The Twisting and Untwisting of Actin and Tropomyosin Filaments Are Involved in the Molecular Mechanisms of Muscle Contraction, and Their Disruption Can Result in Muscle Disorders
Abstract
1. Introduction
2. Results and Discussion
2.1. Ghost Muscle Fibers Reconstituted with Labeled Proteins as a Model for Studying Conformational Changes During the ATPase Cycle
2.2. Ca2+-Mediated Structural Remodeling of Thin Filaments
2.3. Regulation of Actin–Tropomyosin Twisting and Myosin Head Orientation by S1, Nucleotides, and Ca2
2.4. Twisting and Untwisting of Actin and Tropomyosin Filaments May Be Involved in the Molecular Mechanisms of Muscle Force Production
2.5. Impaired Twisting of Actin and Tropomyosin Filaments During the ATP Cycle May Contribute to Muscle Diseases
3. Materials and Methods
3.1. Use of Experimental Animals
3.2. Purification and Labeling of Rabbit Skeletal Muscle Proteins
3.3. Preparation of Recombinant Tropomyosin
3.4. Ghost Fiber Preparation and Thin-Filament Reconstruction
3.5. Polarized Fluorescence Measurements
3.6. ATPase Activity Measurement
4. Conclusions
- The troponin–tropomyosin complex regulates actin—myosin interactions in a Ca2+-dependent manner by modulating the twisting and bending stiffness of actin and tropomyosin filaments. This process involves the sliding of tropomyosin strands along actin filaments in response to structural changes in the troponin complex.
- The bending stiffness of actin and tropomyosin filaments is determined by their degree and direction of helical twisting. The untwisting of actin or tropomyosin filaments results in reduced stiffness, whereas increased twisting enhances stiffness.
- At low Ca2+ concentrations (blocked state), Ca2+ dissociates from troponin C, triggering a conformational rearrangement within the troponin complex. Troponin I binds to actin, inducing the twisting of actin filaments and increasing their bending stiffness. This is accompanied by structural changes in actin subdomains 1 and 2, rendering the myosin binding site sterically and conformationally unfavorable. Simultaneously, tropomyosin filaments become untwisted and more flexible, allowing for them to oscillate across and obstruct the myosin binding site.
- At high Ca2+ concentrations (closed state), Ca2+ binding to troponin C causes troponin I to release actin and interact with tropomyosin. Consequently, actin filaments untwist and become more flexible, whereas tropomyosin filaments twist and stiffen under the influence of troponin I. This coordinated twisting facilitates the azimuthal movement of tropomyosin, exposing the myosin binding sites on actin filaments.
- Actin and tropomyosin, in coordination with myosin heads, are involved in the molecular mechanism of force generation in muscle fibers.
- Throughout the ATP cycle, myosin heads modulate the structure and stiffness of thin filaments in a Ca2+- and nucleotide-dependent manner, either promoting or suppressing thin filament activation.
- In the presence of MgATP and Ca2+ (AM*•ATP stage), myosin heads promote actin filament overtwisting and stiffening. This simultaneously causes tropomyosin filaments to untwist and become more flexible. In this state, myosin heads tilt away from the actin filament axis and exhibit high mobility.
- During Pi release (transition from the AM*•ATP to the AM•ADP at high Ca2+), myosin binds strongly to actin and weakly to tropomyosin. This causes tropomyosin to twist and stiffen, while actin filaments sharply untwist and become flexible. As myosin rotates toward the actin filament axis, its mobility is reduced. The untwisting torque generated by actin filaments is transmitted through the converter domain and lever arm of myosin, driving thin-filament displacement along thick filaments. This rotational untwisting force causes the rotation of thick filaments, further contributing to filament sliding. Tropomyosin, being twisted and rigid at this stage, assists in force transmission by pushing actin filaments away from thick filaments as they slide toward the thick filament’s center.
- The transition from the AM•ADP to the rigor AM stage depends on tropomyosin isoforms. With α- and β-tropomyosin, this transition is accompanied by reduced myosin head tilt, decreased actin untwisting, and tropomyosin strand twisting. At the same time, both filaments become more flexible, leading to reduced filament sliding and force production. Conversely, with γ-tropomyosin, the same transition enhances myosin head tilt, increases actin untwisting and tropomyosin twisting, and leads to the increased bending stiffness of tropomyosin and decreased stiffness of actin filaments. This activates filament sliding and greater contractile force.
- Muscle relaxation involves the detachment or weakening of myosin–actin interactions. This leads to actin filament twisting and tropomyosin filament untwisting. Consequently, actin filaments become more rigid, while tropomyosin filaments become more flexible. The differential in twisting and bending stiffness cause tropomyosins strands to slide over actin, altering the configuration of the myosin binding sites and making it less suitable for myosin attachment. The resulting structural state enables actin filaments to push away from thick filaments, enabling their sliding away from the center of the thick filaments.
