Polymorphisms in Base Excision Repair Genes and Association with Multiple Sclerosis in a Pilot Study on a Central European Population
Abstract
1. Introduction
2. Results
2.1. Characteristics of the Study Population
2.2. The Hardy–Weinberg Equilibrium Analysis
2.3. Analysis of the Relationship Between the Occurrence of MS and the Studied Polymorphic Variants of BER Genes
3. Discussion
4. Materials and Methods
4.1. Characteristics of the Study Population
4.2. DNA Isolation
4.3. Determination of Single-Nucleotide Polymorphisms (SNPs)
4.4. Statistical Analysis
4.5. Linkage Disequilibrium and Association Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Portaccio, E.; Magyari, M.; Havrdova, E.K.; Ruet, A.; Brochet, B.; Scalfari, A.; Di Filippo, M.; Tur, C.; Montalban, X.; Amato, M.P. Multiple sclerosis: Emerging epidemiological trends and redefining the clinical course. Lancet Reg. Health Eur. 2024, 44, 100977. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Multiple Sclerosis International Federation—Atlas of MS—3rd Edition. Available online: https://www.atlasofms.org/map/poland/epidemiology/number-of-people-with-ms (accessed on 25 February 2025).
- Mahad, D.H.; Trapp, B.D.; Lassmann, H. Pathological Mechanisms in Progressive Multiple Sclerosis. Lancet Neurol. 2015, 14, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Haider, L.; Fischer, M.T.; Frischer, J.M.; Bauer, J.; Höftberger, R.; Botond, G.; Esterbauer, H.; Binder, C.J.; Witztum, J.L.; Lassmann, H. Oxidative Damage in Multiple Sclerosis Lesions. Brain 2011, 134, 1914–1924. [Google Scholar] [CrossRef]
- Ohl, K.; Tenbrock, K.; Kipp, M. Oxidative Stress in Multiple Sclerosis: Central and Peripheral Mode of Action. Exp. Neurol. 2016, 277, 58–67. [Google Scholar] [CrossRef]
- Lassmann, H.; van Horssen, J. Oxidative Stress and Its Impact on Neurons and Glia in Multiple Sclerosis Lesions. Biochim. Biophys. Acta 2016, 1862, 506–510. [Google Scholar] [CrossRef]
- Ramos-González, E.J.; Bitzer-Quintero, O.K.; Ortiz, G.; Hernández-Cruz, J.J.; Ramírez-Jirano, L.J. Relationship between Inflammation and Oxidative Stress and Its Effect on Multiple Sclerosis. Neurología 2024, 39, 292–301. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Gui, L.-N.; Liu, Y.-Y.; Shi, S.; Cheng, Y. Oxidative Stress Marker Aberrations in Multiple Sclerosis: A Meta-Analysis Study. Front. Neurosci. 2020, 14, 823. [Google Scholar] [CrossRef]
- Yang, C.-T.; Weng, P.-W.; Chien, L.-H.; Kumar, S.; Yang, M.-T. Effects of Vitamin D3 Supplementation on Oxidative Stress and Antioxidant Enzyme after Strenuous Endurance Exercise in Healthyyoung Men: A Double-Blind, Placebo-Controlled Trial. Biol. Sport 2025, 42, 137–144. [Google Scholar] [CrossRef]
