Inflammaging-Driven Osteoporosis: Is a Galectin-Targeted Approach Needed?
Abstract
1. Introduction
The Influence of Inflammaging in OP
2. OP Treatments: Approved and Ongoing
3. Galectin Family and Inflammaging
3.1. Gal-1 and Gal-3 in Bone Fragility, Resorption, and Senescence
3.2. Contribution of Gal-1 and Gal-3 to Secondary OP
4. Perspective of Gal-1/Gal-3 Modulation in OP
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAS | anabolic agents |
AD | Alzheimer’s disease |
AGEs | advanced end products |
ALPL | alkaline phosphatase |
ARPE | human retinal pigment epithelium cells |
BSA | bovine serum albumin |
BMSCs | bone marrow mesenchymal stem cells |
COL1A1 | collagen type I alpha 1 |
COVID-19 | Coronavirus disease 2019 |
DR | diabetic retinopathy |
EAE | experimental autoimmune encephalomyelitis |
FVIII | human factor VIII |
Gal(s) | galectin(s) |
Gal-(1-15) | galectin (1-15) |
HRT | hormone Replacement Therapy |
IGF | insulin-like growth factors |
IL | interleukin |
MMPs | metalloproteinases |
MSCs | mesenchymal stem cells |
OF | osteoporotic fractures |
OP | osteoporosis |
OA | osteoarthritis OA |
OTX008 | calixarene 0118 |
PTH | parathyroid hormone |
RA | rheumatoid arthritis |
RANKL | RANK ligand |
ROS | reactive oxygen species |
RUNX | RUNX family transcription factor |
SERMS | selective estrogen receptor modulators |
SP7 | SP7 transcription factor |
TDGs | thiodigalactosides |
TGF-β | transforming growth factor-β |
Th(1,2,17) | T helper (1,2,17) |
References
- Lane, J.M.; Russell, L.; Khan, S.N. Osteoporosis. Clin. Orthop. Relat. Res. 2000, 372, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Rinonapoli, G.; Pace, V.; Ruggiero, C.; Ceccarini, P.; Bisaccia, M.; Meccariello, L.; Caraffa, A. Obesity and Bone: A Complex Relationship. Int. J. Mol. Sci. 2021, 22, 13662. [Google Scholar] [CrossRef] [PubMed]
- Amarnath, S.S.; Kumar, V.; Das, S.L. Classification of Osteoporosis. Indian J. Orthop. 2023, 57, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.; Deal, C. Osteoporosis in Elderly: Prevention and Treatment. Clin. Geriatr. Med. 2002, 18, 529–555. [Google Scholar] [CrossRef]
- Freeman, C.; Tennyson, J.; Priscilla, A.S. Genetic Variants of Vitamin D, Estrogen α, Parathyroid and Collagen Type I Alpha Receptor Gene and Its Influence on Circulating Serum Osteocalcin in Postmenopausal Osteoporosis: A Cohort Study. Nucleus 2025, 68, 63–73. [Google Scholar] [CrossRef]
- Mundy, G.R.; Shapiro, J.L.; Bandelin, J.G.; Canalis, E.M.; Raisz, L.G. Direct Stimulation of Bone Resorption by Thyroid Hormones. J. Clin. Investig. 1976, 58, 529–534. [Google Scholar] [CrossRef]
- Ala, M.; Jafari, R.M.; Dehpour, A.R. Diabetes Mellitus and Osteoporosis Correlation: Challenges and Hopes. Curr. Diabetes Rev. 2020, 16, 984–1001. [Google Scholar] [CrossRef]
- Westhovens, R.; Dequeker, J. Rheumatoid Arthritis and Osteoporosis. Z. Für Rheumatol. 2000, 59, I33–I38. [Google Scholar] [CrossRef]
- Lips, P. Vitamin D Status and Nutrition in Europe and Asia. J. Steroid Biochem. Mol. Biol. 2007, 103, 620–625. [Google Scholar] [CrossRef]
- Ohlhorst, S.D.; Russell, R.; Bier, D.; Klurfeld, D.M.; Li, Z.; Mein, J.R.; Milner, J.; Ross, A.C.; Stover, P.; Konopka, E. Nutrition Research to Affect Food and a Healthy Lifespan. Adv. Nutr. 2013, 4, 579–584. [Google Scholar] [CrossRef]
- Anderson, J.J.B.; Rondano, P.; Holmes, A. Roles of Diet and Physical Activity in the Prevention of Osteoporosis. Scand. J. Rheumatol. 1996, 25, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Zavatta, G.; Clarke, B.L. Glucocorticoid- and Transplantation-Induced Osteoporosis. Endocrinol. Metab. Clin. N. Am. 2021, 50, 251–273. [Google Scholar] [CrossRef] [PubMed]
- Adami, G.; Fassio, A.; Gatti, D.; Viapiana, O.; Benini, C.; Danila, M.I.; Saag, K.G.; Rossini, M. Osteoporosis in 10 Years Time: A Glimpse into the Future of Osteoporosis. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221083541. [Google Scholar] [CrossRef]
- Miller, P.D. Management of Severe Osteoporosis. Expert Opin. Pharmacother. 2016, 17, 473–488. [Google Scholar] [CrossRef]
- Odén, A.; McCloskey, E.V.; Johansson, H.; Kanis, J.A. Assessing the Impact of Osteoporosis on the Burden of Hip Fractures. Calcif. Tissue Int. 2013, 92, 42–49. [Google Scholar] [CrossRef]
- Verhaar, H.J.J. Behandeling van Osteoporose Bij Ouderen: Wat Is de Evidence? TGG 2008, 39, 168–175. [Google Scholar] [CrossRef]
- Adachi, J.D.; Ioannidis, G.; Berger, C.; Joseph, L.; Papaioannou, A.; Pickard, L.; Papadimitropoulos, E.A.; Hopman, W.; Poliquin, S.; Prior, J.C.; et al. The Influence of Osteoporotic Fractures on Health-Related Quality of Life in Community-Dwelling Men and Women across Canada. Osteoporos. Int. 2001, 12, 903–908. [Google Scholar] [CrossRef]
- Tarride, J.-É.; Adachi, J.D.; Brown, J.P.; Schemitsch, E.; Slatkovska, L.; Burke, N. Incremental Costs of Fragility Fractures: A Population-Based Matched -Cohort Study from Ontario, Canada. Osteoporos. Int. 2021, 32, 1753–1761. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, N.; Wang, Q.; Feng, J.; Sun, D.; Zhang, Q.; Huang, J.; Wen, Q.; Hu, R.; Wang, L.; et al. The Prevalence of Osteoporosis in China, a Nationwide, Multicenter DXA Survey. J. Bone Miner. Res. 2019, 34, 1789–1797. [Google Scholar] [CrossRef]
- Jaleel, A.; Saag, K.G.; Danila, M.I. Improving Drug Adherence in Osteoporosis: An Update on More Recent Studies. Ther. Adv. Musculoskelet. Dis. 2018, 10, 141–149. [Google Scholar] [CrossRef]
- Sozen, T.; Ozisik, L.; Basaran, N.C. An Overview and Management of Osteoporosis. Eur. J. Rheumatol. 2017, 4, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Kenkre, J.; Bassett, J. The Bone Remodelling Cycle. Ann. Clin. Biochem. 2018, 55, 308–327. [Google Scholar] [CrossRef]
- Seeman, E.; Delmas, P.D. Bone Quality—The Material and Structural Basis of Bone Strength and Fragility. N. Engl. J. Med. 2006, 354, 2250–2261. [Google Scholar] [CrossRef]