- Muscle contraction is driven by a dynamic interplay of torsional forces and filament rigidity. The twisting and untwisting of actin and tropomyosin filaments, regulated by Ca2+ binding and the myosin ATPase cycle, produce the mechanical basis of force generation, as well as force generation due to the active working stroke in the myosin motor. Disruptions in this finely tuned mechanism may lead to contractile dysfunction and muscle pathology.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Tpm | Tropomyosin |
Tpm-WT | Wild-type tropomyosin |
Tn | Troponin |
TnI | Troponin I |
S1 | Myosin subfragment-1 |
1,5-IAEDANS | N-(Iodoacetaminoethyl)-1-naphthyl-amine-5-sulfonic acid |
5-IAF | 5-Iodoacetamidofluorescein |
FITC | Fluorescein isothiocyanate |
References
- Huxley, A.F.; Niedergerke, R. Structural changes in muscle during contraction: Interference microscopy of living muscle fibres. Nature 1954, 173, 971–973. [Google Scholar] [CrossRef] [PubMed]
- Huxley, H.; Hanson, J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 1954, 173, 973–976. [Google Scholar] [CrossRef]
- Dos Remedios, C.G.; Yount, R.G.; Morales, M.F. Individual states in the cycle of muscle contraction. Proc. Natl. Acad. Sci. USA 1972, 69, 2542–2546. [Google Scholar] [CrossRef] [PubMed]
- Nihei, T.; Mendelson, R.A.; Botts, J. Use of fluorescence polarization to observe changes in attitude of S1 moieties in muscle fibers. Biophys. J. 1974, 14, 236–242. [Google Scholar] [CrossRef]
- Morales, M.F.; Boreido, J.; Jean, B.; Cooke, R.; Mendelson, R.A.; Takashi, R. Some physical studies of the contractile mechanism in muscle. Annu. Rev. Phys. Chem. 1982, 33, 319–351. [Google Scholar] [CrossRef]
- Borejdo, J.; Putnam, S. Polarization of fluorescence from single skinned glycerinated rabbit psoas fibers in rigor and relaxation. Biochim. Biophys. Acta 1977, 459, 578–595. [Google Scholar] [CrossRef]
- Lymn, R.W.; Taylor, E.W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 1971, 10, 4617–4624. [Google Scholar] [CrossRef]
- Stein, L.A.; Schwarz, J.R.P.; Chock, P.B.; Eisenberg, E. Mechanism of the actomyosin adenosine triphosphatase. Evidence that adenosine 5′-triphosphate hydrolysis can occur without dissociation of the actomyosin complex. Biochemistry 1979, 18, 3895–3909. [Google Scholar] [CrossRef]
- Chalovich, J.M.; Chock, P.B.; Eisenberg, E. Mechanism of action of troponin. tropomyosin. Inhibition of actomyosin ATPase activity without inhibition of myosin binding to actin. J. Biol. Chem. 1981, 256, 575–578. [Google Scholar] [CrossRef]
- Geeves, M.A.; Holmes, K.C. The molecular mechanism of muscle contraction. Adv. Protein Chem. 2005, 71, 161–193. [Google Scholar] [CrossRef]
- Margossian, S.S.; Lowey, S. Interaction of myosin subfragments with F-actin. Biochemistry 1978, 17, 5431–5439. [Google Scholar] [CrossRef] [PubMed]
- Greene, L.E.; Eisenberg, E. Dissociation of the actin subfragment 1 complex by adenyl-5′-yl imidodiphosphate, ADP, and PPi. J. Biol. Chem. 1980, 255, 543–548. [Google Scholar] [CrossRef] [PubMed]
- White, H.D.; Taylor, E.W. Energetics and mechanism of actomyosin adenosine triphosphatase. Biochemistry 1976, 15, 5818–5826. [Google Scholar] [CrossRef]
- Marston, S. The rates of formation and dissociation of actin-myosin complexes. Effects of solvent, temperature, nucleotide binding and head-head interactions. Biochem. J. 1982, 203, 453–460. [Google Scholar] [CrossRef]
- Chalovich, J.M.; Greene, L.E.; Eisenberg, E. Crosslinked myosin subfragment 1: A stable analogue of the subfragment-1. ATP complex. Proc. Natl. Acad. Sci. USA 1983, 80, 4909–4913. [Google Scholar] [CrossRef]
- Eisenberg, E.; Hill, T.L. Muscle contraction and free energy transduction in biological systems. Science 1985, 227, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Moretto, L.; Ušaj, M.; Matusovsky, O.; Rassier, D.E.; Friedman, R.; Månsson, A. Multistep orthophosphate release tunes actomyosin energy transduction. Nat. Commun. 2022, 13, 4575. [Google Scholar] [CrossRef] [PubMed]
- Lehman, W.; Pavadai, E.; Rynkiewicz, M.J. C-terminal troponin-I residues trap tropomyosin in the muscle thin filament blocked-state. Biochem. Biophys. Res. Commun. 2021, 551, 27–32. [Google Scholar] [CrossRef]
- Lehman, W.; Rynkiewicz, M.J. Troponin-I–induced tropomyosin pivoting defines thin-filament function in relaxed and active muscle. J. Gen. Physiol. 2023, 155, e202313387. [Google Scholar] [CrossRef]