- Ehsanifar, M.; Ss, B.; Ehsanifar, M. Exposure to Air Pollution Nanoparticles: Oxidative Stress and Neuroinflammation. J. Biomed. Res. Environ. Sci. 2021, 2, 964–976. [Google Scholar] [CrossRef]
- D’Souza, L.C.; Paithankar, J.G.; Stopper, H.; Pandey, A.; Sharma, A. Environmental Chemical-Induced Reactive Oxygen Species Generation and Immunotoxicity: A Comprehensive Review. Antioxid. Redox Signal. 2024, 40, 691–714. [Google Scholar] [CrossRef]
- Gohil, D.; Sarker, A.H.; Roy, R. Base Excision Repair: Mechanisms and Impact in Biology, Disease, and Medicine. Int. J. Mol. Sci. 2023, 24, 14186. [Google Scholar] [CrossRef]
- Krokan, H.E.; Bjørås, M. Oxidative DNA Damage and Repair: Mechanisms, Mutations, and Disease Implications. Antioxidants 2023, 12, 1623. [Google Scholar] [CrossRef]
- Zhou, J. Dna Glycosylases Remove Oxidized Base Damages From G-Quadruplex Dna Structures. Ph.D. Thesis, University of Vermont, Burlington, VT, USA, 2015. [Google Scholar]
- Krokan, H.E.; Bjørås, M. Base Excision Repair. Cold Spring Harbor. Perspect. Biol. 2013, 5, a012583. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.; Kang, S.J.; Kang, J.; Choi, J.; Kim, S.J.; Jang, S. DNA repair and disease: Insights from the human DNA glycosylase NEIL family. Exp. Mol. Med. 2025, 57, 524–532. [Google Scholar] [CrossRef]
- Sawcer, S.; Hellenthal, G.; Pirinen, M.; Spencer, C.C.A.; Patsopoulos, N.A.; Moutsianas, L.; Dilthey, A.; Su, Z.; Freeman, C.; Hunt, S.E.; et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011, 476, 214–219. [Google Scholar] [CrossRef] [PubMed]
- International Multiple Sclerosis Genetics Consortium (IMSGC). Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019, 365, eaav7188. [Google Scholar] [CrossRef]
- Tam, V.; Patel, N.; Turcotte, M.; Bosse, Y.; Pare, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef]
- Nadeau, J.H. Modifier genes in mice and humans. Nat. Rev. Genet. 2001, 2, 165–174. [Google Scholar] [CrossRef]
- Cordell, H.J. Detecting gene–gene interactions that underlie human diseases. Nat. Rev. Genet. 2009, 10, 392–404. [Google Scholar] [CrossRef]
- Menon, R.; Farina, C. Shared Molecular and Functional Frameworks among Five Complex Human Disorders: A Comparative Study on Interactomes Linked to Susceptibility Genes. PLoS ONE 2011, 6, e18660. [Google Scholar] [CrossRef] [PubMed]
- You, S.-H.; Wang, X.; Huang, S.; Wang, M.; Ji, G.-Z.; Xia, J.-R.; Fan, Z.-N. MYH Rs3219476 and Rs3219472 Polymorphisms and Risk of Cholangiocarcinoma. Mol. Med. Rep. 2013, 7, 347–351. [Google Scholar] [CrossRef]
- Picelli, S.; Lorenzo Bermejo, J.; Chang-Claude, J.; Hoffmeister, M.; Fernández-Rozadilla, C.; Carracedo, A.; Castells, A.; Castellví-Bel, S.; Members of the EPICOLON Consortium (Gastrointestinal Oncology Group of the Spanish Gastroenterological Association); Naccarati, A.; et al. Meta-Analysis of Mismatch Repair Polymorphisms within the Cogent Consortium for Colorectal Cancer Susceptibility. PLoS ONE 2013, 8, e72091. [Google Scholar] [CrossRef]