- Matsuoka, K.; Park, K.; Ito, M.; Ikeda, K.; Takeshita, S. Osteoclast-Derived Complement Component 3a Stimulates Osteoblast Differentiation. J. Bone Miner. Res. 2014, 29, 1522–1530. [Google Scholar] [CrossRef]
- Patel, R.H.; Lyles, K.W. Senile Osteoporosis as a Geriatric Syndrome. In Osteoporosis in Older Persons; Duque, G., Kiel, D.P., Eds.; Springer: London, UK, 2009; pp. 71–81. ISBN 978-1-84628-515-8. [Google Scholar]
- Huidrom, S.; Beg, M.A.; Masood, T. Post-Menopausal Osteoporosis and Probiotics. Curr. Drug Targets 2021, 22, 816–822. [Google Scholar] [CrossRef]
- Curtis, E.; Litwic, A.; Cooper, C.; Dennison, E. Determinants of Muscle and Bone Aging. J. Cell. Physiol. 2015, 230, 2618–2625. [Google Scholar] [CrossRef]
- Föger-Samwald, U.; Kerschan-Schindl, K.; Butylina, M.; Pietschmann, P. Age Related Osteoporosis: Targeting Cellular Senescence. Int. J. Mol. Sci. 2022, 23, 2701. [Google Scholar] [CrossRef]
- Bi, J.; Zhang, C.; Lu, C.; Mo, C.; Zeng, J.; Yao, M.; Jia, B.; Liu, Z.; Yuan, P.; Xu, S. Age-Related Bone Diseases: Role of Inflammaging. J. Autoimmun. 2024, 143, 103169. [Google Scholar] [CrossRef]
- Lawrence, M.; Goyal, A.; Pathak, S.; Ganguly, P. Cellular Senescence and Inflammaging in the Bone: Pathways, Genetics, Anti-Aging Strategies and Interventions. Int. J. Mol. Sci. 2024, 25, 7411. [Google Scholar] [CrossRef]
- Chandra, A.; Rajawat, J. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. Int. J. Mol. Sci. 2021, 22, 3553. [Google Scholar] [CrossRef]
- Jilka, R.L.; Takahashi, K.; Munshi, M.; Williams, D.C.; Roberson, P.K.; Manolagas, S.C. Loss of Estrogen Upregulates Osteoblastogenesis in the Murine Bone Marrow. Evidence for Autonomy from Factors Released during Bone Resorption. J. Clin. Investig. 1998, 101, 1942–1950. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.; Laurent, M.R.; Dubois, V.; Claessens, F.; O’Brien, C.A.; Bouillon, R.; Vanderschueren, D.; Manolagas, S.C. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol. Rev. 2017, 97, 135–187. [Google Scholar] [CrossRef] [PubMed]
- Carter, P.; Schipani, E. The Roles of Parathyroid Hormone and Calcitonin in Bone Remodeling: Prospects for Novel Therapeutics. EMIDDT 2006, 6, 59–76. [Google Scholar] [CrossRef] [PubMed]
- Abiri, B.; Vafa, M. Vitamin D and Muscle Sarcopenia in Aging. In Clinical and Preclinical Models for Maximizing Healthspan; Guest, P.C., Ed.; Methods in Molecular Biology; Springer US: New York, NY, USA, 2020; Volume 2138, pp. 29–47. ISBN 978-1-07-160470-0. [Google Scholar]
- Giustina, A.; Bouillon, R.; Dawson-Hughes, B.; Ebeling, P.R.; Lazaretti-Castro, M.; Lips, P.; Marcocci, C.; Bilezikian, J.P. Vitamin D in the Older Population: A Consensus Statement. Endocrine 2022, 79, 31–44. [Google Scholar] [CrossRef]
- Matikainen, N.; Pekkarinen, T.; Ryhänen, E.M.; Schalin-Jäntti, C. Physiology of Calcium Homeostasis. Endocrinol. Metab. Clin. N. Am. 2021, 50, 575–590. [Google Scholar] [CrossRef]
- Marzetti, E.; Leeuwenburgh, C. Skeletal Muscle Apoptosis, Sarcopenia and Frailty at Old Age. Exp. Gerontol. 2006, 41, 1234–1238. [Google Scholar] [CrossRef]
- Dao, T.; Green, A.E.; Kim, Y.A.; Bae, S.-J.; Ha, K.-T.; Gariani, K.; Lee, M.; Menzies, K.J.; Ryu, D. Sarcopenia and Muscle Aging: A Brief Overview. Endocrinol. Metab. 2020, 35, 716–732. [Google Scholar] [CrossRef]
- Sindel, D. Osteoporosis: Spotlight on Current Approaches to Pharmacological Treatment. Turk. J. Phys. Med. Rehabil. 2023, 69, 140–152. [Google Scholar] [CrossRef]
- Iolascon, G.; Moretti, A.; Toro, G.; Gimigliano, F.; Liguori, S.; Paoletta, M. Pharmacological Therapy of Osteoporosis: What’s New? CIA 2020, 15, 485–491. [Google Scholar] [CrossRef]
- Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin. Proc. 2008, 83, 1032–1045. [Google Scholar] [CrossRef]
- Bilezikian, J.P. Efficacy of Bisphosphonates in Reducing Fracture Risk in Postmenopausal Osteoporosis. Am. J. Med. 2009, 122, S14–S21. [Google Scholar] [CrossRef] [PubMed]
- Qayoom, I.; Raina, D.B.; Širka, A.; Tarasevičius, Š.; Tägil, M.; Kumar, A.; Lidgren, L. Anabolic and Antiresorptive Actions of Locally Delivered Bisphosphonates for Bone Repair: A Review. Bone Jt. Res. 2018, 7, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Black, D.M.; Delmas, P.D.; Eastell, R.; Reid, I.R.; Boonen, S.; Cauley, J.A.; Cosman, F.; Lakatos, P.; Leung, P.C.; Man, Z.; et al. Once-Yearly Zoledronic Acid for Treatment of Postmenopausal Osteoporosis. N. Engl. J. Med. 2007, 356, 1809–1822. [Google Scholar] [CrossRef]
- Kennel, K.A.; Drake, M.T. Adverse Effects of Bisphosphonates: Implications for Osteoporosis Management. Mayo Clin. Proc. 2009, 84, 632–638. [Google Scholar] [CrossRef]
- US Preventive Services Task Force; Curry, S.J.; Krist, A.H.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W.; Kemper, A.R.; et al. Screening for Osteoporosis to Prevent Fractures: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 319, 2521. [Google Scholar] [CrossRef]
- Miller, P.D. The Kidney and Bisphosphonates. Bone 2011, 49, 77–81. [Google Scholar] [CrossRef]
- Toro, G.; Braile, A.; Liguori, S.; Moretti, A.; Landi, G.; Cecere, A.B.; Conza, G.; De Cicco, A.; Tarantino, U.; Iolascon, G. The Role of the Fracture Liaison Service in the Prevention of Atypical Femoral Fractures. Ther. Adv. Musculoskelet. 2023, 15, 1759720X231212747. [Google Scholar] [CrossRef]
- Toro, G.; Ojeda-Thies, C.; Calabrò, G.; Toro, G.; Moretti, A.; Guerra, G.M.-D.; Caba-Doussoux, P.; Iolascon, G. Management of Atypical Femoral Fracture: A Scoping Review and Comprehensive Algorithm. BMC Musculoskelet. Disord. 2016, 17, 227. [Google Scholar] [CrossRef]
- Sutton, E.E.; Riche, D.M. Denosumab, a RANK Ligand Inhibitor, for Postmenopausal Women with Osteoporosis. Ann. Pharmacother. 2012, 46, 1000–1009. [Google Scholar] [CrossRef]
