheisel, J.D. Generation of high density protein microarrays by cell-free in situ expression of unpurified PCR products. Mol. Cell. Proteom. 2006, 5, 1658–1666. [Google Scholar] [CrossRef]
- Schweitzer, B.; Predki, P.; Snyder, M. Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics 2003, 3, 2190–2199. [Google Scholar] [CrossRef]
- Yuk, C.-S.; Lee, H.K.; Kim, H.T.; Choi, Y.K.; Lee, B.C.; Chun, B.-H.; Chung, N. Development and evaluation of a protein microarray chip for diagnosis of hepatitis C virus. Biotechnol. Lett. 2004, 26, 1563–1568. [Google Scholar] [CrossRef]
- Ramachandran, N.; Raphael, J.V.; Hainsworth, E.; Demirkan, G.; Fuentes, M.G.; Rolfs, A.; Hu, Y.; LaBaer, H. Next-generation high-density self-assembling functional protein arrays. Nat. Methods 2008, 5, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Song, L.; Petritis, B.; Bian, X.; Wang, H.; Viloria, J.; Park, J.; Bui, H.; Li, H.; Wang, J.; et al. Multiplexed nucleic acid programmable protein arrays. Theranostics 2017, 7, 4057–4070. [Google Scholar] [CrossRef] [PubMed]
- Braun, P.; Gingras, A.-C. History of protein-protein interactions: From egg-white to complex networks. Proteomics 2012, 12, 1478–1498. [Google Scholar] [CrossRef] [PubMed]
- Ofran, Y.; Rost, B. Analysing six types of protein-protein interfaces. J. Mol. Biol. 2003, 325, 377–387. [Google Scholar] [CrossRef]
- Zhang, A. Protein Interaction Networks; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Yanagida, M. Functional proteomics; current achievements. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002, 771, 89–106. [Google Scholar] [CrossRef]
- Berggård, T.; Linse, S.; James, P. Methods for the detection and analysis of protein-protein interactions. Proteomics 2007, 7, 2833–2842. [Google Scholar] [CrossRef]
- Pedamallu, C.S.; Posfai, J. Open source tool for prediction of genome wide protein-protein interaction network based on ortholog information. Source Code Biol. Med. 2010, 5, 8. [Google Scholar] [CrossRef]
- Rao, V.S.; Srinivas, K.; Sujini, G.N.; Kumar, G.N.S. Protein-protein interaction detection: Methods and analysis. Int. J. Proteom. 2014, 2014, 147648. [Google Scholar] [CrossRef]
- Netala, V.R.; Hou, T.; Wang, Y.; Zhang, Z.; Teertam, S.K. Cardiovascular Biomarkers: Tools for Precision Diagnosis and Prognosis. Int. J. Mol. Sci. 2025, 26, 3218. [Google Scholar] [CrossRef]
- Călburean, P.-A.; Lupu, S.; Huțanu, A.; Oprica, M.; Opriș, D.R.; Stan, A.; Scurtu, A.-C.; Aniței, D.; Harpa, M.; Brînzaniuc, K.; et al. Natriuretic peptides and soluble ST2 improves echocardiographic diagnosis of elevated left ventricular filling pressures. Sci. Rep. 2024, 14, 22171. [Google Scholar] [CrossRef]
- Potocki, M.; Ziller, R.; Mueller, C. Mid-Regional Pro-Adrenomedullin Acute Heart Failure: Better Biomarker Just Another Biomarker? Curr. Heart Fail. Rep. 2012, 9, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Park, K.C.; Gaze, D.C.; Collinson, P.O.; Marber, M.S. Cardiac troponins: From myocardial infarction to chronic disease. Cardiovasc. Res. 2017, 113, 1708–1718. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Ugur, K.; Aydin, S.; Sahin, I.; Yardim, M. Biomarkers acute myocardial infarction: Current perspectives. Vasc. Health Risk Manag. 2019, ume 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gibler, W.B.; Gibler, C.D.; Weinshenker, E.; Abbottsmith, C.; Hedges, J.R.; Barsan, W.G.; Sperling, M.; Chen, I.-W.; Embry, S.; Kereiakes, D. Myoglobin as an early indicator of acute myocardial infarction. Ann. Emerg. Med. 1987, 16, 851–856. [Google Scholar] [CrossRef]
- Mair, J.; Morandell, D.; Genser, N.; Lechleitner, P.; Dienstl, F.; Puschendorf, B. Equivalent early sensitivities of myoglobin, creatine kinase MB mass, creatine kinase isoform ratios, and cardiac troponins I and T for acute myocardial infarction. Clin. Chem. 1995, 41, 1266–1272. [Google Scholar] [CrossRef]
- Abadie, J.M.; Blassingame, C.L.; Bankson, D.D. Albumin cobalt binding assay to rule out acute coronary syndrome. Ann. Clin. Lab. Sci. 2005, 35, 66–72. [Google Scholar]
- Bhakthavatsala Reddy, C.; Cyriac, C.; Desle, H.B. Role of “Ischemia Modified Albumin” (IMA) in acute coronary syndromes. Indian Heart J. 2014, 66, 656–662. [Google Scholar] [CrossRef]
- Jawade, P.; Khillare, K.M.; Mangudkar, S.; Palange, A.; Dhadwad, J.; Deshmukh, M. A comparative study of ischemia-modified albumin: A promising biomarker for early detection of acute coronary syndrome (ACS). Cureus 2023, 15, e44357. [Google Scholar] [CrossRef]
- Amezcua-Castillo, E.; González-Pacheco, H.; Sáenz-San Martín, A.; Méndez-Ocampo, P.; Gutierrez-Moctezuma, I.; Massó, F.; Sierra-Lara, D.; Springall, R.; Rodríguez, E.; Arias-Mendoza, A.; et al. C-reactive protein: The quintessential marker of systemic inflammation in coronary artery disease-advancing toward precision medicine. Biomedicines 2023, 11, 2444. [Google Scholar] [CrossRef]
- Cook, N.R.; Buring, J.E.; Ridker, P.M. The effect of including C-reactive protein in cardiovascular risk prediction models for women. Ann. Intern. Med. 2006, 145, 21–29. [Google Scholar] [CrossRef]
- Hansson, G.K.; Hermansson, A. The immune system in atherosclerosis. Nat. Immunol. 2011, 12, 204–212. [Google Scholar] [CrossRef]
- Zaborska, B.; Sikora-Frąc, M.; Smarż, K.; Pilichowska-Paszkiet, E.; Budaj, A.; Sitkiewicz, D.; Sygitowicz, G. The role of galectin-3 in heart failure-the diagnostic, prognostic and therapeutic potential-where do we stand? Int. J. Mol. Sci. 2023, 24, 13111. [Google Scholar] [CrossRef] [PubMed]
- Zaborska, B.; Sygitowicz, G.; Smarż, K.; Pilichowska-Paszkiet, E.; Budaj, A. Galectin-3 is related to right ventricular dysfunction in heart failure patients with reduced ejection fraction and may affect exercise capacity. Sci. Rep. 2020, 10, 16682. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Cheng, J.; Qiu, L.; Cheng, X. Copeptin as a diagnostic and prognostic biomarker in cardiovascular diseases. Front. Cardiovasc. Med. 2022, 9, 901990. [Google Scholar] [CrossRef] [PubMed]