- Li, Y.; Agarwal, P. A Pathway-Based View of Human Diseases and Disease Relationships. PLoS ONE 2009, 4, e4346. [Google Scholar] [CrossRef]
- Olerup, O.; Hillert, J. HLA class II-associated genetic susceptibility in multiple sclerosis: A critical evaluation. Tissue Antigens 1991, 38, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Barrie, W.; Yang, Y.; Irving-Pease, E.K.; Attfield, K.E.; Scorrano, G.; Torp Jensen, L.; Armen, A.P.; Dimopoulos, E.A.; Stern, A.; Refoyo-Martinez, A.; et al. Elevated Genetic Risk for Multiple Sclerosis Originated in Steppe Pastoralist Populations. Nature 2023, 614, 701–707. [Google Scholar] [CrossRef]
- Oksenberg, J.R.; McCauley, J.L. Genetics of Multiple Sclerosis. In Translational Neuroimmunology in Multiple Sclerosis; Elsevier: Amsterdam, The Netherlands, 2016; pp. 45–54. ISBN 978-0-12-801914-6. [Google Scholar]
- Yazar, S.; Alquicira-Hernandez, J.; Wing, K.; Senabouth, A.; Gordon, M.G.; Andersen, S.; Lu, Q.; Rowson, A.; Taylor, T.R.P.; Clarke, L.; et al. Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune disease. Science 2022, 376, eabf3041. [Google Scholar] [CrossRef]
- Hillert, J. The Genetics of Multiple Sclerosis. In Molecular Basis of Multiple Sclerosis; Martin, R., Lutterotti, A., Eds.; Results and Problems in Cell Differentiation; Springer: Berlin/Heidelberg, Germany, 2009; Volume 51, pp. 1–19. ISBN 978-3-642-14152-2. [Google Scholar]
- Sadovnick, A.D.; Dyment, D.A.; Ebers, G.C.; Risch, N.J. The Canadian Collaborative Study Group Evidence for Genetic Basis of Multiple Sclerosis. Lancet 1996, 347, 1728–1730. [Google Scholar] [CrossRef]
- Timasheva, Y.; Nasibullin, T.R.; Tuktarova, I.A.; Erdman, V.V.; Galiullin, T.R.; Zaplakhova, O.V.; Bakhtiiarova, K.Z. Multilocus Evaluation of Genetic Predictors of Multiple Sclerosis. Gene 2022, 809, 146008. [Google Scholar] [CrossRef]
- Chataway, J. The Genetics of Multiple Sclerosis: Principles, Background and Updated Results of the United Kingdom Systematic Genome Screen. Brain 1998, 121, 1869–1887. [Google Scholar] [CrossRef]
- Ragheb, S.; Lisak, R.P. Multiple Sclerosis: Genetic Background versus Environment. Ann. Neurol. 1993, 34, 509–510. [Google Scholar] [CrossRef] [PubMed]
- Dyment, D.A.; Cader, M.Z.; Herrera, B.M.; Ramagopalan, S.V.; Orton, S.M.; Chao, M.; Willer, C.J.; Sadovnick, A.D.; Risch, N.; Ebers, G.C. A Genome Scan in a Single Pedigree with a High Prevalence of Multiple Sclerosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 158–162. [Google Scholar] [CrossRef]
- Raja, S.; Van Houten, B. The Multiple Cellular Roles of SMUG1 in Genome Maintenance and Cancer. Int. J. Mol. Sci. 2021, 22, 1981. [Google Scholar] [CrossRef]