- Lehman, W.; Craig, R.; Vibert, P. Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 1994, 368, 65–67. [Google Scholar] [CrossRef]
- Gordon, A.M.; Homsher, E.; Regnier, M. Regulation of contraction in striated muscle. Physiol. Rev. 2000, 80, 853–924. [Google Scholar] [CrossRef]
- Poole, K.J.; Lorenz, M.; Evans, G.; Rosenbaum, G.; Pirani, A.; Craig, R.; Tobacman, L.S.; Lehman, W.; Holmes, K.C. A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle. J. Struct. Biol. 2006, 155, 273–284. [Google Scholar] [CrossRef]
- Risi, C.; Eisner, J.; Belknap, B.; Heeley, D.H.; White, H.D.; Schröder, G.F.; Galkin, V.E. Ca2+-induced movement of tropomyosin on native cardiac thin filaments revealed by cryoelectron microscopy. Proc. Natl. Acad. Sci. USA 2017, 114, 6782–6787. [Google Scholar] [CrossRef]
- Risi, C.; Schäfer, L.U.; Belknap, B.; Pepper, I.; White, H.D.; Schröder, G.F.; Galkin, V.E. High-resolution cryo-EM structure of the cardiac actomyosin complex. Structure 2021, 29, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Vibert, P.; Craig, R.; Lehman, W. Steric-model for activation of muscle thin filaments. J. Mol. Biol. 1997, 266, 8–14. [Google Scholar] [CrossRef]
- Behrmann, E.; Müller, M.; Penczek, P.A.; Mannherz, H.G.; Manstein, D.J.; Raunser, S. Structure of the rigor actin-tropomyosin-myosin complex. Cell 2012, 20, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Oosawa, F. Macromolecular assembly of actin. Muscle Nonmuscle Motil. 1983, 1, 151–216. [Google Scholar]
- Egelman, E.H. The structure of the actin thin filament. J. Muscle Res. Cell Motil. 1985, 6, 129–151. [Google Scholar] [CrossRef]
- Borovikov, Y.S.; Vdovina, I.B.; Khoroshev, M.I.; Kirillina, V.P. The orientation of fluorescent-probes attached to actin and myosin subfragment-1 at the strong and the weak binding of these proteins in ghost fiber. J. Muscle Res. Cell Motil. 1991, 12, 104. [Google Scholar]
- Borovikov, Y.S. Conformational changes of contractile proteins and their role in muscle contraction. Int. Rev. Cytol. 1999, 189, 267–301. [Google Scholar] [CrossRef]
- Matsushita, S.; Inoue, Y.; Adachi, T. Molecular Dynamics Analysis of Coupling Behaviors Between Extension and Torsion of Actin Filaments. Biophys. J. 2012, 102, 372a–373a. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Sugimoto, Y.; Tanaka, H.; Ueno, Y.; Takezawa, Y.; Amemiya, Y. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys. J. 1994, 67, 2422–2435. [Google Scholar] [CrossRef]
- Nishizaka, T.; Yagi, T.; Tanaka, Y.; Ishiwata, S. Right-handed rotation of an actin filament in an in vitro motile system. Nature 1993, 361, 269–271. [Google Scholar] [CrossRef]
- Sase, I.; Miyata, H.; Ishiwata, S.; Kinoshita, K., Jr. Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. Proc. Natl. Acad. Sci. USA 1997, 94, 5646–5650. [Google Scholar] [CrossRef] [PubMed]
- Borejdo, J.; Shepard, A.; Dumka, D.; Akopova, I.; Talent, J.; Malka, A.; Burghardt, T.P. Changes in Orientation of Actin during Contraction of Muscle. Biophys. J. 2004, 86, 2308–2317. [Google Scholar] [CrossRef]
- Baker, J.L.; Voth, G.A. Effects of ATP and actin-filament binding on the dynamics of the myosin II S1 domain. Biophys. J. 2013, 105, 1624–1634. [Google Scholar] [CrossRef]
- Borovikov, Y.S.; Karpicheva, O.E.; Simonyan, A.O.; Avrova, S.V.; Rogozovets, E.A.; Sirenko, V.V.; Redwood, C.S. The primary causes of muscle dysfunction associated with the point mutations in Tpm3.12; conformational analysis of mutant proteins as a tool for classification of myopathies. Int. J. Mol. Sci. 2018, 19, 3975. [Google Scholar] [CrossRef]
- Prochniewicz-Nakayama, E.; Yanagida, T.; Oosawa, F. Studies on conformation of F-actin in muscle fibers in the relaxed state, rigor, and during contraction using fluorescent phalloidin. Int. J. Biochem. Cell Biol. 1983, 97, 1663–1667. [Google Scholar] [CrossRef] [PubMed]
- Orlova, A.; Egelman, E.H. Structural Dynamics of F-actin I. Changes in the C terminus. J. Mol. Biol. 1995, 245, 582–597. [Google Scholar] [CrossRef]
- Popp, D.; Maeda, Y.; Stewart, A.A.; Holmes, K.C. X-ray diffraction studies on muscle regulation. Adv. Biophys. 1991, 27, 89–103. [Google Scholar] [CrossRef]
- Uyeda, T.Q.; Iwadate, Y.; Umeki, N.; Nagasaki, A.; Yumura, S. Stretching actin filaments within cells enhances their affinity for the myosin II motor domain. PLoS ONE 2011, 6, e26200. [Google Scholar] [CrossRef] [PubMed]