- Łukaszyk, E.; Małyszko, J. Copeptin: Pathophysiology and potential clinical impact. Adv. Med. Sci. 2015, 60, 335–341. [Google Scholar] [CrossRef]
- Lipinski, M.J.; Escárcega, R.O.; D’Ascenzo, F.; Magalhães, M.A.; Baker, N.C.; Torguson, R.; Chen, F.; Epstein, S.E.; Miró, Ò.; Llorens, P.; et al. A systematic review and collaborative meta-analysis to determine the incremental value of copeptin for rapid rule-out of acute myocardial infarction. Am. J. Cardiol. 2014, 113, 1581–1591. [Google Scholar] [CrossRef]
- Rabitzsch, G.; Mair, J.; Lechleitner, P.; Noll, F.; Hofmann, U.; Krause, E.G.; Dienstl, F.; Puschendorf, B. Immunoenzymometric assay of human glycogen phosphorylase isoenzyme BB in diagnosis of ischemic myocardial injury. Clin. Chem. 1995, 41, 966–978. [Google Scholar] [CrossRef]
- Krause, E.G.; Rabitzsch, G.; Noll, F.; Mair, J.; Puschendorf, B. Glycogen phosphorylase isoenzyme BB in diagnosis of myocardial ischaemic injury and infarction. Mol. Cell. Biochem. 1996, 160–161, 289–295. [Google Scholar] [CrossRef]
- Ghimire, A.; Giri, S.; Khanal, N.; Rayamajhi, S.; Thapa, A.; Bist, A.; Devkota, S. Diagnostic accuracy of glycogen phosphorylase BB for myocardial infarction: A systematic review and meta-analysis. J. Clin. Lab. Anal. 2022, 36, e24368. [Google Scholar] [CrossRef]
- Ye, X.-D.; He, Y.; Wang, S.; Wong, G.T.; Irwin, M.G.; Xia, Z. Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacol. Sin. 2018, 39, 1155–1163. [Google Scholar] [CrossRef]
- Rezar, R.; Jirak, P.; Gschwandtner, M.; Derler, R.; Felder, T.K.; Haslinger, M.; Kopp, K.; Seelmaier, C.; Granitz, C.; Hoppe, U.C.; et al. Heart-Type Fatty Acid-Binding Protein (H-FABP) and its Role as a Biomarker in Heart Failure: What Do We Know So Far? J. Clin. Med. 2020, 9, 164. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, S.; Yin, X.; Sicard, P.; Clark, J.; Kanaganayagam, G.S.; Mayr, M.; Marber, M.S. Identification of cardiac myosin-binding protein C as a candidate biomarker of myocardial infarction by proteomics analysis. Mol. Cell. Proteom. 2009, 8, 2687–2699. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, H.; Huang, T. Quantitative proteomics reveal three potential biomarkers for risk assessment of acute myocardial infarction. Bioengineered 2022, 13, 4939–4950. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Park, S.-H.; Mun, S.; Lee, J.; Kang, H.-G. Potential biomarkers to distinguish type 1 myocardial infarction in troponin-elevated diseases. Int. J. Mol. Sci. 2023, 24, 8097. [Google Scholar] [CrossRef]
- Govindan, S.; Kuster, D.W.; Lin, B.; Kahn, D.J.; Jeske, W.P.; Walenga, J.M.; Leya, F.; Hoppensteadt, D.; Fareed, J.; Sadayappan, S. Increase in cardiac myosin binding protein-C plasma levels is a sensitive and cardiac-specific biomarker of myocardial infarction. Am. J. Cardiovasc. Dis. 2013, 3, 60–70. [Google Scholar]
- Captur, G.; Heywood, W.E.; Coats, C.; Rosmini, S.; Patel, V.; Lopes, L.R.; Collis, R.; Patel, N.; Syrris, P.; Bassett, P.; et al. Identification of a Multiplex Biomarker Panel for Hypertrophic Cardiomyopathy Using Quantitative Proteomics and Machine Learning. Mol. Cell. Proteom. 2020, 19, 114–127. [Google Scholar] [CrossRef]
- Kakimoto, Y.; Ueda, A.; Ito, M.; Tanaka, M.; Kubota, T.; Isozaki, S.; Osawa, M. Proteomic profiling of sudden cardiac death with acquired cardiac hypertrophy. Int. J. Leg. Med. 2023, 137, 1453–1461. [Google Scholar] [CrossRef]
- Lin, X.; Lin, Z.; Zhao, X.; Liu, Z.; Xu, C.; Yu, B.; Gao, P.; Wang, Z.; Ge, J.; Shen, Y.; et al. Serum SELENBP1 and VCL Are Effective Biomarkers for Clinical and Forensic Diagnosis of Coronary Artery Spasm. Int. J. Mol. Sci. 2022, 23, 13266. [Google Scholar] [CrossRef]
- Tojo, M.; Shintani-Ishida, K.; Tsuboi, H.; Nakamura, M.; Idota, N.; Ikegaya, H. Postmortem plasma pentraxin 3 is a useful marker of fatal acute coronary syndrome. Sci. Rep. 2019, 9, 8090. [Google Scholar] [CrossRef]
- Kahnert, K.; Soattin, L.; Mills, R.; Wilson, C.; Maurya, S.; Sorrentino, A.; Al-Othman, S.; Tikhomirov, R.; van de Vegte, Y.J.; Hansen, F.B.; et al. Proteomics couples electrical remodelling to inflammation in a murine model of heart failure with sinus node dysfunction. Cardiovasc. Res. 2024, 120, 927–942. [Google Scholar] [CrossRef]
- Stampe, N.K.; Ottenheijm, M.E.; Drici, L.; Albrechtsen, N.J.W.; Nielsen, A.B.; Christoffersen, C.; Warming, P.E.; Engstrøm, T.; Winkel, B.G.; Jabbari, R.; et al. Discovery of plasma proteins associated with ventricular fibrillation during first ST-elevation myocardial infarction via proteomics. Eur. Heart J. Acute Cardiovasc. Care 2024, 13, 264–272. [Google Scholar] [CrossRef]
- Sacco, M.A.; Gualtieri, S.; Calanna, L.; Ricci, P.; Aquila, I. Exploring the Potential of Proteome Analysis as a Promising Tool for Evaluation of Sudden Cardiac Death (SCD) in Forensic Settings: A Literature Review. Int. J. Mol. Sci. 2023, 24, 14351. [Google Scholar] [CrossRef]
- van der Greef, J.; van Wietmarschen, H.; van Ommen, B.; Verheij, E. Looking back into the future: 30 years of metabolomics at TNO. Mass. Spectrom. Rev. 2013, 32, 399–415. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics—the link between genotypes and phenotypes. In Functional Genomics; Springer: Dordrecht, The Netherlands, 2002; pp. 155–171. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Lindon, J.C. Systems biology: Metabonomics. Nature 2008, 455, 1054–1056. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. “Metabonomics”: Understanding metabolic responses living systems pathophysiological stimuli via multivariate statistical analysis biological NMR spectroscopi. Xenobiotica 1999, 29, 1181–1189. [Google Scholar] [CrossRef]