- Liu, M.; Zhong, N.; Tian, X.; Wang, L.; Zhang, C. Programmable Strand Displacement-Driven Assembly of Single Quantum Dot Nanosensor for Accurately Monitoring Human SMUG1 Uracil-DNA Glycosylase at Single-Cell Level. Sens. Actuators B Chem. 2023, 382, 133568. [Google Scholar] [CrossRef]
- Synowiec, E.; Blasiak, J.; Zaras, M.; Szaflik, J.; Szaflik, J.P. Association between Polymorphisms of the DNA Base Excision Repair Genes MUTYH and hOGG1 and Age-Related Macular Degeneration. Exp. Eye Res. 2012, 98, 58–66. [Google Scholar] [CrossRef]
- Czarny, P.; Kwiatkowski, D.; Toma, M.; Gałecki, P.; Orzechowska, A.; Bobińska, K.; Bielecka-Kowalska, A.; Szemraj, J.; Berk, M.; Anderson, G.; et al. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder. Med. Sci. Monit. 2016, 22, 4455–4474. [Google Scholar] [CrossRef] [PubMed]
- Mrowicka, M.; Mrowicki, J.; Kucharska, E.; Smigielska, B.; Szaflik, J.P.; Szaflik, J.; Majsterek, I. The Role of Oxidative Stress and the Importance of miRNAs as Potential Biomarkers in the Development of Age-Related Macular Degeneration. Processes 2021, 9, 1328. [Google Scholar] [CrossRef]
- Vohra, M.; Sharma, A.R.; Prabhu, B.N.; Rai, P.S. SNPs in Sites for DNA Methylation, Transcription Factor Binding, and miRNA Targets Leading to Allele-Specific Gene Expression and Contributing to Complex Disease Risk: A Systematic Review. Public Health Genom. 2020, 23, 155–170. [Google Scholar] [CrossRef]
- Huang, Y.; Li, L.; Yu, L. XRCC1 Arg399Gln, Arg194Trp and Arg280His Polymorphisms in Breast Cancer Risk: A Meta-Analysis. Mutagenesis 2009, 24, 331–339. [Google Scholar] [CrossRef]
- Li, Y.-J.; Wang, F.; Zhao, Q.; Zhai, Y.; He, H.; Lu, J.; Hu, H.; Zhou, J.; Yang, Y. The Association between XRCC1 Arg399Gln Polymorphism and Risk of Leukemia in Different Populations: A Meta-Analysis of Case-Control Studies. OncoTargets Ther. 2015, 8, 3277–3287. [Google Scholar] [CrossRef]
- Zheng, Y.; Zong, J.; Chen, Y.; Guo, J.; Lu, T.; Xin, X.; Chen, Y. Lack of Association between XRCC1 SNPs and Acute Radiation-induced Injury or Prognosis in Patients with Nasopharyngeal Carcinoma. Oncol. Lett. 2023, 26, 544. [Google Scholar] [CrossRef] [PubMed]
- Nanda, S.S.; Gandhi, A.K.; Rastogi, M.; Khurana, R.; Hadi, R.; Sahni, K.; Mishra, S.P.; Srivastava, A.K.; Bhatt, M.L.B.; Parmar, D. Evaluation of XRCC1 Gene Polymorphism as a Biomarker in Head and Neck Cancer Patients Undergoing Chemoradiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, K.; Wu, J.; Hu, Y.; Yang, X.; Xu, L.; Sun, W.; Jia, X.; Wu, J.; Fu, S.; et al. Association of APEX1 and XRCC1 Gene Polymorphisms With HIV-1 Infection Susceptibility and AIDS Progression in a Northern Chinese MSM Population. Front. Genet. 2022, 13, 861355. [Google Scholar] [CrossRef]