- Kendler, D.L.; Cosman, F.; Stad, R.K.; Ferrari, S. Denosumab in the Treatment of Osteoporosis: 10 Years Later: A Narrative Review. Adv. Ther. 2022, 39, 58–74. [Google Scholar] [CrossRef]
- Ogasawara, T.; Yoshimine, Y.; Kiyoshima, T.; Kobayashi, I.; Matsuo, K.; Akamine, A.; Sakai, H. In Situ Expression of RANKL, RANK, Osteoprotegerin and Cytokines in Osteoclasts of Rat Periodontal Tissue. J. Periodontal Res. 2004, 39, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R.; Billington, E.O. Drug Therapy for Osteoporosis in Older Adults. Lancet 2022, 399, 1080–1092. [Google Scholar] [CrossRef] [PubMed]
- Inderjeeth, C.A.; Inderjeeth, D.C. The Use of Anabolic Agents in the Treatment of Osteoporosis: A Clinical Update. Curr. Opin. Endocrinol. Diabetes Obes. 2024, 31, 157–163. [Google Scholar] [CrossRef]
- Sølling, A.S.K.; Harsløf, T.; Langdahl, B. The Clinical Potential of Romosozumab for the Prevention of Fractures in Postmenopausal Women with Osteoporosis. Ther. Adv. Musculoskelet. 2018, 10, 105–115. [Google Scholar] [CrossRef]
- Cosman, F.; Crittenden, D.B.; Adachi, J.D.; Binkley, N.; Czerwinski, E.; Ferrari, S.; Hofbauer, L.C.; Lau, E.; Lewiecki, E.M.; Miyauchi, A.; et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2016, 375, 1532–1543. [Google Scholar] [CrossRef]
- Saag, K.G.; Petersen, J.; Brandi, M.L.; Karaplis, A.C.; Lorentzon, M.; Thomas, T.; Maddox, J.; Fan, M.; Meisner, P.D.; Grauer, A. Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. N. Engl. J. Med. 2017, 377, 1417–1427. [Google Scholar] [CrossRef]
- Langdahl, B.L.; Libanati, C.; Crittenden, D.B.; Bolognese, M.A.; Brown, J.P.; Daizadeh, N.S.; Dokoupilova, E.; Engelke, K.; Finkelstein, J.S.; Genant, H.K.; et al. Romosozumab (Sclerostin Monoclonal Antibody) versus Teriparatide in Postmenopausal Women with Osteoporosis Transitioning from Oral Bisphosphonate Therapy: A Randomised, Open-Label, Phase 3 Trial. Lancet 2017, 390, 1585–1594. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y.; Zhang, S.; Zhang, W.; Zhang, B.; Tang, Q.; Li, Z.; Wu, J. Romosozumab Treatment in Postmenopausal Women with Osteoporosis: A Meta-Analysis of Randomized Controlled Trials. Climacteric 2018, 21, 189–195. [Google Scholar] [CrossRef]
- Lewiecki, E.M.; Blicharski, T.; Goemaere, S.; Lippuner, K.; Meisner, P.D.; Miller, P.D.; Miyauchi, A.; Maddox, J.; Chen, L.; Horlait, S. A Phase III Randomized Placebo-Controlled Trial to Evaluate Efficacy and Safety of Romosozumab in Men with Osteoporosis. J. Clin. Endocrinol. Metab. 2018, 103, 3183–3193. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Kekatpure, A.L. Postmenopausal Osteoporosis: A Literature Review. Cureus 2022, 14, e29367. [Google Scholar] [CrossRef]
- Patel, H.K.; Bihani, T. Selective Estrogen Receptor Modulators (SERMs) and Selective Estrogen Receptor Degraders (SERDs) in Cancer Treatment. Pharmacol. Ther. 2018, 186, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Santoro, N.; Epperson, C.N.; Mathews, S.B. Menopausal Symptoms and Their Management. Endocrinol. Metab. Clin. N. Am. 2015, 44, 497–515. [Google Scholar] [CrossRef] [PubMed]
- Moshi, M.R.; Nicolopoulos, K.; Stringer, D.; Ma, N.; Jenal, M.; Vreugdenburg, T. The Clinical Effectiveness of Denosumab (Prolia®) for the Treatment of Osteoporosis in Postmenopausal Women, Compared to Bisphosphonates, Selective Estrogen Receptor Modulators (SERM), and Placebo: A Systematic Review and Network Meta-Analysis. Calcif. Tissue Int. 2023, 112, 631–646. [Google Scholar] [CrossRef] [PubMed]
- Francis, R.M.; Peacock, M.; Taylor, G.A.; Storer, J.H.; Nordin, B.E.C. Calcium Malabsorption in Elderly Women with Vertebral Fractures: Evidence for Resistance to the Action of Vitamin D Metabolites on the Bowel. Clin. Sci. 1984, 66, 103–107. [Google Scholar] [CrossRef]
- Muñoz, M.; Robinson, K.; Shibli-Rahhal, A. Bone Health and Osteoporosis Prevention and Treatment. Clin. Obstet. Gynecol. 2020, 63, 770–787. [Google Scholar] [CrossRef]
- Bertoldo, F.; Cianferotti, L.; Di Monaco, M.; Falchetti, A.; Fassio, A.; Gatti, D.; Gennari, L.; Giannini, S.; Girasole, G.; Gonnelli, S.; et al. Definition, Assessment, and Management of Vitamin D Inadequacy: Suggestions, Recommendations, and Warnings from the Italian Society for Osteoporosis, Mineral Metabolism and Bone Diseases (SIOMMMS). Nutrients 2022, 14, 4148. [Google Scholar] [CrossRef]
- Mehta, N.; Malootian, A.; Gilligan, J. Calcitonin for Osteoporosis and Bone Pain. Curr. Pharm. Des. 2003, 9, 2659–2676. [Google Scholar] [CrossRef]
- Pino, A.M.; Rosen, C.J.; Rodríguez, J.P. In Osteoporosis, Differentiation of Mesenchymal Stem Cells (MSCs) Improves Bone Marrow Adipogenesis. Biol. Res. 2012, 45, 279–287. [Google Scholar] [CrossRef]
- Indran, I.R.; Liang, R.L.Z.; Min, T.E.; Yong, E.-L. Preclinical Studies and Clinical Evaluation of Compounds from the Genus Epimedium for Osteoporosis and Bone Health. Pharmacol. Ther. 2016, 162, 188–205. [Google Scholar] [CrossRef]
- Meng, F.-H.; Li, Y.-B.; Xiong, Z.-L.; Jiang, Z.-M.; Li, F.-M. Osteoblastic Proliferative Activity of Epimedium Brevicornum Maxim. Phytomedicine 2005, 12, 189–193. [Google Scholar] [CrossRef]
- Streicher, C.; Heyny, A.; Andrukhova, O.; Haigl, B.; Slavic, S.; Schüler, C.; Kollmann, K.; Kantner, I.; Sexl, V.; Kleiter, M.; et al. Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells. Sci. Rep. 2017, 7, 6460. [Google Scholar] [CrossRef] [PubMed]
- Siu, W.; Wong, H.; Lau, C.; Shum, W.; Wong, C.; Gao, S.; Fung, K.; Lau, C.B.; Hung, L.; Ko, C.; et al. The Effects of an Antiosteoporosis Herbal Formula Containing Epimedii Herba, Ligustri Lucidi Fructus and Psoraleae Fructus on Density and Structure of Rat Long Bones Under Tail-Suspension, and Its Mechanisms of Action. Phytother. Res. 2013, 27, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.; Li, Y.; Gu, K.; Yin, H.; Ma, Y. Icariin Ameliorates Osteoporosis in Ovariectomized Rats by Targeting Cullin 3/Nrf2/OH Pathway for Osteoclast Inhibition. Biomed. Pharmacother. 2024, 173, 116422. [Google Scholar] [CrossRef]