- Klassen, A.; Faccio, A.T.; Canuto, G.A.B.; da Cruz, P.L.R.; Ribeiro, H.C.; Tavares, M.F.M.; Sussulini, A. Metabolomics: Definitions and significance in systems biology. Adv. Exp. Med. Biol. 2017, 965, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, K.T.; Cieslarová, Z.; Tavares, M.F.M.; Simionato, A.V.C. Strategies involving mass spectrometry combined with capillary electrophoresis in metabolomics. Adv. Exp. Med. Biol. 2017, 965, 99–141. [Google Scholar] [CrossRef]
- Seger, C.; Salzmann, L. After another decade: LC-MS/MS became routine in clinical diagnostics. Clin. Biochem. 2020, 82, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Clarke, W. Mass spectrometry in the clinical laboratory: Determining the need and avoiding pitfalls. In Mass Spectrometry for the Clinical Laboratory; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–15. [Google Scholar] [CrossRef]
- Fung, A.W.S.; Sugumar, V.; Ren, A.H.; Kulasingam, V. Emerging role of clinical mass spectrometry in pathology. J. Clin. Pathol. 2020, 73, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, C. Clinical steroid mass spectrometry: A 45-year history culminating in HPLC-MS/MS becoming an essential tool for patient diagnosis. J. Steroid Biochem. Mol. Biol. 2010, 121, 481–490. [Google Scholar] [CrossRef]
- Lynch, K.L. CLSI C62-A: A new standard for clinical mass spectrometry. Clin. Chem. 2016, 62, 24–29. [Google Scholar] [CrossRef]
- Garg, U.; Zhang, Y.V. Mass spectrometry in clinical laboratory: Applications in biomolecular analysis. Methods Mol. Biol. 2016, 1378, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.M.A.; Paiva, M.U.B.; Paiva, D.V.N.; de Oliveira, R.M.; Machado, H.L.; Alves, L.J.S.R.; Picossi, C.R.C.; Faccio, A.T.; Tavares, M.F.M.; Barbas, C.; et al. Innovative Approaches to Assess Intermediate Cardiovascular Risk Subjects: A Review From Clinical to Metabolomics Strategies. Front. Cardiovasc. Med. 2021, 8, 788062. [Google Scholar] [CrossRef] [PubMed]
- Di Girolamo, F.; Lante, I.; Muraca, M.; Putignani, L. The role of mass spectrometry in the “omics” era. Curr. Org. Chem. 2013, 17, 2891–2905. [Google Scholar] [CrossRef]
- Vailati-Riboni, M.; Palombo, V.; Loor, J.J. What Are Omics Sciences? In Periparturient Diseases of Dairy Cows; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Shah, S.H.; Sun, J.-L.; Stevens, R.D.; Bain, J.R.; Muehlbauer, M.J.; Pieper, K.S.; Haynes, C.; Hauser, E.R.; Kraus, W.E.; Granger, C.B.; et al. Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am. Heart J. 2012, 163, 844–850.e1. [Google Scholar] [CrossRef] [PubMed]
- McGranaghan, P.; Saxena, A.; Rubens, M.; Radenkovic, J.; Bach, D.; Schleußner, L.; Pieske, B.; Edelmann, F.; Trippel, T.D. Predictive value of metabolomic biomarkers for cardiovascular disease risk: A systematic review and meta-analysis. Biomarkers 2020, 25, 101–111. [Google Scholar] [CrossRef]
- Luo, J.; Shaikh, J.A.; Huang, L.; Zhang, L.; Iqbal, S.; Wang, Y.; Liu, B.; Zhou, Q.; Ajmal, A.; Rizvi, M.; et al. Human Plasma Metabolomics Identify 9-cis-retinoic Acid and Dehydrophytosphingosine Levels as Novel biomarkers for Early Ventricular Fibrillation after ST-elevated Myocardial Infarction. Bioengineered 2022, 13, 3334–3350. [Google Scholar] [CrossRef]
- Zhang, K.; Yan, H.; Liu, R.; Xiang, P.; Zhang, J.; Deng, K.; Huang, P.; Wang, Z. The Use of Gas Chromatography Coupled with High-Resolution Mass Spectrometry-Based Untargeted Metabolomics to Discover Metabolic Changes and Help in the Determination of Complex Causes of Death: A Preliminary Study. ACS Omega 2021, 6, 2100–2109. [Google Scholar] [CrossRef]
- Song, J.-P.; Chen, L.; Chen, X.; Ren, J.; Zhang, N.-N.; Tirasawasdichai, T.; Hu, Z.-L.; Hua, W.; Hu, Y.-R.; Tang, H.-R.; et al. Elevated plasma β-hydroxybutyrate predicts adverse outcomes and disease progression in patients with arrhythmogenic cardiomyopathy. Sci. Transl. Med. 2020, 12, eaay8329. [Google Scholar] [CrossRef]
- Floegel, A.; Kühn, T.; Sookthai, D.; Johnson, T.; Prehn, C.; Rolle-Kampczyk, U.; Otto, W.; Weikert, C.; Illig, T.; von Bergen, M.; et al. Serum metabolites and risk of myocardial infarction and ischemic stroke: A targeted metabolomic approach in two German prospective cohorts. Eur. J. Epidemiol. 2018, 33, 55–66. [Google Scholar] [CrossRef]
- Paynter, N.P.; Balasubramanian, R.; Giulianini, F.; Wang, D.D.; Tinker, L.F.; Gopal, S.; Deik, A.A.; Bullock, K.; Pierce, K.A.; Scott, J.; et al. Metabolic predictors of incident coronary heart disease in women. Circulation 2018, 137, 841–853. [Google Scholar] [CrossRef]
- Ganna, A.; Salihovic, S.; Sundström, J.; Broeckling, C.D.; Hedman, A.K.; Magnusson, P.K.E.; Pedersen, N.L.; Larsson, A.; Siegbahn, A.; Zilmer, M.; et al. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet. 2014, 10, e1004801. [Google Scholar] [CrossRef] [PubMed]
- Rizza, S.; Copetti, M.; Rossi, C.; Cianfarani, M.A.; Zucchelli, M.; Luzi, A.; Pecchiolia, C.; Porzioe, O.; Di Colaa, G.; Urbani, A.; et al. Metabolomics signature improves the prediction of cardiovascular events in elderly subjects. Atherosclerosis 2014, 232, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Würtz, P.; Havulinna, A.S.; Soininen, P.; Tynkkynen, T.; Prieto-Merino, D.; Tillin, T.; Ghorbani, A.; Artati, A.; Wang, Q.; Tiainen, M.; et al. Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts. Circulation 2015, 131, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.; Blauw, G.J.; Murphy, M.B.; Bollen, E.L.E.M.; Buckley, B.M.; Cobbe, S.M.; Ford, I.; Gaw, A.; Hyland, M.; Jukema, J.W.; et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): A randomised controlled trial. Lancet 2002, 360, 1623–1630. [Google Scholar] [CrossRef]
- Delles, C.; Rankin, N.J.; Boachie, C.; McConnachie, A.; Ford, I.; Kangas, A.; Soininen, P.; Trompet, S.; Mooijaart, S.P.; Jukema, J.W.; et al. Nuclear magnetic resonance-based metabolomics identifies phenylalanine as a novel predictor of incident heart failure hospitalisation: Results from PROSPER and FINRISK 1997. Eur. J. Heart Fail. 2018, 20, 663–673. [Google Scholar] [CrossRef]