- Alsagaby, S.; Ahmed, A.A.; Rasheed, Z.; Althwab, S.A.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Alhomaidan, H.T.; Alkhamiss, A.S.; Alkhowailed, M.; Alaqeel, A.; et al. Association of Genetic Polymorphisms in DNA Repair Genes ERCC2 Asp312Asn (Rs1799793), ERCC2 Lys 751 Gln (Rs13181), XRCC1 Arg399 Gln (Rs25487) and XRCC3 Thr 241Met (Rs861539) with the Susceptibility of Lung Cancer in Saudi Population. Nucleosides Nucleotides Nucleic Acids 2022, 41, 530–554. [Google Scholar] [CrossRef]
- Vodicka, P.; Urbanova, M.; Makovicky, P.; Tomasova, K.; Kroupa, M.; Stetina, R.; Opattova, A.; Kostovcikova, K.; Siskova, A.; Schneiderova, M.; et al. Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients. Int. J. Mol. Sci. 2020, 21, 2473. [Google Scholar] [CrossRef] [PubMed]
- Blasiak, J.; Synowiec, E.; Salminen, A.; Kaarniranta, K. Genetic Variability in DNA Repair Proteins in Age-Related Macular Degeneration. Int. J. Mol. Sci. 2012, 13, 13378–13397. [Google Scholar] [CrossRef]
- Goto, M.; Shinmura, K.; Nakabeppu, Y.; Tao, H.; Yamada, H.; Tsuneyoshi, T.; Sugimura, H. Adenine DNA Glycosylase Activity of 14 Human MutY Homolog (MUTYH) Variant Proteins Found in Patients with Colorectal Polyposis and Cancer. Hum. Mutat. 2010, 31, E1861–E1874. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A Web Tool for the Analysis of Association Studies. Bioinform. 2006, 22, 1928–1929. [Google Scholar] [CrossRef]
- Politi, C.; Roumeliotis, S.; Tripepi, G.; Spoto, B. Sample Size Calculation in Genetic Association Studies: A Practical Approach. Life 2023, 13, 235. [Google Scholar] [CrossRef]
- Filipek, B.; Macieja, A.; Binda, A.; Szelenberger, R.; Gorniak, L.; Miller, E.; Swiderek-Matysiak, M.; Stasiolek, M.; Majsterek, I.; Poplawski, T. Oxidative DNA Damage and Repair Dynamics in Multiple Sclerosis: Insights from Comet Assay Kinetics, Base Excision Repair Gene Expression, and Genotype Analysis. Biomolecules 2025, 15, 756. [Google Scholar] [CrossRef]
Variable | Patients with MS (n = 102) |
---|---|
Age (Mean ± SD) | 42.2 (±13.12) |
Female | 42.29 (±13.02) |
Male | 42.05 (±13.43) |
Sex | |
Female | 62 |
Male | 40 |
MS Type | |
Relapsing–Remitting (RRMS) | 98 |
Primary Progressive (PPMS) | 3 |
Secondary Progressive (SPMS) | 1 |
EDSS Score (Mean ± SD) | 3.44 (±1.87) |
Polymorphism/Gene | p-Value | ||
---|---|---|---|
Totality | Control Group | Study Group | |
rs25478/XRCC1 | <0.0001 | 0.22 | <0.0001 |
rs1052133/hOGG1 | 0.024 | 0.079 | 0.16 |
rs246079/UNG | 0.5 | 1 | 0.24 |
rs151095402/UNG | 2.00 × 10−4 | 0.025 | 0.0025 |
rs2307293/MBD4 | 0.14 | 1 | 0.015 |
rs3219472/MUTYH | 0.81 | 0.36 | 0.45 |
rs3219489/MUTYH | 0.64 | 0.16 | 0.45 |
rs3219493/MUTYH | 0.00089 | 0.19 | 0.0018 |
rs4135054/TDG | 0.023 | 0.071 | 1 |
rs3087404/SMUG1 | 0.027 | 0.071 | 0.32 |