- Liu, R.; Kang, X.; Xu, L.; Nian, H.; Yang, X.; Shi, H.; Wang, X. Effect of the Combined Extracts of Herba Epimedii and Fructus Ligustri Lucidi on Sex Hormone Functional Levels in Osteoporosis Rats. Evid.-Based Complement. Altern. Med. 2015, 2015, 1–13. [Google Scholar] [CrossRef]
- Bai, L.; Liu, Y.; Zhang, X.; Chen, P.; Hang, R.; Xiao, Y.; Wang, J.; Liu, C. Osteoporosis Remission via an Anti-Inflammaging Effect by Icariin Activated Autophagy. Biomaterials 2023, 297, 122125. [Google Scholar] [CrossRef]
- Liu, F.-T.; Stowell, S.R. The Role of Galectins in Immunity and Infection. Nat. Rev. Immunol. 2023, 23, 479–494. [Google Scholar] [CrossRef]
- Hermenean, A.; Oatis, D.; Herman, H.; Ciceu, A.; D’Amico, G.; Trotta, M.C. Galectin 1—A Key Player between Tissue Repair and Fibrosis. Int. J. Mol. Sci. 2022, 23, 5548. [Google Scholar] [CrossRef]
- Dings, R.; Miller, M.; Griffin, R.; Mayo, K. Galectins as Molecular Targets for Therapeutic Intervention. Int. J. Mol. Sci. 2018, 19, 905. [Google Scholar] [CrossRef]
- Cooper, D.; Norling, L.V.; Perretti, M. Novel Insights into the Inhibitory Effects of Galectin-1 on Neutrophil Recruitment under Flow. J. Leukoc. Biol. 2008, 83, 1459–1466. [Google Scholar] [CrossRef]
- Hsu, D.K.; Yang, R.-Y.; Pan, Z.; Yu, L.; Salomon, D.R.; Fung-Leung, W.-P.; Liu, F.-T. Targeted Disruption of the Galectin-3 Gene Results in Attenuated Peritoneal Inflammatory Responses. Am. J. Pathol. 2000, 156, 1073–1083. [Google Scholar] [CrossRef]
- Colnot, C.; Ripoche, M.A.; Milon, G.; Montagutelli, X.; Crocker, P.R.; Poirier, F. Maintenance of Granulocyte Numbers during Acute Peritonitis Is Defective in Galectin-3-null Mutant Mice. Immunology 1998, 94, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Offner, H.; Celnik, B.; Bringman, T.S.; Casentini-Borocz, D.; Nedwin, G.E.; Vandenbark, A.A. Recombinant Human β-Galactoside Binding Lectin Suppresses Clinical and Histological Signs of Experimental Autoimmune Encephalomyelitis. J. Neuroimmunol. 1990, 28, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Santucci, L.; Fiorucci, S.; Rubinstein, N.; Mencarelli, A.; Palazzetti, B.; Federici, B.; Rabinovich, G.A.; Morelli, A. Galectin-1 Suppresses Experimental Colitis in Mice. Gastroenterology 2003, 124, 1381–1394. [Google Scholar] [CrossRef]
- Baum, L.G.; Blackall, D.P.; Arias-Magallano, S.; Nanigian, D.; Uh, S.Y.; Browne, J.M.; Hoffmann, D.; Emmanouilides, C.E.; Territo, M.C.; Baldwin, G.C. Amelioration of Graft versus Host Disease by Galectin-1. Clin. Immunol. 2003, 109, 295–307. [Google Scholar] [CrossRef]
- Toscano, M.A.; Commodaro, A.G.; Ilarregui, J.M.; Bianco, G.A.; Liberman, A.; Serra, H.M.; Hirabayashi, J.; Rizzo, L.V.; Rabinovich, G.A. Galectin-1 Suppresses Autoimmune Retinal Disease by Promoting Concomitant Th2- and T Regulatory-Mediated Anti-Inflammatory Responses. J. Immunol. 2006, 176, 6323–6332. [Google Scholar] [CrossRef]
- Trotta, M.C.; Herman, H.; Ciceu, A.; Mladin, B.; Rosu, M.; Lepre, C.C.; Russo, M.; Bácskay, I.; Fenyvesi, F.; Marfella, R.; et al. Chrysin-Based Supramolecular Cyclodextrin-Calixarene Drug Delivery System: A Novel Approach for Attenuating Cardiac Fibrosis in Chronic Diabetes. Front. Pharmacol. 2023, 14, 1332212. [Google Scholar] [CrossRef]
- Balta, C.; Herman, H.; Ciceu, A.; Lepre, C.C.; Mladin, B.; Rosu, M.; Oatis, D.; Russo, M.; Peteu, V.E.; Gherghiceanu, M.; et al. Chrysin-Loaded Calixarene-Cyclodextrin Ternary Drug Delivery System Inhibits TGF-β and Galectin-1 Mediated Pathways in Diabetic Liver Fibrosis. Biochem. Pharmacol. 2024, 229, 116474. [Google Scholar] [CrossRef]
- Loser, K.; Sturm, A.; Voskort, M.; Kupas, V.; Balkow, S.; Auriemma, M.; Sternemann, C.; Dignass, A.U.; Luger, T.A.; Beissert, S. Galectin-2 Suppresses Contact Allergy by Inducing Apoptosis in Activated CD8+ T Cells. J. Immunol. 2009, 182, 5419–5429. [Google Scholar] [CrossRef]
- Zuberi, R.I.; Hsu, D.K.; Kalayci, O.; Chen, H.-Y.; Sheldon, H.K.; Yu, L.; Apgar, J.R.; Kawakami, T.; Lilly, C.M.; Liu, F.-T. Critical Role for Galectin-3 in Airway Inflammation and Bronchial Hyperresponsiveness in a Murine Model of Asthma. Am. J. Pathol. 2004, 165, 2045–2053. [Google Scholar] [CrossRef]
- Saegusa, J.; Hsu, D.K.; Chen, H.-Y.; Yu, L.; Fermin, A.; Fung, M.A.; Liu, F.-T. Galectin-3 Is Critical for the Development of the Allergic Inflammatory Response in a Mouse Model of Atopic Dermatitis. Am. J. Pathol. 2009, 174, 922–931. [Google Scholar] [CrossRef]
- Jiang, H.-R.; Al Rasebi, Z.; Mensah-Brown, E.; Shahin, A.; Xu, D.; Goodyear, C.S.; Fukada, S.Y.; Liu, F.-T.; Liew, F.Y.; Lukic, M.L. Galectin-3 Deficiency Reduces the Severity of Experimental Autoimmune Encephalomyelitis. J. Immunol. 2009, 182, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Oatis, D.; Balta, C.; Herman, H.; Ciceu, A.; Simon-Repolski, E.; Mihu, A.G.; Lepre, C.C.; Russo, M.; Trotta, M.C.; D’Amico, G.; et al. The Interplay between Lung Galectins and Pro-Fibrotic Markers in Post-COVID-19 Fibrogenesis: A Pilot Study. Life Sci. 2025, 361, 123326. [Google Scholar] [CrossRef] [PubMed]
- Hokama, A.; Mizoguchi, E.; Sugimoto, K.; Shimomura, Y.; Tanaka, Y.; Yoshida, M.; Rietdijk, S.T.; De Jong, Y.P.; Snapper, S.B.; Terhorst, C.; et al. Induced Reactivity of Intestinal CD4+ T Cells with an Epithelial Cell Lectin, Galectin-4, Contributes to Exacerbation of Intestinal Inflammation. Immunity 2004, 20, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Anderson, A.C.; Schubart, A.; Xiong, H.; Imitola, J.; Khoury, S.J.; Zheng, X.X.; Strom, T.B.; Kuchroo, V.K. The Tim-3 Ligand Galectin-9 Negatively Regulates T Helper Type 1 Immunity. Nat. Immunol. 2005, 6, 1245–1252. [Google Scholar] [CrossRef]