- Sliz, E.; Kettunen, J.; Holmes, M.; Williams, C.; Boachie, C.; Wang, Q.; Männikkö, M.; Sebert, S.; Walters, R.; Lin, K.; et al. Metabolomic consequences of genetic inhibition of PCSK9 compared with statin treatment. Circulation 2018, 138, 2499–2512. [Google Scholar] [CrossRef]
- Hilvo, M.; Vasile, V.C.; Donato, L.J.; Hurme, R.; Laaksonen, R. Ceramides and ceramide scores: Clinical applications for cardiometabolic risk stratification. Front. Endocrinol. 2020, 11, 570628. [Google Scholar] [CrossRef]
- Havulinna, A.S.; Sysi-Aho, M.; Hilvo, M.; Kauhanen, D.; Hurme, R.; Ekroos, K.; Salomaa, V.; Laaksonen, R. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arter. Thromb. Vasc. Biol. 2016, 36, 2424–2430. [Google Scholar] [CrossRef]
- Laaksonen, R.; Ekroos, K.; Sysi-Aho, M.; Hilvo, M.; Vihervaara, T.; Kauhanen, D. Plasma ceramides predict cardiovascular death patients stable coronary artery disease acute coronary syndromes beyond LDL—cholesterol. Eur. Heart J. 2016, 37, 1967–1976. [Google Scholar] [CrossRef]
- Hilvo, M.; Meikle, P.J.; Pedersen, E.R.; Tell, G.S.; Dhar, I.; Brenner, H.; Schöttker, B.; Lääperi, M.; Kauhanen, D.; Koistinen, K.M.; et al. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur. Heart J. 2020, 41, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Ellims, A.H.; Wong, G.; Weir, J.M.; Lew, P.; Meikle, P.J.; Taylor, A.J. Plasma lipidomic analysis predicts non-calcified coronary artery plaque in asymptomatic patients at intermediate risk of coronary artery disease. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Volani, C.; Rainer, J.; Hernandes, V.V.; Meraviglia, V.; Pramstaller, P.P.; Smárason, S.V.; Pompilio, G.; Casella, M.; Sommariva, E.; Paglia, G.; et al. Metabolic Signature of Arrhythmogenic Cardiomyopathy. Metabolites 2021, 11, 195. [Google Scholar] [CrossRef]
- Jansen, M.; Schuldt, M.; van Driel, B.O.; Schmidt, A.F.; Christiaans, I.; van der Crabben, S.N.; Hoedemaekers, Y.M.; Dooijes, D.; Jongbloed, J.D.H.; Boven, L.G.; et al. Untargeted Metabolomics Identifies Potential Hypertrophic Cardiomyopathy Biomarkers in Carriers of MYBPC3 Founder Variants. Int. J. Mol. Sci. 2023, 24, 4031. [Google Scholar] [CrossRef]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A.; Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; et al. Erratum to: A survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 181. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhou, X.; Li, R.; Michal, J.J.; Zhang, S.; Dodson, M.V.; Zhang, Z.; Harland, R.M. Whole transcriptome analysis with sequencing: Methods, challenges and potential solutions. Cell. Mol. Life Sci. 2015, 72, 3425–3439. [Google Scholar] [CrossRef]
- Tsakiroglou, M.; Evans, A.; Pirmohamed, M. Leveraging transcriptomics for precision diagnosis: Lessons learned from cancer and sepsis. Front. Genet. 2023, 14, 1100352. [Google Scholar] [CrossRef]
- Sheng, X.; Fan, T.; Jin, X. Identification of key genes involved in acute myocardial infarction by comparative transcriptome analysis. BioMed Res. Int. 2020, 2020, 1470867. [Google Scholar] [CrossRef]
- You, H.; Dong, M. Identification of immuno-inflammation-related biomarkers for acute myocardial infarction based on bioinformatics. J. Inflamm. Res. 2023, 16, 3283–3302. [Google Scholar] [CrossRef]
- Zhuo, L.-A.; Wen, Y.-T.; Wang, Y.; Liang, Z.-F.; Wu, G.; Nong, M.-D.; Miao, L. LncRNA SNHG8 is identified as a key regulator of acute myocardial infarction by RNA-seq analysis. Lipids Health Dis. 2019, 18, 201. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.; Abidi, E.; Diab, R.; Ghali, R.; Al-Awassi, H.; Booz, G.W.; Zouein, F.A. Sex differences in cardiac remodeling post myocardial infarction with acute cigarette smoking. Biol. Sex. Differ. 2022, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Shao, L.; Ma, J. Toll-like receptors 2 and 4 predict new-onset atrial fibrillation in acute myocardial infarction patients. Int. Heart J. 2018, 59, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Zivotić, I.; Djurić, T.; Stanković, A.; Milasinovic, D.; Stankovic, G.; Dekleva, M.; Nikolic, N.M.; Alavantic, D.; Zivkovic, M. CDKN2B gene expression is affected by 9p21.3 rs10757278 in CAD patients, six months after the MI. Clin. Biochem. 2019, 73, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, S.-F.; Ma, Y.-T.; Chen, D.; Ma, J.; Zhou, Y.-M.; Wen, B.Z. Expression of tissue factor in monocytes and plasma during acute phase and recovery stage of patients with myocardial infarction. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2011, 23, 372–373. [Google Scholar]
- Zhang, Y.; Zhong, P.; Xu, Y.; Wang, B.; Zhu, T.; Zhang, W.; Wang, H.; Wei, Z.; Huang, J. Differential expression of TXNIP isoforms in the peripheral leukocytes of patients with acute myocardial infarction. Dis. Markers 2018, 2018, 1–6. [Google Scholar] [CrossRef]
- Yu, S.; Qian, H.; Tian, D.; Yang, M.; Li, D.; Xu, H.; Chen, J.; Yang, J.; Hao, X.; Liu, Z.; et al. Linggui Zhugan Decoction activates the SIRT1-AMPK-PGC1α signaling pathway to improve mitochondrial and oxidative damage in rats with chronic heart failure caused by myocardial infarction. Front. Pharmacol. 2023, 14, 1074837. [Google Scholar] [CrossRef]
- Mompeón, A.; Ortega-Paz, L.; Vidal-Gómez, X.; Costa, T.J.; Pérez-Cremades, D.; Garcia-Blas, S.; Brugaletta, S.; Sanchis, J.; Sabate, M.; Novella, S.; et al. Disparate miRNA expression in serum and plasma of patients with acute myocardial infarction: A systematic and paired comparative analysis. Sci. Rep. 2020, 10, 5373. [Google Scholar] [CrossRef]
- Pinchi, E.; Frati, P.; Aromatario, M.; Cipolloni, L.; Fabbri, M.; Russa, L. miR1, miR-499 miR-208 sensitive markers diagnose sudden death due early acute myocardial infarction. J. Cell. Mol. Med. 2019, 23, 6005–6016. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhuang, L.; Tian, P.; Ma, M.; Wu, G.; Zhang, Y. Rapid diagnosis of acute myocardial infarction based on reverse transcription-accelerated strand exchange amplification of miR-208a. Anal. Methods 2023, 15, 4442–4451. [Google Scholar] [CrossRef]