SNP (Gene Name) | Chr * | Positions ** | Allele | Minor Allele Frequency | |
---|---|---|---|---|---|
Case | Control | ||||
rs25478 (XRCC1) | 19 | 43545709 | T/T | 0.09 | 0.01 |
rs1052133 (OGG1) | 3 | 9757089 | G/G | 0.06 | 0.1 |
rs246079 (UNG) | 12 | 109109255 | G/G | 0.27 | 0.22 |
rs151095402 (UNG) | 12 | 109098561 | T/T | 0.02 | 0.02 |
rs2307293 (MBD4) | 3 | 129431542 | T/T | 0.01 | 0.01 |
rs3219472 (MUTYH) | 1 | 45338378 | T/T | 0.03 | 0.02 |
rs3219489 (MUTYH) | 1 | 45331833 | G/G | 0.03 | 0.02 |
rs3219493 (MUTYH) | 1 | 45330597 | G/G | 0.06 | 0.02 |
rs4135054 (TDG) | 12 | 103969832 | T/T | 0.02 | 0.17 |
rs3087404 (SMUG1) | 12 | 54187830 | C/C | 0.09 | 0.03 |
Polymorphism/Gene | Model | Genotype | Control Group | Study Group | OR (95% CI) | p-Value |
---|---|---|---|---|---|---|
rs25478 (XRCC1) | Codominant | G/G | 108 (91.5%) | 87 (85.3%) | 1.00 | 0.011 |
G/T | 9 (7.6%) | 6 (5.9%) | 0.83 (0.28–2.41) | |||
T/T | 1 (0.8%) | 9 (8.8%) | 11.17 (1.39–89.88) | |||
Dominant | G/G | 108 (91.5%) | 87 (85.3%) | 1.00 | 0.15 | |
G/T-T/T | 10 (8.5%) | 15 (14.7%) | 1.86 (0.80–4.35) | |||
Recessive | G/G-G/T | 117 (99.2%) | 93 (91.2%) | 1.00 | 0.0028 | |
T/T | 1 (0.8%) | 9 (8.8%) | 11.32 (1.41–90.97) | |||
Overdominant | G/G-T/T | 109 (92.4%) | 96 (94.1%) | 1.00 | 0.61 | |
G/T | 9 (7.6%) | 6 (5.9%) | 0.76 (0.26–2.20) | |||
rs1052133 (OGG1) | Codominant | C/C | 41 (34.8%) | 46 (45.1%) | 1.00 | 0.21 |
C/G | 65 (55.1%) | 50 (49%) | 0.69 (0.39–1.20) | |||
G/G | 12 (10.2%) | 6 (5.9%) | 0.45 (0.15–1.29) | |||
Dominant | C/C | 41 (34.8%) | 46 (45.1%) | 1.00 | 0.12 | |
C/G-G/G | 77 (65.2%) | 56 (54.9%) | 0.65 (0.38–1.12) | |||
Recessive | C/C-C/G | 106 (89.8%) | 96 (94.1%) | 1.00 | 0.24 | |
G/G | 12 (10.2%) | 6 (5.9%) | 0.55 (0.20–1.53) | |||
Overdominant | C/C-G/G | 53 (44.9%) | 52 (51%) | 1.00 | 0.37 | |
C/G | 65 (55.1%) | 50 (49%) | 0.78 (0.46–1.33) | |||
rs246079 (UNG) | Codominant | A/A | 32 (27.1%) | 29 (28.4%) | 1.00 | 0.55 |
A/G | 60 (50.9%) | 45 (44.1%) | 0.83 (0.44–1.56) | |||
G/G | 26 (22%) | 28 (27.4%) | 1.19 (0.57–2.47) | |||
Dominant | A/A | 32 (27.1%) | 29 (28.4%) | 1.00 | 0.83 | |
A/G-G/G | 86 (72.9%) | 73 (71.6%) | 0.94 (0.52–1.69) | |||
Recessive | A/A-A/G | 92 (78%) | 74 (72.5%) | 1.00 | 0.35 | |
G/G | 26 (22%) | 28 (27.4%) | 1.34 (0.72–2.48) | |||
Overdominant | A/G | 58 (49.1%) | 57 (55.9%) | 0.76 | 0.32 | |
A/A-G/G | 60 (50.9%) | 45 (44.1%) | 1.00 (0.45–1.30) | |||
rs151095402 (UNG) | Codominant | C/C | 108 (91.5%) | 97 (95.1%) | 1.00 | 0.41 |
C/T | 8 (6.8%) | 3 (2.9%) | 0.42 (0.11–1.62) | |||
T/T | 2 (1.7%) | 2 (2%) | 1.11 (0.15–8.06) | |||
Dominant | C/C | 108 (91.5%) | 97 (95.1%) | 1.00 | 0.29 | |
C/T-T/T | 10 (8.5%) | 5 (4.9%) | 0.56 (0.18–1.69) | |||
Recessive | C/C-C/T | 116 (98.3%) | 100 (98%) | 1.00 | 0.88 | |
T/T | 2 (1.7%) | 2 (2%) | 1.16 (0.16–8.39) | |||