- Pricci, F.; Leto, G.; Amadio, L.; Iacobini, C.; Romeo, G.; Cordone, S.; Gradini, R.; Barsotti, P.; Liu, F.-T.; Di Mario, U.; et al. Role of Galectin-3 as a Receptor for Advanced Glycosylation End Products. Kidney Int. 2000, 58, S31–S39. [Google Scholar] [CrossRef]
- Ji, X.; Jiang, Z.; Qiu, Y.; Yu, J.; Zhang, Y.; Wang, J.; Ye, B.; Huang, Y.; Gu, W.; Huang, Y.; et al. High Blood Galectin-3 Level Associated with Risk of Frailty in Aging. Front. Endocrinol. 2023, 14, 1189192. [Google Scholar] [CrossRef]
- Sanchis-Gomar, F.; Santos-Lozano, A.; Pareja-Galeano, H.; Garatachea, N.; Alis, R.; Fiuza-Luces, C.; Morán, M.; Emanuele, E.; Lucia, A. Galectin-3, Osteopontin and Successful Aging. Clin. Chem. Lab. Med. (CCLM) 2016, 54, 873–877. [Google Scholar] [CrossRef]
- Xue, S.; Lozinski, B.M.; Ghorbani, S.; Ta, K.; D’Mello, C.; Yong, V.W.; Dong, Y. Elevated Galectin-3 Is Associated with Aging, Multiple Sclerosis, and Oxidized Phosphatidylcholine-Induced Neurodegeneration. J. Neurosci. 2023, 43, 4725–4737. [Google Scholar] [CrossRef]
- Estevez, F.; Florencia, S.; Betazza, C. Genetic Deletion of Galectin-3 Exacerbates Age-Related Myocardial Hypertrophy and Fibrosis in Mice. Cell. Physiol. Biochem. 2022, 56, 353–366. [Google Scholar] [CrossRef]
- Mir, M.Y.; Legradi, A. Sweet Aging: Glycocalyx and Galectins in CNS Aging and Neurodegenerative Disorders. Int. J. Mol. Sci. 2025, 26, 4699. [Google Scholar] [CrossRef]
- Kiss, T.; Mir, Y.; Stefancsik, G.; Ganbat, G.; Askarova, A.; Monostori, E.; Dulka, K.; Szebeni, G.J.; Nyúl-Tóth, Á.; Csiszár, A.; et al. Galectin-1 as a Marker for Microglia Activation in the Aging Brain. Brain Res. 2023, 1818, 148517. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Peng, Q.; Guo, X.; Pan, L.; Xiong, M.; Zhang, X.; Dai, L.; Zhang, Z.; Xiao, T.; He, J.; et al. Microglia-derived Galectin-9 Drives Amyloid-β Pathology in Alzheimer’s Disease. Aging Cell 2025, 24, e14396. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Nguimbus, L.M.; Badiane, P.Y.; Goguen-Couture, V.; Degrandmaison, J.; Parent, J.-L.; Brunet, M.A.; Roux, S. Galectin-8 Modulates Human Osteoclast Activity Partly through Isoform-Specific Interactions. Life Sci. Alliance 2024, 7, e202302348. [Google Scholar] [CrossRef] [PubMed]
- Iacobini, C.; Fantauzzi, C.B.; Pugliese, G.; Menini, S. Role of Galectin-3 in Bone Cell Differentiation, Bone Pathophysiology and Vascular Osteogenesis. Int. J. Mol. Sci. 2017, 18, 2481. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Chen, X. The role of galectin-3 in bone homeostasis: A review. Int. J. Biol. Macromol. 2024, 278, 134882. [Google Scholar] [CrossRef]
- Clevers, H.; Nusse, R. Wnt/β-catenin signaling and disease. Cell 2012, 149, 1192–1205. [Google Scholar] [CrossRef]
- Duan, P.; Bonewald, L.F. The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int. J. Biochem. Cell Biol. 2016, 77, 23–29. [Google Scholar] [CrossRef]
- Mercer, N.; Ahmed, H.; McCarthy, A.D.; Etcheverry, S.B.; Vasta, G.R.; Cortizo, A.M. AGE-R3/Galectin-3 Expression in Osteoblast-like Cells: Regulation by AGEs. Mol. Cell. Biochem. 2004, 266, 17–24. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, L.; Wang, S.; Huang, B.; Jing, Y.; Su, J. Bone Marrow Mesenchymal Stromal Cells: Identification, Classification, and Differentiation. Front. Cell Dev. Biol. 2022, 3, 787118. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Zhang, Y.; Yu, J.; Tang, L. Galectin-1 deletion in mice causes bone loss via impaired osteogenic differentiation potential of BMSCs. FASEB J. 2022, 36, e22516. [Google Scholar] [CrossRef]
- Ge, X.; Shi, K.; Hou, J.; Fu, Y.; Xiao, H.; Chi, F.; Xu, J.; Cai, F.; Bai, C. Galectin-1 secreted by bone marrow-derived mesenchymal stem cells mediates anti-inflammatory responses in acute airway disease. Exp. Cell Res. 2021, 407, 112788. [Google Scholar] [CrossRef] [PubMed]
- Reesink, H.L.; Sutton, R.M.; Shurer, C.R.; Peterson, R.P.; Tan, J.S.; Su, J.; Paszek, M.J.; Nixon, A.J. Galectin-1 and Galectin-3 Expression in Equine Mesenchymal Stromal Cells (MSCs), Synovial Fibroblasts and Chondrocytes, and the Effect of Inflammation on MSC Motility. Stem Cell Res. Ther. 2017, 8, 243. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Qian, Z.; Wang, S.; Wang, R.; Pu, X.; Yang, B.; Zhou, Q.; Du, C.; Chen, Q.; Feng, Z.; et al. Galectin-3 Enhances Osteogenic Differentiation of Precursor Cells From Patients With Diffuse Idiopathic Skeletal Hyperostosis via Wnt/β-Catenin Signaling. J. Bone Min. Res. 2022, 37, 724–739. [Google Scholar] [CrossRef] [PubMed]
- Deák, M.; Hornung, Á.; Novák, J.; Demydenko, D.; Szabó, E.; Czibula, Á.; Fajka-Boja, R.; Kriston-Pál, É.; Monostori, É.; Kovács, L. Novel role for galectin-1 in T-cells under physiological and pathological conditions. Immunobiology 2015, 220, 483–489. [Google Scholar] [CrossRef]
- Gilson, R.C.; Gunasinghe, S.D.; Johannes, L.; Gaus, K. Galectin-3 modulation of T-cell activation: Mechanisms of membrane remodelling. Prog. Lipid Res. 2019, 76, 101010. [Google Scholar] [CrossRef]
- Zhang, W.; Dang, K.; Huai, Y.; Qian, A. Osteoimmunology: The Regulatory Roles of T Lymphocytes in Osteoporosis. Front. Endocrinol. 2020, 11, 465. [Google Scholar] [CrossRef]
- O’Sullivan, J.M.; Jenkins, P.V.; Rawley, O.; Gegenbauer, K.; Chion, A.; Lavin, M.; Byrne, B.; O’Kennedy, R.; Preston, R.J.; Brophy, T.M.; et al. Galectin-1 and Galectin-3 Constitute Novel-Binding Partners for Factor VIII. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 855–863. [Google Scholar] [CrossRef]
- Battafarano, G.; Lancellotti, S.; Sacco, M.; Rossi, M.; Terreri, S.; Di Gregorio, J.; Di Giuseppe, L.; D’Agostini, M.; Porzio, O.; Di Gennaro, L.; et al. Effects of coagulation factors on bone cells and consequences of their absence in haemophilia a patients. Sci. Rep. 2024, 14, 25001. [Google Scholar] [CrossRef]
- Cadé, M.; Muñoz-Garcia, J.; Babuty, A.; Fouassier, M.; Heymann, M.F.; Monahan, P.E.; Heymann, D. FVIII at the crossroad of coagulation, bone and immune biology: Emerging evidence of biological activities beyond hemostasis. Drug Discov. Today 2022, 27, 102–116. [Google Scholar] [CrossRef]