- Stokes, D.L.; DeRosier, D.J. The variable twist of actin and its modulation by actin-binding proteins. J. Cell Biol. 1987, 104, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Tsaturyan, A.K.; Koubassova, N.; Ferenczi, M.A.; Narayanan, T.; Roessle, M.; Bershitsky, S.Y. Strong binding of myosin heads stretches and twists the actin helix. Biophys. J. 2005, 88, 1902–1910. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Hui, J.; Parkhurst, S.M. Bending actin filaments: Twists of fate. Fac. Rev. 2023, 12, 7. [Google Scholar] [CrossRef]
- Oosawa, F.; Fujime, S.; Ishiwata, S.I.; Mihashi, K. Dynamic property of F-actin and thin filament. Cold Spring Harbor Symp. Quant. Biol. 1973, 37, 277–285. [Google Scholar] [CrossRef]
- Orlova, A.; Egelman, E.H. A conformational change in the actin subunit can change the flexibility of the actin filament. J. Mol. Biol. 1993, 232, 334–341. [Google Scholar] [CrossRef]
- Orlova, A.; Egelman, E.H. Cooperative rigor binding of myosin to actin is a function of F-actin structure. J. Mol. Biol. 1997, 265, 469–474. [Google Scholar] [CrossRef]
- Borovikov, Y.S.; Dedova, I.V.; Dos Remedios, C.G.; Vikhoreva, N.N.; Vikhorev, P.G.; Avrova, S.V.; Hazlett, T.L.; Van Der Meer, B.W. Fluorescence depolarization of actin filaments in reconstructed myofibers: The effect of S1 or pPDM-S1 on movements of distinct areas of actin. Biophys. J. 2004, 86, 3020–3029. [Google Scholar] [CrossRef]
- Galkin, V.E.; Orlova, A.; Egelman, E.H. Actin filaments as tension sensors. Current Biology. 2012, 22, R96–R101. [Google Scholar] [CrossRef]
- Cecchini, M.; Alexeev, Y.; Karplus, M. Pi release from myosin: A simulation analysis of possible pathways. Structure 2010, 18, 458–470. [Google Scholar] [CrossRef]
- Sweeney, H.L.; Houdusse, A. Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 2010, 39, 539–557. [Google Scholar] [CrossRef] [PubMed]
- Preller, M.; Holmes, K.C. The myosin start-of-power stroke state and how actin binding drives the power stroke. Cytoskeleton 2013, 70, 651–660. [Google Scholar] [CrossRef]
- Doran, M.H.; Lehman, W. The central role of the F-actin surface in myosin force generation. Biology 2021, 10, 1221. [Google Scholar] [CrossRef] [PubMed]
- Perry, S.V. Vertebrate tropomyosin: Distribution, properties and function. J. Muscle Res. Cell Motil. 2001, 22, 5–49. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, M.W.; Dechene, E.T.; Roumm, E.; Geggel, A.S.; Moghadaszadeh, B.; Beggs, A.H. Mutations of tropomyosin 3 (TPM3) are common and associated with type 1 myofiber hypotrophy in congenital fiber type disproportion. Hum. Mutat. 2010, 31, 176–183. [Google Scholar] [CrossRef]
- Munot, P.; Lashley, D.; Jungbluth, H.; Feng, L.; Pitt, M.; Robb, S.; Palace, J.; Jayawant, S.; Kennet, R.; Beeson, D.; et al. Congenital fiber type disproportion associated with mutations in the tropomyosin 3 (TPM3) gene mimicking congenital myasthenia. Neuromuscul. Disord. 2010, 20, 796–800. [Google Scholar] [CrossRef]
- Marston, S.; Memo, M.; Messer, A.; Papadaki, M.; Nowak, K.; McNamara, E.; Ong, R.; El-Mezgueldi, M.; Li, X.; Lehman, W. Mutations in repeating structural motifs of TM cause gain of function in skeletal muscle myopathy patients. Hum. Mol. Genet. 2013, 22, 4978–4987. [Google Scholar] [CrossRef]
- Marttila, M.; Lehtokari, V.L.; Marston, S.; Nyman, T.A.; Barnerias, C.; Beggs, A.H.; Bertini, E.; Ceyhan-Birsoy, Ö.; Cintas, P.; Gerard, M.; et al. Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies. Hum. Mutat. 2014, 35, 779–790. [Google Scholar] [CrossRef]
- Sewry, C.A.; Wallgren-Pettersson, C. Myopathology in congenital myopathies. Neuropathol. Appl. Neurobiol. 2017, 43, 5–23. [Google Scholar] [CrossRef]
- Moraczewska, J. Thin filament dysfunctions caused by mutations in tropomyosin Tpm3.12 and Tpm1.1. J. Muscle Res. Cell Motil. 2020, 41, 39–53. [Google Scholar] [CrossRef]
- Orzechowski, M.; Moore, J.R.; Fischer, S.; Lehman, W. Tropomyosin movement on F-actin during muscle activation explained by energy landscapes. Arch. Biochem. Biophys. 2014, 545, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Borovikov, Y.S.; Rysev, N.A.; Karpicheva, O.E.; Sirenko, V.V.; Avrova, S.V.; Piers, A.; Redwood, C.S. Molecular mechanisms of dysfunction of muscle fibers associated with Glu139 deletion in TPM2 gene. Sci. Rep. 2017, 7, 16797. [Google Scholar] [CrossRef] [PubMed]