- Xu, L.; Tian, L.; Yan, Z.; Wang, J.; Xue, T.; Sun, Q. Diagnostic and prognostic value of miR-486-5p, miR-451a, miR-21-5p and monocyte to high-density lipoprotein cholesterol ratio in patients with acute myocardial infarction. Heart Vessel. 2023, 38, 318–331. [Google Scholar] [CrossRef]
- Velle-Forbord, T.; Eidlaug, M.; Debik, J.; Sæther, J.C.; Follestad, T.; Nauman, J.; Gigantee, B.; Røsjø, H.; Omland, T.; Langaas, M.; et al. Circulating microRNAs as predictive biomarkers of myocardial infarction: Evidence from the HUNT study. Atherosclerosis 2019, 289, 1–7. [Google Scholar] [CrossRef]
- Zhu, W.; Luo, L.; Ye, G.; Ou, J. Potential diagnostic value of N1LR and SNHG1 in acute myocardial infarction. BMC Med. Genom. 2023, 16, 71. [Google Scholar] [CrossRef] [PubMed]
- Tayae, E.; Amr, E.; Zaki, A.; Elkaffash, D. LncRNA HIF1A-AS2: A potential biomarker for early diagnosis of acute myocardial infarction and predictor of left ventricular dysfunction. BMC Cardiovasc. Disord. 2023, 23, 135. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Liao, W.; Chen, W.; Lai, D.; Tang, Q.; Li, Y. Circulating long non-coding RNA TTTY15 and HULC serve as potential novel biomarkers for predicting acute myocardial infarction. BMC Cardiovasc. Disord. 2022, 22, 86. [Google Scholar] [CrossRef]
- Zhou, Q.; Boeckel, J.-N.; Yao, J.; Zhao, J.; Bai, Y.; Lv, Y.; Hu, M.; Meng, D.; Xie, Y.; Yu, P.; et al. Diagnosis of acute myocardial infarction using a combination of circulating circular RNA cZNF292 and clinical information based on machine learning. MedComm 2023, 4, e299. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; An, Y.; Wang, J.; Gao, Y. The particular expression profiles of circular RNA in peripheral blood of myocardial infarction patients by RNA sequencing. Front. Cardiovasc. Med. 2022, 9, 810257. [Google Scholar] [CrossRef]
- Li, X.; Yao, Q.; Cui, H.; Yang, J.; Wu, N.; Liu, Y.; Zhou, Y.; Zhang, Y.; Su, J.; Xia, Y.; et al. MiR-223 or miR-126 predicts resistance to dual antiplatelet therapy in patients with ST-elevation myocardial infarction. J. Int. Med. Res. 2021, 49, 1–14. [Google Scholar] [CrossRef]
- Sothivelr, V.; Hasan, M.Y.; Mohd Saffian, S.; Zainalabidin, S.; Ugusman, A.; Mahadi, M.K. Revisiting miRNA-21 as a therapeutic strategy for myocardial infarction: A systematic review. J. Cardiovasc. Pharmacol. 2022, 80, 393–406. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, Y.; Duan, C.; Zhu, K.; Huang, R.; Zhao, H. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA21-5p-targeted cdip1 silencing improve angiogenesis. Theranostics 2021, 11, 268–291. [Google Scholar] [CrossRef]
- Bejerano, T.; Etzion, S.; Elyagon, S.; Etzion, Y.; Cohen, S. Nanoparticle delivery of miRNA-21 mimic to cardiac macrophages improves myocardial remodeling after myocardial infarction. Nano Lett. 2018, 18, 5885–5891. [Google Scholar] [CrossRef]
- Zhou, R.; Huang, W.; Fan, X.; Liu, F.; Luo, L.; Yuan, H.; Jiang, Y.; Xiao, H.; Zhou, Z.; Deng, C.; et al. miR-499 released during myocardial infarction causes endothelial injury by targeting α7-nAchR. J. Cell Mol. Med. 2019, 23, 6085–6097. [Google Scholar] [CrossRef]
- Zhang, X.-G.; Wang, L.-Q.; Guan, H.-L. Investigating the expression of miRNA-133 in animal models of myocardial infarction and its effect on cardiac function. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 5934–5940. [Google Scholar] [CrossRef] [PubMed]
- Shyu, K.-G.; Wang, B.-W.; Cheng, W.-P.; Lo, H.-M. MicroRNA-208a increases myocardial endoglin expression and myocardial fibrosis in acute myocardial infarction. Can. J. Cardiol. 2015, 31, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Sacchetto, C.; Mohseni, Z.; Colpaert, R.M.W.; Vitiello, L.; De Bortoli, M.; Vonhogen, I.G.C.; Xiao, K.; Poloni, G.; Lorenzon, A.; Romualdi, C.; et al. Circulating miR-185-5p as a Potential Biomarker for Arrhythmogenic Right Ventricular Cardiomyopathy. Cells 2021, 10, 2578. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.G.; Yeri, A.; Moorthy, M.V.; Garcia, F.C.; Chatterjee, N.A.; Glinge, C.S.A.; Tfelt-Hansen, J.; Salvador, A.M.; Pico, A.R.; Shah, R.; et al. Circulating miRNAs and Risk of Sudden Death in Patients With Coronary Heart Disease. JACC Clin. Electrophysiol. 2020, 6, 70–79. [Google Scholar] [CrossRef]
- Steinberg, C.; Gaudreault, N.; Papadakis, A.I.; Henry, C.; Champagne, J.; Philippon, F.; O’Hara, G.; Blier, L.; Plourde, B.; Nault, I.; et al. Leucocyte-derived micro-RNAs as candidate biomarkers in Brugada syndrome. Europace 2023, 25, euad145. [Google Scholar] [CrossRef]
- Yan, F.; Chen, Y.; Ye, X.; Zhang, F.; Wang, S.; Zhang, L.; Luo, X. miR-3113-5p, miR-223-3p, miR-133a-3p, and miR-499a-5p are sensitive biomarkers to diagnose sudden cardiac death. Diagn. Pathol. 2021, 16, 67. [Google Scholar] [CrossRef]
- Navarre, B.M.; Clouthier, K.L.; Ji, X.; Taylor, A.; Weldy, C.S.; Dubin, A.M.; Reddy, S. miR Profile of Chronic Right Ventricular Pacing: A Pilot Study in Children with Congenital Complete Atrioventricular Block. J. Cardiovasc. Transl. Res. 2023, 16, 287–299. [Google Scholar] [CrossRef]
- Yang, X.; Du, X.; Ma, K.; Li, G.; Liu, Z.; Rong, W.; Miao, H.; Zhu, F.; Cui, Q.; Wu, S.; et al. Circulating miRNAs Related to Long-term Adverse Cardiovascular Events in STEMI Patients: A Nested Case-Control Study. Can. J. Cardiol. 2020, 37, 77–85. [Google Scholar] [CrossRef]
- Zhao, L.; Qian, X.; Ren, Z.; Wang, A. miR-31-5p suppresses myocardial hypertrophy by targeting Nfatc2ip. J. Cell. Mol. Med. 2024, 28, e18413. [Google Scholar] [CrossRef]
- Priori, S.G.; Napolitano, C. Role of genetic analyses in cardiology: Part I: Mendelian diseases: Cardiac channelopathies. Circulation 2006, 113, 1130–1135. [Google Scholar] [CrossRef] [PubMed]