- Xu, W.; Ni, C.; Wang, Y.; Zheng, G.; Zhang, J.; Xu, Y. Age-Related Trabecular Bone Loss Is Associated with a Decline in Serum Galectin-1 Level. BMC Musculoskelet. Disord. 2021, 22, 394. [Google Scholar] [CrossRef]
- Takeuchi, T.; Oyama, M.; Tamura, M.; Arata, Y.; Hatanaka, T. Reduced Form of Galectin-1 Suppresses Osteoclastic Differentiation of Human Peripheral Blood Mononuclear Cells and Murine RAW264 Cells In Vitro. Biomolecules 2024, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.; Jensen, O.N.; Moiseeva, E.P.; Eriksen, E.F. A Proteome Study of Secreted Prostatic Factors Affecting Osteoblastic Activity: Galectin-1 Is Involved in Differentiation of Human Bone Marrow Stromal Cells. J. Bone Miner. Res. 2003, 18, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Kho, D.H.; Yanagawa, T.; Harazono, Y.; Hogan, V.; Chen, W.; Ali-Fehmi, R.; Mehra, R.; Raz, A. Galectin-3 Cleavage Alters Bone Remodeling: Different Outcomes in Breast and Prostate Cancer Skeletal Metastasis. Cancer Res. 2016, 76, 1391–1402. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Kho, D.H.; Yanagawa, T.; Harazono, Y.; Gao, X.; Hogan, V.; Raz, A. Galectin-3 Inhibits Osteoblast Differentiation through Notch Signaling. Neoplasia 2014, 16, 939–949. [Google Scholar] [CrossRef]
- Maupin, K.A.; Weaver, K.; Bergsma, A.; Christie, C.; Zhong, Z.A.; Yang, T.; Williams, B.O. Enhanced cortical bone expansion in Lgals3-deficient mice during aging. Bone Res. 2018, 6, 7. [Google Scholar] [CrossRef]
- Simon, D.; Derer, A.; Andes, F.T.; Lezuo, P.; Bozec, A.; Schett, G.; Herrmann, M.; Harre, U. Galectin-3 as a Novel Regulator of Osteoblast-Osteoclast Interaction and Bone Homeostasis. Bone 2017, 105, 35–41. [Google Scholar] [CrossRef]
- Nakamura, A.; Dohi, Y.; Akahane, M.; Ohgushi, H.; Nakajima, H.; Funaoka, H.; Takakura, Y. Osteocalcin Secretion as an Early Marker of In Vitro Osteogenic Differentiation of Rat Mesenchymal Stem Cells. Tissue Eng. Part C Methods 2009, 15, 169–180. [Google Scholar] [CrossRef]
- Li, Y.; Li, T.; Zhou, Z.; Xiao, Y. Emerging Roles of Galectin-3 in Diabetes and Diabetes Complications: A Snapshot. Rev. Endocr. Metab. Disord. 2022, 23, 569–577. [Google Scholar] [CrossRef]
- Guo, Y.; Li, L.; Hu, S. Circulating Galectin-3 Levels and Diabetic Nephropathy: A Systematic Review and Meta-Analysis. BMC Nephrol. 2023, 24, 163. [Google Scholar] [CrossRef]
- Aksit, M.Z.; Demet Arslan, F.; Karakoyun, I.; Aydin, C.; Turgut, E.; Parildar, H.; Gokbalci, U.; Isbilen Basok, B.; Duman, C.; Emiroglu, M. Galectin-3 Levels and Inflammatory Response in Patients Undergoing Bariatric Surgery. Cytokine 2022, 151, 155793. [Google Scholar] [CrossRef]
- Osório, J. Galectin-1 Damages Cartilage via Inflammation. Nat. Rev. Rheumatol. 2016, 12, 133. [Google Scholar] [CrossRef] [PubMed]
- Triguero-Martínez, A.; Roy-Vallejo, E.; Tomero, E.G.; Montes, N.; Fuente, H.D.L.; Ortiz, A.M.; Castañeda, S.; Lamana, A.; González-Álvaro, I. Galectin-1: A Potential Biomarker Differentiating between Early Rheumatoid Arthritis and Spondyloarthritis. J. Clin. Med. 2022, 11, 6313. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Alshamarri, T.; Adeyeye, T.; Lazariu, V.; McNutt, L.-A.; Carpenter, D.O. A Comparison of Risk Factors for Osteo- and Rheumatoid Arthritis Using NHANES Data. Prev. Med. Rep. 2020, 20, 101242. [Google Scholar] [CrossRef]
- Matsumoto, H.; Fujita, Y.; Asano, T.; Matsuoka, N.; Temmoku, J.; Sato, S.; Yashiro–Furuya, M.; Yokose, K.; Yoshida, S.; Suzuki, E.; et al. Association between Inflammatory Cytokines and Immune–Checkpoint Molecule in Rheumatoid Arthritis. PLoS ONE 2021, 16, e0260254. [Google Scholar] [CrossRef]
- Mendez-Huergo, S.P.; Hockl, P.F.; Stupirski, J.C.; Maller, S.M.; Morosi, L.G.; Pinto, N.A.; Berón, A.M.; Musuruana, J.L.; Nasswetter, G.G.; Cavallasca, J.A.; et al. Clinical Relevance of Galectin-1 and Galectin-3 in Rheumatoid Arthritis Patients: Differential Regulation and Correlation With Disease Activity. Front. Immunol. 2019, 9, 3057. [Google Scholar] [CrossRef]
- Toscano, M.A.; Martínez Allo, V.C.; Cutine, A.M.; Rabinovich, G.A.; Mariño, K.V. Untangling Galectin-Driven Regulatory Circuits in Autoimmune Inflammation. Trends Mol. Med. 2018, 24, 348–363. [Google Scholar] [CrossRef]
- Cedeno-Laurent, F.; Dimitroff, C.J. Galectin-1 Research in T Cell Immunity: Past, Present and Future. Clin. Immunol. 2012, 142, 107–116. [Google Scholar] [CrossRef]
- Laderach, D.J.; Compagno, D. Inhibition of Galectins in Cancer: Biological Challenges for Their Clinical Application. Front. Immunol. 2023, 13, 1104625. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Z.; Zheng, Y.; Kou, J.; Song, D.; Yu, X.; Dong, B.; Chen, T.; Yang, Y.; Gao, X.; et al. Melatonin Inhibits Atherosclerosis Progression via Galectin-3 Downregulation to Enhance Autophagy and Inhibit Inflammation. J. Pineal Res. 2023, 74, e12855. [Google Scholar] [CrossRef]
- Ibarrola, J.; Arrieta, V.; Sádaba, R.; Martinez-Martinez, E.; Garcia-Peña, A.; Alvarez, V.; Fernández-Celis, A.; Gainza, A.; Santamaría, E.; Fernández-Irigoyen, J.; et al. Galectin-3 down-Regulates Antioxidant Peroxiredoxin-4 in Human Cardiac Fibroblasts: A New Pathway to Induce Cardiac Damage. Clin. Sci. 2018, 132, 1471–1485. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; Hassan, M.M.; Elsayed, H.E.-S.; Fares, A.E.; Saber, M.M.; Rashed, L.A.; Abdelwahed, O.M. Protective Effect of Galectin-3 Inhibitor against Cardiac Remodelling in an Isoprenaline-Induced Myocardial Infarction in Type 2 Diabetes. Arch. Physiol. Biochem. 2025, 131, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Livshits, G.; Kalinkovich, A. Targeting Chronic Inflammation as a Potential Adjuvant Therapy for Osteoporosis. Life Sci. 2022, 306, 120847. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, H.; Li, J.; Hu, J.; Yang, K.; Tao, L. Oxidative Stress: A Common Pathological State in a High-Risk Population for Osteoporosis. Biomed. Pharmacother. 2023, 163, 114834. [Google Scholar] [CrossRef]