- Karpicheva, O.E.; Avrova, S.V.; Bogdanov, A.L.; Sirenko, V.V.; Redwood, C.S.; Borovikov, Y.S. Molecular mechanisms of deregulation of muscle contractility caused by the R168H mutation in TPM3 and its attenuation by therapeutic a99gents. Int. J. Mol. Sci. 2023, 24, 5829. [Google Scholar] [CrossRef] [PubMed]
- Borovikov, Y.S.; Chernogriadskaia, N.A. Studies on conformational changes in F-actin of glycerinated muscle fibers during relaxation by means of polarized ultraviolet fluorescence microscopy. Microsc. Acta 1979, 81, 383–392. [Google Scholar]
- Irving, M. Steady-state polarization from cylindrically symmetric fluorophores undergoing rapid restricted motion. Biophys. J. 1996, 70, 1830–1835. [Google Scholar] [CrossRef]
- Borovikov, Y.S.; Gusev, N.B. Effect of troponin-tropomyosin complex and Ca2+ on conformational changes in F-actin induced by myosin subfragment-1. Eur. J. Biochem. 1983, 36, 363–369. [Google Scholar] [CrossRef]
- Borovikov, Y.S.; Karpicheva, O.E.; Avrova, S.V.; Redwood, C.S. Modulation of the effects of tropomyosin on actin and myosin conformational changes by troponin and Ca2+. Biochim. Biophys. Acta 2009, 1794, 985–994. [Google Scholar] [CrossRef]
- Borovikov, Y.S.; Karpicheva, O.E.; Avrova, S.V.; Simonyan, A.O.; Sirenko, V.V.; Redwood, C.S. The molecular mechanism of muscle dysfunction associated with the R133W mutation in Tpm2.2. Biochem. Biophys. Res. Commun. 2020, 523, 258–262. [Google Scholar] [CrossRef]
- Titus, M.A.; Ashiba, G.; Szent-Gyorgyi, A.G. SH-1 modification of rabbit myosin interferes with calcium regulation. J. Muscle Res. Cell Motil. 1989, 10, 25–33. [Google Scholar] [CrossRef]
- Bobkov, A.A.; Bobkova, E.A.; Homsher, E.; Reisler, E. Activation of regulated actin by SH1-modified myosin subfragment 1. Biochemistry 1997, 36, 7733–7738. [Google Scholar] [CrossRef]
- Onishi, H.; Nitanai, Y. Thiol reactivity as a sensor of rotation of the converter in myosin. Biochem. Biophys. Res. Commun. 2008, 369, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Isambert, H.; Venier, P.; Maggs, A.C.; Fattoum, A.; Kassab, R.; Pantaloni, D.; Carlier, M.F. Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J. Biol. Chem. 1995, 270, 11437–11444. [Google Scholar] [CrossRef] [PubMed]
- Dancker, P.; Low, I.; Hasselbach, W.; Wieland, T. Interaction of actin with phalloidin: Polymerization and stabilization of F-actin. Biochim. Biophys. Acta 1975, 400, 407–414. [Google Scholar] [CrossRef]
- Bukatina, A.E.; Fuchs, F. Effect of phalloidin on the ATPase activity of striated muscle myofibrils. J. Muscle Res. Cell Motil. 1994, 15, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Rysev, N.A.; Nevzorov, I.A.; Avrova, S.V.; Karpicheva, O.E.; Redwood, C.S.; Levitsky, D.I.; Borovikov, Y.S. Gly126Arg substitution causes anomalous behaviour of α-skeletal and β-smooth tropomyosins during the ATPase cycle. Arch. Biochem. Biophys. 2014, 543, 57–66. [Google Scholar] [CrossRef]
- Lamkin, M.; Tao, T.; Lehrer, S.S. Tropomyosin-troponin and tropomyosin-actin interactions: A fluorescence quenching study. Biochemistry 1983, 22, 3053–3058. [Google Scholar] [CrossRef]
- Borovikov, Y.S.; Nowak, E.; Khoroshev, M.I.; Dabrowska, R. The effect of Ca2+ on the conformation of tropomyosin and actin in regulated actin filaments with or without bound myosin subfragment 1. Biochim. Biophys. Acta 1993, 1163, 280–286. [Google Scholar] [CrossRef]
- Li, X.E.; Lehman, W.; Fischer, S. The relationship between curvature, flexibility and persistence length in the tropomyosin coiled-coil. J. Struct. Biol. 2010, 170, 313–318. [Google Scholar] [CrossRef]
- Shimo, R.; Mihashi, K. Fluctuation of local points of F-actin sliding on the surface-fixed H-meromyosin molecules in the presence of ATP. Biophys. Chem. 2001, 93, 23–35. [Google Scholar] [CrossRef]
- Lehman, W.; Orzechowski, M.; Li, X.E.; Fischer, S.; Raunser, S. Gestalt-binding of tropomyosin on actin during thin filament activation. J. Muscle Res. Cell Motil. 2013, 34, 155–163. [Google Scholar] [CrossRef]
- Yanagida, T.; Taniguchi, M.; Oosawa, F. Conformational changes of F-actin in the thin filaments of muscle induced in vivo and in vitro by calcium ions. J. Mol. Biol. 1974, 90, 509–522. [Google Scholar] [CrossRef]