Overdominant | C/C-T/T | 110 (93.2%) | 99 (97.1%) | 1.00 | 0.18 | |
C/T | 8 (6.8%) | 3 (2.9%) | 0.42 (0.11–1.61) | |||
rs2307293 (MBD4) | Codominant | C/C | 97 (82.2%) | 100 (98%) | 1.00 | <0.0001 |
C/T | 20 (16.9%) | 1 (1%) | 0.05 (0.01–0.37) | |||
T/T | 1 (0.8%) | 1 (1%) | 0.97 (0.06–15.73) | |||
Dominant | C/C | 97 (82.2%) | 100 (98%) | 1.00 | <0.0001 | |
C/T-T/T | 21 (17.8%) | 2 (2%) | 0.09 (0.02–0.40) | |||
Recessive | C/C-C/T | 117 (99.2%) | 101 (99%) | 1.00 | 0.92 | |
T/T | 1 (0.8%) | 1 (1%) | 1.16 (0.07–18.76) | |||
Overdominant | C/C-T/T | 98 (83%) | 101 (99%) | 1.00 | <0.0001 | |
C/T | 20 (16.9%) | 1 (1%) | 0.05 (0.01–0.37) | |||
rs3219472 (MUTYH) | Codominant | C/C | 77 (65.2%) | 75 (73.5%) | 1.00 | 0.26 |
C/T | 39 (33%) | 24 (23.5%) | 0.63 (0.35–1.15) | |||
T/T | 2 (1.7%) | 3 (2.9%) | 1.54 (0.25–9.48) | |||
Dominant | C/C | 77 (65.2%) | 75 (73.5%) | 1.00 | 0.18 | |
C/T-T/T | 41 (34.8%) | 27 (26.5%) | 0.68 (0.38–1.21) | |||
Recessive | C/C-C/T | 116 (98.3%) | 99 (97.1%) | 1.00 | 0.54 | |
T/T | 2 (1.7%) | 3 (2.9%) | 1.76 (0.29–10.73) | |||
Overdominant | C/C-T/T | 79 (67%) | 78 (76.5%) | 1.00 | 0.12 | |
C/T | 39 (33%) | 24 (23.5%) | 0.62 (0.34–1.13) | |||
rs3219489 (MUTYH) | Codominant | C/C | 73 (61.9%) | 75 (73.5%) | 1.00 | 0.04 |
C/G | 43 (36.4%) | 24 (23.5%) | 0.54 (0.30–0.98) | |||
G/G | 2 (1.7%) | 3 (2.9%) | 1.46 (0.24–8.99) | |||
Dominant | C/C | 73 (61.9%) | 75 (73.5%) | 1.00 | 0.065 | |
C/G-G/G | 45 (38.1%) | 27 (26.5%) | 0.58 (0.33–1.04) | |||
Recessive | C/C-C/G | 116 (98.3%) | 99 (97.1%) | 1.00 | 0.54 | |
G/G | 2 (1.7%) | 3 (2.9%) | 1.76 (0.29–10.73) | |||
Overdominant | C/C-G/G | 75 (63.6%) | 78 (76.5%) | 1.00 | 0.037 | |
C/G | 43 (36.4%) | 24 (23.5%) | 0.54 (0.30–0.97) | |||
rs3219493 (MUTYH) | Codominant | C/C | 100 (84.8%) | 81 (79.4%) | 1.00 | 0.23 |
C/G | 16 (13.6%) | 15 (14.7%) | 1.16 (0.54–2.48) | |||
G/G | 2 (1.7%) | 6 (5.9%) | 3.70 (0.73–18.85) | |||
Dominant | C/C | 100 (84.8%) | 81 (79.4%) | 1.00 | 0.3 | |
C/G-G/G | 18 (15.2%) | 21 (20.6%) | 1.44 (0.72–2.88) | |||
Recessive | C/C-C/G | 116 (98.3%) | 96 (94.1%) | 1.00 | 0.093 | |
G/G | 2 (1.7%) | 6 (5.9%) | 3.62 (0.72–18.37) | |||
Overdominant | C/C-G/G | 102 (86.4%) | 87 (85.3%) | 1.00 | 0.81 | |
C/G | 16 (13.6%) | 15 (14.7%) | 1.10 (0.51–2.35) | |||
rs4135054 (TDG) | Codominant | C/C | 53 (44.9%) | 73 (71.6%) | 1.00 | <0.0001 |
C/T | 45 (38.1%) | 27 (26.5%) | 0.44 (0.24–0.79) | |||
T/T | 20 (16.9%) | 2 (2%) | 0.07 (0.02–0.32) | |||
Dominant | C/C | 53 (44.9%) | 73 (71.6%) | 1.00 | 1 × 10−4 | |
C/T-T/T | 65 (55.1%) | 29 (28.4%) | 0.32 (0.18–0.57) | |||
Recessive | C/C-C/T | 98 (83%) | 100 (98%) | 1.00 | 1 × 10−4 | |
T/T | 20 (16.9%) | 2 (2%) | 0.10 (0.02–0.43) | |||
Overdominant | C/C-T/T | 73 (61.9%) | 75 (73.5%) | 1.00 | 0.065 | |