- Yin, X.; Zhou, C.; Li, J.; Liu, R.; Shi, B.; Yuan, Q.; Zou, S. Autophagy in Bone Homeostasis and the Onset of Osteoporosis. Bone Res. 2019, 7, 28. [Google Scholar] [CrossRef]
- Nollet, M.; Santucci-Darmanin, S.; Breuil, V.; Al-Sahlanee, R.; Cros, C.; Topi, M.; Momier, D.; Samson, M.; Pagnotta, S.; Cailleteau, L.; et al. Autophagy in Osteoblasts Is Involved in Mineralization and Bone Homeostasis. Autophagy 2014, 10, 1965–1977. [Google Scholar] [CrossRef]
- DeSelm, C.J.; Miller, B.C.; Zou, W.; Beatty, W.L.; van Meel, E.; Takahata, Y.; Klumperman, J.; Tooze, S.A.; Teitelbaum, S.L.; Virgin, H.W. Autophagy Proteins Regulate the Secretory Component of Osteoclastic Bone Resorption. Dev. Cell 2011, 21, 966–974. [Google Scholar] [CrossRef]
- Liu, F.; Fang, F.; Yuan, H.; Yang, D.; Chen, Y.; Williams, L.; Goldstein, S.A.; Krebsbach, P.H.; Guan, J.-L. Suppression of Autophagy by FIP200 Deletion Leads to Osteopenia in Mice through the Inhibition of Osteoblast Terminal Differentiation. J. Bone Miner. Res. 2013, 28, 2414–2430. [Google Scholar] [CrossRef]
- Li, H.; Li, D.; Ma, Z.; Qian, Z.; Kang, X.; Jin, X.; Li, F.; Wang, X.; Chen, Q.; Sun, H.; et al. Defective Autophagy in Osteoblasts Induces Endoplasmic Reticulum Stress and Causes Remarkable Bone Loss. Autophagy 2018, 14, 1726–1741. [Google Scholar] [CrossRef]
- Piemontese, M.; Onal, M.; Xiong, J.; Han, L.; Thostenson, J.D.; Almeida, M.; O’Brien, C.A. Low Bone Mass and Changes in the Osteocyte Network in Mice Lacking Autophagy in the Osteoblast Lineage. Sci. Rep. 2016, 6, 24262. [Google Scholar] [CrossRef]
- Oatis, D.; Simon-Repolski, E.; Balta, C.; Mihu, A.; Pieretti, G.; Alfano, R.; Peluso, L.; Trotta, M.C.; D’Amico, M.; Hermenean, A. Cellular and Molecular Mechanism of Pulmonary Fibrosis Post-COVID-19: Focus on Galectin-1, -3, -8, -9. Int. J. Mol. Sci. 2022, 23, 8210. [Google Scholar] [CrossRef]
- Xie, Z.; He, Y.; Sun, Y.; Lin, Z.; Yang, M.; Liu, Q.; Liu, S. Association between Pulmonary Fibrosis and Osteoporosis in the Elderly People: A Case–Control Study. Medicine 2016, 95, e5239. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Zhao, Y.; Chen, C.; Cai, J.; Li, K.; Wang, Y.; Liu, J. The Relationship between Advanced Liver Fibrosis and Osteoporosis in Type 2 Diabetes Patients with MAFLD. Endocrine 2024, 85, 206–221. [Google Scholar] [CrossRef] [PubMed]
- Soltani, A.; Aghakhani, A.; Dehghanbanadaki, H.; Majidi, Z.; Rezaei-Tavirani, M.; Shafiee, G.; Ostovar, A.; Mir Moeini, S.A.; Bandarian, F.; Larijani, B.; et al. Association between Liver Fibrosis and Osteoporosis in Adults Aged 50 and Older: Insights from the Bushehr Elderly Health Program. J. Diabetes Metab. Disord. 2025, 24, 65. [Google Scholar] [CrossRef] [PubMed]
- Venosa, A. Senescence in Pulmonary Fibrosis: Between Aging and Exposure. Front. Med. 2020, 7, 606462. [Google Scholar] [CrossRef]
- Godoy, M.C.X.; Monteiro, G.A.; Moraes, B.H.; Macedo, J.A.; Gonçalves, G.M.S.; Gambero, A. Addition of Polyphenols to Drugs: The Potential of Controlling “Inflammaging” and Fibrosis in Human Senescent Lung Fibroblasts In Vitro. Int. J. Mol. Sci. 2024, 25, 7163. [Google Scholar] [CrossRef]
- Torres-Machorro, A.L.; García-Vicente, Á.; Espina-Ordoñez, M.; Luis-García, E.; Negreros, M.; Herrera, I.; Becerril, C.; Toscano, F.; Cisneros, J.; Maldonado, M. Update of Aging Hallmarks in Idiopathic Pulmonary Fibrosis. Cells 2025, 14, 222. [Google Scholar] [CrossRef]
- Trotta, M.C.; Petrillo, F.; Gesualdo, C.; Rossi, S.; Corte, A.D.; Váradi, J.; Fenyvesi, F.; D’Amico, M.; Hermenean, A. Effects of the Calix [4]Arene Derivative Compound OTX008 on High Glucose-Stimulated ARPE-19 Cells: Focus on Galectin-1/TGF-β/EMT Pathway. Molecules 2022, 27, 4785. [Google Scholar] [CrossRef]
- Liu, F.-T.; Rabinovich, G.A. Galectins as Modulators of Tumour Progression. Nat. Rev. Cancer 2005, 5, 29–41. [Google Scholar] [CrossRef]
- Astorgues-Xerri, L.; Riveiro, M.E.; Tijeras-Raballand, A.; Serova, M.; Rabinovich, G.A.; Bieche, I.; Vidaud, M.; de Gramont, A.; Martinet, M.; Cvitkovic, E.; et al. OTX008, a Selective Small-Molecule Inhibitor of Galectin-1, Downregulates Cancer Cell Proliferation, Invasion and Tumour Angiogenesis. Eur. J. Cancer 2014, 50, 2463–2477. [Google Scholar] [CrossRef]
- Gomez-Brouchet, A.; Mourcin, F.; Gourraud, P.-A.; Bouvier, C.; De Pinieux, G.; Le Guelec, S.; Brousset, P.; Delisle, M.-B.; Schiff, C. Galectin-1 Is a Powerful Marker to Distinguish Chondroblastic Osteosarcoma and Conventional Chondrosarcoma. Hum. Pathol. 2010, 41, 1220–1230. [Google Scholar] [CrossRef]
- Park, G.B.; Kim, D.-J.; Kim, Y.-S.; Lee, H.-K.; Kim, C.W.; Hur, D.Y. Silencing of Galectin-3 Represses Osteosarcoma Cell Migration and Invasion through Inhibition of FAK/Src/Lyn Activation and β-Catenin Expression and Increases Susceptibility to Chemotherapeutic Agents. Int. J. Oncol. 2015, 46, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Jing, J.; Peng, J.; Mao, W.; Zheng, Y.; Wang, D.; Wang, X.; Liu, Z.; Zhang, X. Expression and Clinical Significance of Galectin-3 in Osteosarcoma. Gene 2014, 546, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Kotru, S.; Singh, S.; Munshi, A. miRNA Signatures in Diabetic Retinopathy and Nephropathy: Delineating Underlying Mechanisms. J. Physiol. Biochem. 2022, 78, 19–37. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.S.; Kim, D.H.; Lee, J.A.; Kim, D.H.; Cho, J.; Cho, W.H.; Lee, S.-Y.; Jeon, D.-G. Young Age at Diagnosis, Male Sex, and Decreased Lean Mass Are Risk Factors of Osteoporosis in Long-Term Survivors of Osteosarcoma. J. Pediatr. Hematol./Oncol. 2013, 35, 54–60. [Google Scholar] [CrossRef]