- Borovikov, Y.S.; Avrova, S.V.; Rysev, N.A.; Sirenko, V.V.; Simonyan, A.O.; Chernev, A.A.; Karpicheva, O.E.; Piers, A.; Redwood, C.S. Aberrant movement of β-tropomyosin associated with congenital myopathy causes defective response of myosin heads and actin during the ATPase cycle. Arch. Biochem. Biophys. 2015, 577, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Borovikov, Y.S.; Simonyan, A.O.; Karpicheva, O.E.; Avrova, S.V.; Rysev, N.A.; Sirenko, V.V.; Piers, A.; Redwood, C.S. The reason for a high Ca2+-sensitivity associated with Arg91Gly substitution in TPM2 gene is the abnormal behavior and high flexibility of tropomyosin during the ATPase cycle. Biochem. Biophys. Res. Commun. 2017, 494, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Borovikov, Y.S.; Rysev, N.A.; Avrova, S.V.; Karpicheva, O.E.; Borys, D.; Moraczewska, J. Molecular mechanisms of deregulation of the thin filament associated with the R167H and K168E substitutions in tropomyosin Tpm1.1. Arch. Biochem. Biophys. 2017, 614, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Borovikov, Y.S.; Andreeva, D.D.; Avrova, S.V.; Sirenko, V.V.; Simonyan, A.O.; Redwood, C.S.; Karpicheva, O.E. Molecular mechanisms of the deregulation of muscle contraction induced by the R90P mutation in Tpm3.12 and the weakening of this effect by BDM and W7. Int. J. Mol. Sci. 2021, 22, 6318. [Google Scholar] [CrossRef]
- Karpicheva, O.E.; Simonyan, A.O.; Rysev, N.A.; Redwood, C.S.; Borovikov, Y.S. Looking for Targets to Restore the Contractile Function in Congenital Myopathy Caused by Gln147Pro Tropomyosin. Int. J. Mol. Sci. 2020, 21, 7590. [Google Scholar] [CrossRef]
- Jegou, A.; Romet-Lemonne, G. The many implications of actin filament helicity. Semin. Cell Dev. Biol. 2020, 102, 65–72. [Google Scholar] [CrossRef]
- Bibeau, J.P.; Pandit, N.G.; Gray, S.; Shatery Nejad, N.; Sindelar, C.V.; Cao, W.; De La Cruz, E.M. Twist response of actin filaments. Proc. Natl. Acad. Sci. USA 2023, 120, e2208536120. [Google Scholar] [CrossRef]
- Lorenz, M.; Popp, D.; Holmes, K.C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 1993, 234, 826–836. [Google Scholar] [CrossRef]
- Oda, T.; Namba, K.; Maéda, Y. Position and orientation of phalloidin in F-actin determined by X-ray fiber diffraction analysis. Biophys. J. 2005, 88, 2727–2736. [Google Scholar] [CrossRef]
- Egelman, E.H.; Francis, N.; DeRosier, D.J. F-actin is a helix with a random variable twist. Nature 1982, 298, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Resetar, A.M.; Stephens, J.M.; Chalovich, J.M. Troponin-tropomyosin: An allosteric switch or a steric blocker? Biophys. J. 2002, 83, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Milligan, R.A. Protein-protein interactions in the rigor actomyosin complex. Proc. Natl. Acad. Sci. USA 1996, 93, 21–26. [Google Scholar] [CrossRef]
- Lehman, W.; Rynkiewicz, M.J.; Moore, J.R. A new twist on tropomyosin binding to actin filaments: Perspectives on thin filament function, assembly and biomechanics. J. Muscle Res. Cell Motil. 2020, 4, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Rynkiewicz, M.J.; Childers, M.C.; Karpicheva, O.E.; Regnier, M.; Geeves, M.A.; Lehman, W. Myosin’s powerstroke transitions define atomic scale movement of cardiac thin filament tropomyosin. J. Gen. Physiol. 2024, 156, e202413538. [Google Scholar] [CrossRef]
- Lu, X.; Heeley, D.H.; Smillie, L.B.; Kawai, M. The role of tropomyosin isoforms and phosphorylation in force generation in thin-filament reconstituted bovine cardiac muscle fibres. J. Muscle Res. Cell Motil. 2010, 31, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Rynkiewicz, M.J.; Schott, V.; Orzechowski, M.; Lehman, W.; Fischer, S. Electrostatic interaction map reveals a new binding position for tropomyosin on F-actin. J. Muscle Res. Cell Motil. 2015, 36, 525–533. [Google Scholar] [CrossRef]
- von der Ecken, J.; Heissler, S.M.; Pathan-Chhatbar, S.; Manstein, D.J.; Raunser, S. Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature 2016, 534, 724–728. [Google Scholar] [CrossRef]
- Doran, M.H.; Pavadai, E.; Rynkiewicz, M.J.; Walklate, J.; Bullitt, E.; Moore, J.R.; Regnier, M.; Geeves, M.A.; Lehman, W. Cryo-EM and molecular docking shows myosin loop 4 contacts actin and tropomyosin on thin filaments. Biophys. J. 2020, 119, 821–830. [Google Scholar] [CrossRef]