- Priori, S.G.; Rivolta, I.; Napolitano, C. Genetics of long QT, Brugada, and other channelopathies. In Cardiac Electrophysiology; Elsevier: Amsterdam, The Netherlands, 2004; pp. 462–470. [Google Scholar] [CrossRef]
- Cerrone, M.; Priori, S.G. Genetics of sudden death: Focus on inherited channelopathies. Eur. Heart J. 2011, 32, 2109–2118. [Google Scholar] [CrossRef] [PubMed]
- Watkins, H.; Ashrafian, H.; Redwood, C. Inherited cardiomyopathies. N. Engl. J. Med. 2011, 364, 1643–1656. [Google Scholar] [CrossRef]
- Bezzina, C.R.; Lahrouchi, N.; Priori, S.G. Genetics of sudden cardiac death. Circ. Res. 2015, 116, 1919–1936. [Google Scholar] [CrossRef]
- Monteforte, N.; Napolitano, C.; Priori, S.G. Genetics and arrhythmias: Diagnostic and prognostic applications. Rev. Esp. Cardiol. 2012, 65, 278–286. [Google Scholar] [CrossRef]
- Schwartz, P.J.; Priori, S.G.; Spazzolini, C.; Moss, A.J.; Vincent, G.M.; Napolitano, C.; Denjoy, I.; Guicheney, P.; Breithardt, G.; Keating, M.T.; et al. Genotype-phenotype correlation in the long-QT syndrome: Gene-specific triggers for life-threatening arrhythmias. Circulation 2001, 103, 89–95. [Google Scholar] [CrossRef]
- Priori, S.G.; Pandit, S.V.; Rivolta, I.; Berenfeld, O.; Ronchetti, E.; Dhamoon, A.; Napolitano, C.; Anumonwo, J.; di Barletta, M.R.; Gudapakkam, S.; et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ. Res. 2005, 96, 800–807. [Google Scholar] [CrossRef]
- Bellocq, C.; van Ginneken, A.C.G.; Bezzina, C.R.; Alders, M.; Escande, D.; Mannens, M.M.A.M.; Baro, I.; Wilde, A.A.M. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 2004, 109, 2394–2397. [Google Scholar] [CrossRef]
- Tristani-Firouzi, M.; Jensen, J.L.; Donaldson, M.R.; Sansone, V.; Meola, G.; Hahn, A.; Bendahhou, S.; Kwiecinski, H.; Fidzianska, A.; Plaster, N.; et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J. Clin. Investig. 2002, 110, 381–388. [Google Scholar] [CrossRef]
- Priori, S.G.; Napolitano, C.; Memmi, M.; Colombi, B.; Drago, F.; Gasparini, M.; DeSimone, L.; Coltorti, F.; Bloise, R.; Keegan, R.; et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 2002, 106, 69–74. [Google Scholar] [CrossRef]
- Priori, S.G.; Napolitano, C.; Gasparini, M.; Pappone, C.; Della Bella, P.; Giordano, U.; Bloise, R.; Giustetto, C.; De Nardis, R.; Grillo, M.; et al. Natural history of Brugada syndrome: Insights for risk stratification and management. Circulation 2002, 105, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Dalal, D.; Molin, L.H.; Piccini, J.; Tichnell, C.; James, C.; Bomma, C.; Prakasa, K.; Towbin, J.A.; Marcus, F.I.; Spevak, P.J.; et al. Clinical features of arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in plakophilin-2. Circulation 2006, 113, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Hamid, M.S.; Norman, M.; Quraishi, A.; Firoozi, S.; Thaman, R.; Gimeno, J.R.; Sachdev, B.; Rowland, E.; Elliott, P.M.; McKenna, W.J. Prospective evaluation of relatives for familial arrhythmogenic right ventricular cardiomyopathy/dysplasia reveals a need to broaden diagnostic criteria. J. Am. Coll. Cardiol. 2002, 40, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
- van der Roest, W.P.; Pennings, J.M.; Bakker, M.; van den Berg, M.P.; van Tintelen, J.P. Family letters are an effective way to inform relatives about inherited cardiac disease. Am. J. Med Genet. Part A 2009, 149A, 357–363. [Google Scholar] [CrossRef]
- Castiglione, V.; Modena, M.; Aimo, A.; Chiti, E.; Botto, N.; Vittorini, S.; Guidi, B.; Vergaro, G.; Barison, A.; Rossi, A.; et al. Molecular autopsy of sudden cardiac death in the genomics era. Diagnostics 2021, 11, 1378. [Google Scholar] [CrossRef]
- Procopio, N.; Bonicelli, A. From flesh to bones: Multi-omics approaches in forensic science. Proteomics 2024, 24, e2200335. [Google Scholar] [CrossRef]
- Akçan, R.; Taşteki, N.B.; Yildirim, M.Ş.; Aydogan, H.C.; Sağlam, N. Omics era in forensic medicine: Towards a new age. Turk. J. Med. Sci. 2020, 50, 1480–1490. [Google Scholar] [CrossRef]
- Haas, C.; Neubauer, J.; Salzmann, A.P.; Hanson, E.; Ballantyne, J. Forensic transcriptome analysis using massively parallel sequencing. Forensic Sci. Int. Genet. 2021, 52, 102486. [Google Scholar] [CrossRef]
- Szeremeta, M.; Pietrowska, K.; Niemcunowicz-Janica, A.; Kretowski, A.; Ciborowski, M. Applications of metabolomics in forensic toxicology and forensic medicine. Int. J. Mol. Sci. 2021, 22, 3010. [Google Scholar] [CrossRef]
- Kang, Y.-R.; Park, Y.S.; Park, Y.C.; Yoon, S.M.; JongAhn, H.; Kim, G.; Kwon, S.W. UPLC/Q-TOF MS based metabolomics approach to post-mortem-interval discrimination: Mass spectrometry based metabolomics approach. J. Pharm. Investig. 2012, 42, 41–46. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef]
- Kaszubinski, S.F.; Pechal, J.L.; Smiles, K.; Schmidt, C.J.; Jordan, H.R.; Meek, M.H.; Benbow, M.E. Dysbiosis in the dead: Human postmortem microbiome beta-dispersion as an indicator of manner and cause of death. Front. Microbiol. 2020, 11, 555347. [Google Scholar] [CrossRef]
- Cui, C.; Song, Y.; Mao, D.; Cao, Y.; Qiu, B.; Gui, P.; Wang, H.; Zhao, X.; Huang, Z.; Sun, L.; et al. Predicting the postmortem interval based on gravesoil microbiome data and a random forest model. Microorganisms 2022, 11, 56. [Google Scholar] [CrossRef]
- Scrivano, S.; Sanavio, M.; Tozzo, P.; Caenazzo, L. Analysis of RNA in the estimation of post-mortem interval: A review of current evidence. Int. J. Leg. Med. 2019, 133, 1629–1640. [Google Scholar] [CrossRef] [PubMed]
- Miyaguchi, H.; Kuwayama, K. Comparison of sample preparation methods for zolpidem extraction from hair. Forensic Toxicol. 2015, 33, 159–164. [Google Scholar] [CrossRef]
- Shen, M.; Chen, H.; Xiang, P. Determination of opiates in human fingernail--comparison to hair. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 967, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Cappelle, D.; Yegles, M.; Neels, H.; van Nuijs, A.L.N.; De Doncker, M.; Maudens, K.; Covaci, A.; Crunelle, C.L. Nail analysis for the detection of drugs of abuse and pharmaceuticals: A review. Forensic Toxicol. 2015, 33, 12–36. [Google Scholar] [CrossRef]