- Bellini, G.; Pinto, D.D.; Tortora, C.; Manzo, I.; Punzo, F.; Casale, F.; Rossi, F. The Role of Mifamurtide in Chemotherapy-Induced Osteoporosis of Children with Osteosarcoma. Curr. Cancer Drug Targets 2017, 17, 650–656. [Google Scholar] [CrossRef]
- Mori, T.; Sato, Y.; Miyamoto, K.; Kobayashi, T.; Shimizu, T.; Kanagawa, H.; Katsuyama, E.; Fujie, A.; Hao, W.; Tando, T.; et al. TNFα promotes osteosarcoma progression by maintaining tumor cells in an undifferentiated state. Oncogene 2014, 33, 4236–4241. [Google Scholar] [CrossRef]
- Lv, Y.; Wu, L.; Jian, H.; Zhang, C.; Lou, Y.; Kang, Y.; Hou, M.; Li, Z.; Li, X.; Sun, B.; et al. Identification and characterization of aging/senescence-induced genes in osteosarcoma and predicting clinical prognosis. Front. Immunol. 2022, 13, 997765. [Google Scholar] [CrossRef]
- Zetterberg, F.R.; MacKinnon, A.; Brimert, T.; Gravelle, L.; Johnsson, R.E.; Kahl-Knutson, B.; Leffler, H.; Nilsson, U.J.; Pedersen, A.; Peterson, K.; et al. Discovery and Optimization of the First Highly Effective and Orally Available Galectin-3 Inhibitors for Treatment of Fibrotic Disease. J. Med. Chem. 2022, 65, 12626–12638. [Google Scholar] [CrossRef]
- Park, K.-S.; Kim, J.-S. Engineering of GAL1 Promoter-Driven Expression System with Artificial Transcription Factors. Biochem. Biophys. Res. Commun. 2006, 351, 412–417. [Google Scholar] [CrossRef]
- Deng, J.; Wu, Y.; Zheng, Z.; Chen, N.; Luo, X.; Tang, H.; Keasling, J.D. A Synthetic Promoter System for Well-Controlled Protein Expression with Different Carbon Sources in Saccharomyces Cerevisiae. Microb. Cell Fact. 2021, 20, 202. [Google Scholar] [CrossRef]
- Ahmed, H.; Cappello, F.; Rodolico, V.; Vasta, G.R. Evidence of Heavy Methylation in the Galectin 3 Promoter in Early Stages of Prostate Adenocarcinoma: Development and Validation of a Methylated Marker for Early Diagnosis of Prostate Cancer. Transl. Oncol. 2009, 2, 146–156. [Google Scholar] [CrossRef]
Reference | Study | Experimental Setting | Treatment | Main Results |
---|---|---|---|---|
Xu et al., 2021 [122] | In vivo Clinical | Aged male Balb/c and C57BL/6 mice Aged osteoporotic patients | / / | Serum Gal-1 was reduced in aged mice and osteoporotic patients. Gal-1 decline was associated with trabecular bone mass loss in both preclinical and clinical settings |
Chen et al., 2022 [112] | In vivo In vitro | Aged and young Gal-1 KO mice BMSCs isolated from femur and tibia of Gal-1 KO mice | / Gal-1 0.5 μg/mL for 48 h | Deletion of Gal-1 in mice resulted in bone loss, due to a reduced ability of BMSCs to differentiate into osteoblasts. This was more evident in aged mice compared to young ones. In vitro, Gal-1 facilitated the differentiation of BMSCs into osteoblasts |
Takeuchi et al., 2024 [123] | In vitro | Osteoclasts differentiated from Human PBMCs Osteoclasts differentiated from Raw 264.7 | On both cell types: Recombinant Gal-1 protein, 10 µg/mL for 14 days | Recombinant Gal-1 inhibited osteoclast formation and bone resorption activity |
Andersen et al., 2003 [124] | In vitro | Human BMSCs | Gal-1 recombinant (10–1000 ng/mL) | Gal-1 reduced Osteocalcin expression, suggesting a reduction in HBMSC differentiation in osteoblasts |
Mercer et al., 2004 [110] | In vitro | MC3T3E1 | 100–200 microg/mL AGEs-BSA | Intracellular Gal-3 was increased by AGEs |
Nakajima et al., 2016 [125] | In vitro | Raw 264.7 Human osteoclast precursors hFOB1.19 | Cells exposed to full-length and cleaved Gal-3 secreted from breast and prostate cancer cells | Gal-3, through its interaction with the protein myosin-2A, promoted osteoclast differentiation. Furthermore, the cleaved Gal-3 influenced the extent of bone resorption |
Nakajima et al., 2014 [126] | In vitro | hFOB1.19 | Recombinant human Gal-3, 1.6 µM, every 3 to 4 days, for 3 weeks Lactose (75 mM), a sugar Gal-3 inhibitor | Gal-3 inhibited osteoblast differentiation through the Notch signaling pathway, and impaired bone formation by reducing the expression of genes implicated in osteoblastic differentiation, such as RUNX2, SP7, ALPL, COL1A1. Gal-3 inhibition promoted hFOB1.19 proliferation and differentiation |
Maupin et al., 2018 [127] | In vivo | Gal-3 KO mice | / | Gal-3 KO mice exhibited preserved or enhanced bone mass, due to increased osteoblastogenesis. |
Simon et al., 2017 [128] | In vivo In vitro | Gal-3 KO mice Osteoclasts and osteoblasts differentiated from Gal-3 KO BMSCs | / / | Gal-3 KO mice exhibited elevated osteoclast numbers and a lowered trabecular bone volume. Gal-3 secreted by osteoblasts inhibited osteoclast formation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, M.; Lepre, C.C.; Itro, A.; Martin, G.; Conza, G.; Trotta, M.C.; Puticiu, M.; Hermenean, A.; Gimigliano, F.; D’Amico, M.; et al. Inflammaging-Driven Osteoporosis: Is a Galectin-Targeted Approach Needed? Int. J. Mol. Sci. 2025, 26, 6473. https://doi.org/10.3390/ijms26136473
Russo M, Lepre CC, Itro A, Martin G, Conza G, Trotta MC, Puticiu M, Hermenean A, Gimigliano F, D’Amico M, et al. Inflammaging-Driven Osteoporosis: Is a Galectin-Targeted Approach Needed? International Journal of Molecular Sciences. 2025; 26(13):6473. https://doi.org/10.3390/ijms26136473
Chicago/Turabian StyleRusso, Marina, Caterina Claudia Lepre, Annalisa Itro, Gabriele Martin, Gianluca Conza, Maria Consiglia Trotta, Monica Puticiu, Anca Hermenean, Francesca Gimigliano, Michele D’Amico, and et al. 2025. "Inflammaging-Driven Osteoporosis: Is a Galectin-Targeted Approach Needed?" International Journal of Molecular Sciences 26, no. 13: 6473. https://doi.org/10.3390/ijms26136473
APA StyleRusso, M., Lepre, C. C., Itro, A., Martin, G., Conza, G., Trotta, M. C., Puticiu, M., Hermenean, A., Gimigliano, F., D’Amico, M., & Toro, G. (2025). Inflammaging-Driven Osteoporosis: Is a Galectin-Targeted Approach Needed? International Journal of Molecular Sciences, 26(13), 6473. https://doi.org/10.3390/ijms26136473