- Doran, M.H.; Rynkiewicz, M.J.; Pavadai, E.; Bodt, S.M.L.; Rasicci, D.; Moore, J.R.; Yengo, C.M.; Bullitt, E.; Lehman, W. Myosin loop-4 is critical for optimal tropomyosin repositioning on actin during muscle activation and relaxation. J. Gen. Physiol. 2022, 155, e202213274. [Google Scholar] [CrossRef]
- Furch, M.; Remmel, B.; Geeves, M.A.; Manstein, D.J. Stabilization of the actomyosin complex by negative charges on myosin. Biochemistry 2000, 39, 11602–11608. [Google Scholar] [CrossRef] [PubMed]
- Onishi, H.; Mikhailenko, S.V.; Morales, M.F. Toward understanding actin activation of myosin ATPase: The role of myosin surface loops. Proc. Natl. Acad. Sci. USA 2006, 103, 6136–6141. [Google Scholar] [CrossRef] [PubMed]
- Klebl, D.P.; McMillan, S.N.; Risi, C.; Forgacs, E.; Virok, B.; Atherton, J.L.; Stofella, M.; Winkelmann, D.A.; Sobott, F.; Galkin, V.E.; et al. Swinging lever mechanism of myosin directly demonstrated by time-resolved cryoEM. bioRxiv 2024. [CrossRef]
- Doran, M.H.; Rasicci, D.; Bodt, S.M.; Bullitt, E.; Moore, J.R.; Yengo, C.M.; Lehman, W. The structure and function of the human cardiac actomyosin complex. Biophys. J. 2022, 121, 105a–106a. [Google Scholar] [CrossRef]
- Schiaffino, S.; Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 2011, 91, 1447–1531. [Google Scholar] [CrossRef]
- Jarosch, R. Large-scale models reveal the two-component mechanics of striated muscle. Int. J. Mol. Sci. 2008, 9, 2658–2723. [Google Scholar] [CrossRef] [PubMed]
- Uyeda, T.; Abramson, P.D.; Spudich, J.A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc. Natl. Acad. Sci. USA 1996, 93, 4459–4464. [Google Scholar] [CrossRef]
- Karpicheva, O.E.; Simonyan, A.O.; Kuleva, N.V.; Redwood, C.S.; Borovikov, Y.S. Myopathy-causing Q147P TPM2 mutation shifts tropomyosin strands further towards the open position and increases the proportion of strong-binding cross-bridges during the ATPase cycle. Biochim. Biophys. Acta Proteins Proteom. 2016, 1864, 260–267. [Google Scholar] [CrossRef]
- Robinson, P.; Lipscomb, S.; Preston, L.C.; Altin, E.; Watkins, H.; Ashley, C.C.; Redwood, C.S. Mutations in fast skeletal troponin I, troponin T, and beta-tropomyosin that cause distal arthrogryposis all increase contractile function. FASEB J. 2007, 21, 896–905. [Google Scholar] [CrossRef]
- Robaszkiewicz, K.; Dudek, E.; Kasprzak, A.A.; Moraczewska, J. Functional effects of congenital myopathy-related mutations in gamma-tropomyosin gene. Biochim. Biophys. Acta 2012, 1822, 1562–1569. [Google Scholar] [CrossRef]
- Pace, C.N.; Scholtz, J.M. A helix propensity scale based on experimental studies of peptides and proteins. Biophys. J. 1998, 75, 422–427. [Google Scholar] [CrossRef]
- Ngo, K.X.; Umeki, N.; Kijima, S.T.; Kodera, N.; Ueno, H.; Furutani-Umezu, N.; Uyeda, T.Q.; Noguchi, T.Q.P.; Nagasaki, A.; Tokuraku, K.; et al. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin. Sci. Rep. 2016, 6, 35449. [Google Scholar] [CrossRef] [PubMed]
- Nevzorov, I.A.; Levitsky, D.I. Tropomyosin: Double helix from the protein world. Biochemistry 2011, 76, 1507–1527. [Google Scholar] [CrossRef]
- Fujita, H.; Lu, X.; Suzuki, M.; Ishiwata, S.; Kawai, M. The effect of tropomyosin on force and elementary steps of the cross-bridge cycle in reconstituted bovine myocardium. J. Physiol. 2004, 556, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Margossian, S.S.; Lowey, S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 1982, 85, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Sekine, T. A streamlined method of subfragment one preparation from myosin. J. Biochem. 1985, 98, 1143–1145. [Google Scholar] [CrossRef]
- Yanagida, T.; Oosawa, F. Polarized fluorescence from epsilon-ADP incorporated into F-actin in a myosin-free single fiber: Conformation of F-actin and changes induced in it by heavy meromyosin. J. Mol. Biol. 1978, 126, 507–524. [Google Scholar] [CrossRef]
- Spudich, J.A.; Watt, S. The regulation of rabbit skeletal muscle contraction. J. Biol. Chem. 1971, 246, 4866–4871. [Google Scholar] [CrossRef]
- Potter, J.D. Preparation of troponin and its subunits. Methods Enzymol. 1982, 85, 241–263. [Google Scholar] [CrossRef]
- Fiske, C.H.; Subbarow, Y. Determination of inorganic phosphate. J. Biol. Chem. 1925, 66, 375–400. [Google Scholar] [CrossRef]
Tropomyosin Isoform | Presence of High Ca2+ | Actin–Tpm–Tn | ||
---|---|---|---|---|
εTpm | εActin | εTpm/ εActin | ||