- Prieto-Bonete, G.; Pérez-Cárceles, M.D.; Maurandi-López, A.; Pérez-Martínez, C.; Luna, A. Association between protein profile and postmortem interval in human bone remains. J. Proteom. 2019, 192, 54–63. [Google Scholar] [CrossRef]
- Procopio, N.; Williams, A.; Chamberlain, A.T.; Buckley, M. Forensic proteomics for the evaluation of the post-mortem decay in bones. J. Proteom. 2018, 177, 21–30. [Google Scholar] [CrossRef]
- Vuckovic, D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 2012, 403, 1523–1548. [Google Scholar] [CrossRef]
- CZapico, S.; Ubelaker, D.H. Applications of physiological bases of ageing to forensic sciences. Estimation of age-at-death. Ageing Res. Rev. 2013, 12, 605–617. [Google Scholar] [CrossRef]
- Ritz-Timme, S.; Cattaneo, C.; Collins, M.J.; Waite, E.R.; Schütz, H.W.; Kaatsch, H.J.; Borrman, H.I.M. Age estimation: The state of the art in relation to the specific demands of forensic practise. Int. J. Leg. Med. 2000, 113, 129–136. [Google Scholar] [CrossRef]
- Christensen, A.M.; Crowder, C.M. Evidentiary standards for forensic anthropology. J. Forensic Sci. 2009, 54, 1211–1216. [Google Scholar] [CrossRef]
- Grassi, S.; Campuzano, O.; Coll, M.; Brión, M.; Arena, V.; Iglesias, A.; Carracedo, A.; Brugada, R.; Oliva, A. Genetic variants of uncertain significance: How to match scientific rigour and standard of proof in sudden cardiac death? Leg. Med. 2020, 45, 101712. [Google Scholar] [CrossRef]
Protein | Source | Half-Life/Detection Time | Specificity and Sensitivity | Function/Role | Factors Affecting Levels | Relevance to Disease | Forensic Use |
---|---|---|---|---|---|---|---|
cMyBP-C [16] | Cardiac muscle | Rapid release post-MI | High cardiac specificity | Myofibrillar structural protein; released with injury | None reported | Acute MI diagnosis | Strong forensic potential |
Alpha-1 Acid Glycoprotein 2 [16] | Liver (plasma) | Moderate | Moderate specificity | Acute-phase protein | Inflammation, infection | Marker in MI | Minimal forensic data |
Plasminogen, Coagulation Factor II, Complement C8β [16] | Liver | Variable | Moderate specificity | Coagulation/inflammation | Inflammation, liver function | MI and thrombotic risk | Not yet validated for forensic use |
BNP/ NT-proBNP [52] | Cardiac myocytes | BNP: ~20 min; NT-proBNP: ~60–120 min; elevated within hours of ventricular stretch | High sensitivity | Cardiac stress indicator | Age, renal function, obesity | Heart failure | Limited; affected by postmortem interval |
Troponins (cTnI, cTnT) [52] | Cardiac myocytes | Elevated 7–10 days Detected 3–6 h post-injury | High sensitivity | Myocardial injury marker | CKD, myocarditis, sepsis | Myocardial infarction | Widely used; gold standard postmortem |
Myoglobin [52] | Skeletal and cardiac muscle | Detectable in 1–3 h, peaks at 6–9 h, clears in 24 h | High sensitivity, low specificity | Early marker of muscle damage | Muscle injury, renal failure | Early detection of MI | Limited forensic value (clears quickly) |
GPBB [52] | Cardiac and brain tissue | Detectable in 1–4 h, peaks at 6–12 h | High sensitivity, moderate specificity | Early ischemia detection | Pregnancy, brain injury, liver dysfunction | Early MI marker | Possibly useful if rapid sampling is possible |
CK-MB [52] | Predominantly cardiac muscle | Rises in 3–6 h, peaks at 18–24 h | High specificity for MI | Energy metabolism enzyme | Skeletal muscle diseases | MI diagnosis and prognosis | Moderate (short detection window) |
H-FABP [52] | Cardiac muscle | Peaks at 6–8 h, clears by 24–36 h | High sensitivity, moderate specificity | Fatty acid transport in cardiomyocytes | Skeletal muscle damage, renal dysfunction | Early MI detection | Some forensic potential (short half-life) |
CRP [52] | Liver (in response to inflammation) | Rises in 6–12 h, peaks at 24–48 h | High sensitivity for inflammation, low specificity | Systemic inflammation marker | Infection, autoimmune diseases | Prognosis in CAD and HF | Limited forensic use |
Complement C3 [79] | Liver (also macrophages) | Not specified | Moderate sensitivity/specificity | Inflammatory mediator | Systemic inflammation | HCM severity, SCD risk | Not directly applicable |
Thrombospondin-1 [79] | Platelets, endothelial cells | Not specified | Moderate sensitivity/specificity | Angiogenesis, myocardial remodeling | Inflammation | SCD risk in HCM | Possibly useful (tissue persistence needs study) |
Aldolase A [79] | Cardiac muscle | Not detailed | Not specified | Glycolysis enzyme | Non-specific stress | HCM severity | Unclear forensic value |
Ras Suppressor Protein 1 [79] | Ubiquitous | Unknown | Under research | Signal transduction | Unknown | SCD correlation in HCM | Not yet validated |
Talin-1 [79] | Cytoskeletal, cardiac cells | Unknown | Correlates with imaging severity | Cytoskeletal organization | Unknown | Marker for HCM disease severity | Potential tissue application |
GSTO1 [79] | Liver, cardiac cells | Unknown | Moderate sensitivity | Detoxification enzyme, redox regulation | Inflammatory states | Marker in HCM and oxidative stress | Not validated yet |
MYH7 [80] | Cardiac sarcomeres | Stable postmortem | High specificity | Structural protein in cardiac hypertrophy | Genetic polymorphisms | SCD due to acquired cardiac hypertrophy | Strong forensic potential |
MYL3 [80] | Cardiac muscle | Stable postmortem | High specificity | Myofibrillar regulation | Mutations in HCM | Distinguishing SCH vs. CCH | Forensic utility confirmed |
SELENBP1 [81] | Various (decreased in CAS) | Unknown; early marker in CAS | High sensitivity and specificity | Oxidative stress sensor | Redox-sensitive | CAS | High diagnostic accuracy postmortem |