C/T | 45 (38.1%) | 27 (26.5%) | 0.58 (0.33–1.04) | |||
rs3087404 (SMUG1) | Codominant | T/T | 93 (78.8%) | 57 (55.9%) | 1.00 | 0.0012 |
T/C | 21 (17.8%) | 36 (35.3%) | 2.80 (1.49–5.26) | |||
C/C | 4 (3.4%) | 9 (8.8%) | 3.67 (1.08–12.47) | |||
Dominant | T/T | 93 (78.8%) | 57 (55.9%) | 1.00 | 3 × 10−4 | |
T/C-C/C | 25 (21.2%) | 45 (44.1%) | 2.94 (1.63–5.30) | |||
Recessive | T/T-T/C | 114 (96.6%) | 93 (91.2%) | 1.00 | 0.086 | |
C/C | 4 (3.4%) | 9 (8.8%) | 2.76 (0.82–9.24) | |||
Overdominant | T/T-C/C | 97 (82.2%) | 66 (64.7%) | 1.00 | 0.0031 | |
T/C | 21 (17.8%) | 36 (35.3%) | 2.52 (1.35–4.70) |
Haplotype | Frequency | Score | p-Value |
---|---|---|---|
C–C | 0.82270 | 1.59113 | 0.1116 |
C–T | 0.00230 | - | - |
G–C | 0.01139 | −2.10388 | 0.0354 |
G–T | 0.16361 | −0.88701 | 0.3751 |
SNP | OR | 95% CI (Lower) | 95% CI (Upper) | p-Value |
---|---|---|---|---|
rs25478 (XRCC1) | 2.00 | 0.99 | 4.51 | 0.068 |
rs1052133 (OGG1) | 0.57 | 0.33 | 0.97 | 0.043 |
rs246079 (APE1) | 0.83 | 0.53 | 1.27 | 0.383 |
rs3087404 (SMUG1) | 1.98 | 1.17 | 3.46 | 0.013 |
rs151095402 (UNG) | 0.65 | 0.25 | 1.52 | 0.332 |
rs2307293 (MBD4) | 0.16 | 0.03 | 0.54 | 0.010 |
rs4135054 (TDG) | 0.38 | 0.23 | 0.61 | 0.0001 |
rs3219493 (MUTYH) | 0.60 | 0.29 | 1.18 | 0.150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filipek, B.; Macieja, A.; Binda, A.; Miller, E.; Swiderek-Matysiak, M.; Stasiolek, M.; Stela, M.; Majsterek, I.; Poplawski, T. Polymorphisms in Base Excision Repair Genes and Association with Multiple Sclerosis in a Pilot Study on a Central European Population. Int. J. Mol. Sci. 2025, 26, 6612. https://doi.org/10.3390/ijms26146612
Filipek B, Macieja A, Binda A, Miller E, Swiderek-Matysiak M, Stasiolek M, Stela M, Majsterek I, Poplawski T. Polymorphisms in Base Excision Repair Genes and Association with Multiple Sclerosis in a Pilot Study on a Central European Population. International Journal of Molecular Sciences. 2025; 26(14):6612. https://doi.org/10.3390/ijms26146612
Chicago/Turabian StyleFilipek, Beata, Anna Macieja, Aleksandra Binda, Elzbieta Miller, Mariola Swiderek-Matysiak, Mariusz Stasiolek, Maksymilian Stela, Ireneusz Majsterek, and Tomasz Poplawski. 2025. "Polymorphisms in Base Excision Repair Genes and Association with Multiple Sclerosis in a Pilot Study on a Central European Population" International Journal of Molecular Sciences 26, no. 14: 6612. https://doi.org/10.3390/ijms26146612
APA StyleFilipek, B., Macieja, A., Binda, A., Miller, E., Swiderek-Matysiak, M., Stasiolek, M., Stela, M., Majsterek, I., & Poplawski, T. (2025). Polymorphisms in Base Excision Repair Genes and Association with Multiple Sclerosis in a Pilot Study on a Central European Population. International Journal of Molecular Sciences, 26(14), 6612. https://doi.org/10.3390/ijms26146612