α | − | 4.9 | 4.6 | 1.1 |
α | + | 9.4 | 3.5 | 2.7 |
β | − | 10.1 | 8.1 | 1.3 |
β | + | 11.4 | 5.1 | 2.2 |
γ | − | 10.5 | 5.6 | 1.9 |
γ | + | 13.9 | 5.2 | 2.7 |
Isoform of Tpm | Ca2+ | Troponin | S1, ATP | S1, ADP | S1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
εTpm | εActin | εTpm/εActin | εTpm | εActin | εTpm/εActin | εTpm | εActin | εTpm/εActin | εTpm | εActin | εTpm/εActin | ||
α (Tpm1.1) | − | 4.9 | 4.6 | 1.1 | 9.4 | 8.7 | 1.1 | 6.9 | 6.3 | 1.1 | 6.3 | 6.5 | 1.0 |
+ | 9.4 | 3.5 | 2.7 | 12.4 | 7.6 | 1.6 | 13.5 | 4.2 | 3.2 | 10.9 | 3.9 | 2.8 | |
β (Tpm2.1) | − | 10.1 | 8.1 | 1.3 | 10.5 | 8.7 | 1.2 | 11.4 | 9.0 | 1.3 | 9.7 | 9.4 | 1.0 |
+ | 11.4 | 5.1 | 2.2 | 8.7 | 7.8 | 1.1 | 13.0 | 7.0 | 1.9 | 10.5 | 6.3 | 1.7 | |
γ (Tpm3.12) | − | 10.5 | 5.6 | 1.9 | 7.7 | 4.7 | 1.6 | 7.5 | 5.5 | 1.4 | 8.0 | 5.1 | 1.6 |
+ | 13.9 | 5.2 | 2.7 | 9.9 | 5.5 | 1.8 | 14.3 | 5.0 | 2.8 | 16.1 | 4.2 | 3.8 |
Tpm | Ca2+ | Troponin | S1, ATP | S1, ADP | S1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
εTpm | εActin | εTpm/εActin | εTpm | εActin | εTpm/εActin | εTpm | εActin | εTpm/εActin | εTpm | εActin | εTpm/ εActin | ||
WT 3.12 | − | 10.5 | 5.6 | 1.9 | 7.7 | 4.7 | 1.6 | 7.5 | 5.5 | 1.4 | 8.0 | 5.1 | 1.6 |
R90P | − | 9.0 | 4.7 | 1.9 | 5.4 | 5.1 | 1.1 | 7.8 | 4.5 | 1.7 | 8.1 | 4.7 | 1.7 |
E150A | − | 8.0 | 7.8 | 1.0 | 12.1 | 7.4 | 1.6 | 10 | 5.7 | 1.8 | 10.2 | 7.4 | 1.4 |
E173A | − | 9.4 | 6.0 | 1.6 | 10.0 | 5.9 | 1.7 | 10.3 | 4.5 | 2.3 | 9.1 | 5.4 | 1.7 |
WT 2.1 | − | 10.1 | 8.1 | 1.3 | 10.5 | 8.7 | 1.2 | 11.4 | 9.0 | 1.3 | 9.7 | 9.4 | 1.0 |
R91G | − | 6.0 | 5.0 | 1.2 | 6.7 | 12.4 | 0.5 | 7.4 | 8.7 | 0.9 | 6.3 | 6.1 | 1.0 |
Q147P | − | 3.8 | 4.3 | 0.9 | 4.7 | 8.3 | 0.6 | 4.1 | 7.3 | 0.6 | 3.9 | 4.4 | 0.9 |
WT | − | 4.9 | 4.6 | 1.1 | 9.4 | 8.7 | 1.1 | 6.8 | 6.3 | 1.1 | 6.3 | 6.5 | 1.0 |
R167H | − | 11.4 | 4.9 | 2.3 | 17.2 | 6.3 | 2.8 | 16.4 | 5.6 | 2.9 | 17.2 | 5.4 | 3.2 |
K168E | − | 11.9 | 4.6 | 2.6 | 10.9 | 6.1 | 1.8 | 20.2 | 6.5 | 3.1 | 17.2 | 5.9 | 2.9 |
WT 3.12 | + | 13.9 | 5.2 | 2.7 | 9.9 | 5.5 | 1.8 | 14.3 | 5.0 | 2.8 | 16.1 | 4.2 | 3.8 |
R90P | + | 8.4 | 5.1 | 1.6 | 3.7 | 5.6 | 0.7 | 4.9 | 5.3 | 0.9 | 5.9 | 5.6 | 1.1 |
E150A | + | 8.2 | 6.4 | 1.3 | 6.3 | 8.1 | 0.8 | 7.4 | 6.7 | 1.1 | 7.9 | 5.5 | 1.4 |
E173A | + | 9.8 | 5.0 | 2.3 | 7.7 | 4.8 | 1.6 | 12.6 | 4.7 | 2.7 | 11.7 | 4.7 | 2.5 |
WT 2.1 | + | 11.4 | 5.1 | 2.2 | 8.7 | 7.8 | 1.1 | 13.0 | 7.0 | 1.9 | 10.5 | 6.3 | 1.7 |
R91G | + | 6.5 | 6.7 | 1.0 | 7.8 | 10.9 | 0.7 | 7.8 | 6.9 | 1.3 | 6.7 | 6.7 | 1.1 |
Q147P | + | 3.7 | 3.7 | 1.0 | 3.6 | 5.4 | 0.7 | 3.9 | 4.9 | 0.8 | 3.7 | 3.9 | 1.0 |
WT | + | 9.4 | 3.5 | 2.7 | 12.4 | 7.6 | 1.6 | 13.5 | 4.2 | 3.2 | 10.9 | 3.9 | 2.8 |
R167H | + | 12.4 | 3.5 | 3.6 | 20.2 | 5.7 | 3.5 | 15.6 | 3.8 | 4.1 | 17.2 | 3.9 | 4.4 |
K168E | + | 10.1 | 3.5 | 2.9 | 16.4 | 5.6 | 2.9 | 12.4 | 3.7 | 3.3 | 13.0 | 3.6 | 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borovikov, Y.S.; Tishkova, M.V.; Avrova, S.V.; Sirenko, V.V.; Karpicheva, O.E. The Twisting and Untwisting of Actin and Tropomyosin Filaments Are Involved in the Molecular Mechanisms of Muscle Contraction, and Their Disruption Can Result in Muscle Disorders. Int. J. Mol. Sci. 2025, 26, 6705. https://doi.org/10.3390/ijms26146705
Borovikov YS, Tishkova MV, Avrova SV, Sirenko VV, Karpicheva OE. The Twisting and Untwisting of Actin and Tropomyosin Filaments Are Involved in the Molecular Mechanisms of Muscle Contraction, and Their Disruption Can Result in Muscle Disorders. International Journal of Molecular Sciences. 2025; 26(14):6705. https://doi.org/10.3390/ijms26146705
Chicago/Turabian StyleBorovikov, Yurii S., Maria V. Tishkova, Stanislava V. Avrova, Vladimir V. Sirenko, and Olga E. Karpicheva. 2025. "The Twisting and Untwisting of Actin and Tropomyosin Filaments Are Involved in the Molecular Mechanisms of Muscle Contraction, and Their Disruption Can Result in Muscle Disorders" International Journal of Molecular Sciences 26, no. 14: 6705. https://doi.org/10.3390/ijms26146705
APA StyleBorovikov, Y. S., Tishkova, M. V., Avrova, S. V., Sirenko, V. V., & Karpicheva, O. E. (2025). The Twisting and Untwisting of Actin and Tropomyosin Filaments Are Involved in the Molecular Mechanisms of Muscle Contraction, and Their Disruption Can Result in Muscle Disorders. International Journal of Molecular Sciences, 26(14), 6705. https://doi.org/10.3390/ijms26146705