PTX3 [85] | Macrophages, smooth muscle cells | ~1–2 days; early in inflammation | High sensitivity | Inflammation and damage marker | Acute inflammation | Coronary thrombosis, ACS | Useful for identifying thrombotic lesions |
Study | Clinical Context | Key Metabolites | Metabolite Class | Main Application | Platform | Sample Type | Forensic Use |
---|---|---|---|---|---|---|---|
McGranaghan et al. [102] | Systematic review (2010–2019) | 39 total (27 risk ↑, 12 protective) | Glycerophospholipids | CVD Risk | Mass spectrometry | Multiple studies | Yes |
Luo J. et al. [103] | Early VF after STEMI | 9cRA, Dehydrophytosphingosine | Retinoids, sphingolipids | Sudden cardiac death | UPLC-Orbitrap | Plasma | Yes |
Zhang et al. [104] | Asphyxia vs. Anaphylaxis | Creatinine, Malic acid, Uric acid | Amino acids, TCA cycle | Cause of death | GC-HRMS | Postmortem plasma | Yes |
Song et al. [105] | Acute MI | Acylcarnitines, modified glycines | Energy metabolism | Prognostic for MI (fQRS) | MS | Plasma | Limited |
Floegel et al. [106] | MI and Stroke Risk | PCs, SMs (C16:0, C24:0, etc.) | Phospholipids | MI risk prediction | NMR | Large cohorts | No for stroke |
Paynter et al. [107] | CAD in postmenopausal women | Glutamine, glutamate, CMP, 15/5/11-HETE | AA derivatives | CAD risk | MS | Plasma | Yes |
Ganna et al. [108] | Untargeted CV events | LPC 18:1, 18:2; MG 18:2, SM 28:1 | Lipidomics | CV events prediction | Untargeted MS | Validation cohorts | Yes |
Rizza et al. [109]/Shah et al. [101] | Framingham risk, catheterization | C2–C18:2 acylcarnitines, BCAAs | Fatty acids, AA | Event risk reclassification | MS | Serum | Yes |
Würtz et al. [110] | FINRISK, SABRE, WHHHS | Phenylalanine, MUFAs, DHA, ω-6 FAs | AA, lipids | CV risk prediction | NMR | Cohorts | Yes |
Delles/Sliz et al. [112,113] | PROSPER and FINRISK | Phenylalanine | Aromatic AA | HF hospitalization | NMR | Large studies | Yes |
Hilvo et al. [114] | CERT1 Score (ceramides) | Cer d18:1/16:0 + PCs | Ceramides, PCs | Risk stratification | MS | Plasma | Yes |
Ellims et al. [118] | Noncalcified plaque in CAD | 18 lipid species | PC, CE, GM3 | Plaque burden | Lipidomics | Asymptomatic patients | Yes |
Volani et al. [119] | Arrhythmogenic cardiomyopathy | ADMA, C3 carnitine, α-AAA | AA, carnitines, phospholipids | ACM risk | Targeted metabolomics | Plasma | Yes |
Jansen et al. [120] | Hypertrophic cardiomyopathy | Acylcarnitines, uric acid, α-AAA | AA, lipids | HCM severity | Untargeted MS | Plasma | Yes |
Authors | miRNAs Investigated | Use Case/ Condition Studied | Specificity/ Sensitivity | Forensic Value |
---|---|---|---|---|
Sacchetto et al. [150] | miR-185-5p | ARVC diagnosis | AUC = 0.854 | Early/postmortem ARVC detection |
Silverman et al. [151] | miR-150-5p, miR-29a-3p, miR-30a-5p | SCD in CHD | Up to 4.8× risk when combined | Risk stratification in CHD |
Steinberg et al. [152] | miR-145-5p, miR-585-3p | Brugada Syndrome | AUC = 0.96 | Predicts symptoms, potential forensic biomarker |
Yan et al. [153] | miR-3113-5p, miR-223-3p, miR-133a-3p, miR-499a-5p | SCD/SUD | AUC = 0.78–0.90; specificity 70–100% | Differentiation in negative autopsy deaths |
Navarre et al. [154] | miR-92a, miR-130, miR-27, miR-29, let-7, miR-214, miR-210, miR-205 | Chronic RV pacing in children with CCAVB and early detection of PICM | >488 miRNAs differentially expressed; several >2-fold (p < 0.05) | High: Identifies risk of remodeling and sudden death, even in asymptomatic cases |
Yang et al. [155] | miR-26a-5p, miR-21-5p, miR-191-5p | Prediction of MACE after STEMI | Strong associations (p < 0.001); improved C-statistics | Moderate: Prognostic utility post-STEMI, supports postmortem analysis |
Zhao et al. [156] | miR-31-5p | Cardiac hypertrophy suppression via Nfatc2ip pathway | Functional preclinical model; no ROC data | Potential: Explains sudden death from undetected hypertrophy |
Syndrome/Disease | Main Genes Involved | Functional Defect |
---|---|---|
Long-QT syndrome (LQTS) [161,162] | KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, ANK2, etc. | Loss/gain of function |
Short-QT syndrome (SQTS) [161,162] | KCNH2, KCNQ1, KCNJ2, CACNA1C, CACNB2 | Gain/loss of functions |
Brugada syndrome (BrS) [161,162] | SCN5A, CACNA1C, CACNB2, SCN10A, TRPM4, GPD1-L, SCN1B | Loss of function |
Catecholaminergic polymorphic ventricular tachycardia (CPVT) [161,162] | RYR2, CASQ2, CALM1, TRDN | Abnormal calcium release from the sarcoplasmic reticulum |
Arrhythmogenic right ventricular cardiomyopathy (ARVC) [161,162] | PKP2, DSP, JUP, DSG2, DSC2, DES, TMEM43 | Desmosomal defects, structural and electrical damage |
Hypertrophic Cardiomyopathy (HCM) [161] | MYBPC3, MYH7, ACTN2, MYOZ2, JPH2 | Sarcomeric mutations, structural damage |
Dilated Cardiomyopathy (DCM) [161] | TTN, LMNA, MYH7, TNNT2, DES, SCN5A | Genetically heterogeneous, structural and functional damage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Căținaș, R.-M.; Hostiuc, S. The Latest Advances in Omics Technology for Assessing Tissue Damage: Implications for the Study of Sudden Cardiac Death. Int. J. Mol. Sci. 2025, 26, 6818. https://doi.org/10.3390/ijms26146818
Căținaș R-M, Hostiuc S. The Latest Advances in Omics Technology for Assessing Tissue Damage: Implications for the Study of Sudden Cardiac Death. International Journal of Molecular Sciences. 2025; 26(14):6818. https://doi.org/10.3390/ijms26146818
Chicago/Turabian StyleCăținaș, Raluca-Maria, and Sorin Hostiuc. 2025. "The Latest Advances in Omics Technology for Assessing Tissue Damage: Implications for the Study of Sudden Cardiac Death" International Journal of Molecular Sciences 26, no. 14: 6818. https://doi.org/10.3390/ijms26146818
APA StyleCăținaș, R.-M., & Hostiuc, S. (2025). The Latest Advances in Omics Technology for Assessing Tissue Damage: Implications for the Study of Sudden Cardiac Death. International Journal of Molecular Sciences, 26(14), 6818. https://doi.org/10.3390/ijms26146818