Germline Sequencing of Familial and Sporadic Early-Onset Colorectal Cancer: A Novel Pattern of Genes
Abstract
1. Introduction
2. Results
2.1. EOCRC Cohort Characteristics
2.2. Shortlisting of Germline High-Impact Variants in EOCRC Patients
2.3. Investigating a Dominant Transmission Pattern of EOCRC Predisposition
2.4. Investigating a Monogenic Recessive Transmission and an Oligogenic Pattern of EOCRC Predisposition
3. Discussion
4. Materials and Methods
4.1. Cohorts
4.2. Germline 585-Gene Panel Sequencing
4.3. Variant Analysis and Classification
4.4. Control Population for Statistical Analysis of NGS Data
4.5. Statistical Analysis
4.6. Screening the Local NGS Database for Candidate Gene Variants
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADK | Adenocarcinoma |
ALL | Acute lymphocytic leukemia |
BGS | Baller–Gerold syndrome |
CADD | Combined Annotation Dependent Depletion score |
CH | Clonal hematopoiesis |
CLL | Chronic lymphocytic leukemia |
CNV | Copy number variant |
CRC | Colorectal cancer |
dMMR | Mismatch repair deficient |
EOCRC | Early-onset colorectal cancer |
HVs | High-impact variants: TVs, SVs or variants known to be PVs/LPVs |
IHC | Immunohistochemistry |
LPV | Likely pathogenic variant |
LOCRC | Late-onset colorectal cancer |
LNV | Likely neutral variant |
MAF | Minor allele frequency |
MSI-H | High microsatellite instability |
MSI-L | Low microsatellite instability |
MSS | Microsatellite stable |
NET | Neuroendocrine tumor |
NFE | Non-Finnish European |
NGS | Next Generation Sequencing |
NV | Neutral variant |
pMMR | Mismatch repair proficient |
PV | Pathogenic variant |
RTS | Rothmund–Thomson syndrome |
SV | Splice variant |
TVs | Truncating variants, i.e., frameshift and non-sense variant |
VAF | Variant allele frequency |
VUS | Variant of unknown significance |
WES | Whole exome sequencing |
References
- Mauri, G.; Sartore-Bianchi, A.; Russo, A.G.; Marsoni, S.; Bardelli, A.; Siena, S. Early-onset colorectal cancer in young individuals. Mol. Oncol. 2019, 13, 109–131. [Google Scholar] [CrossRef]
- Coccia, P.F.; Pappo, A.S.; Beaupin, L.; Borges, V.F.; Borinstein, S.C.; Chugh, R.; Dinner, S.; Folbrecht, J.; Frazier, A.L.; Goldsby, R.; et al. Adolescent and Young Adult Oncology, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc Netw. 2018, 16, 66–97. [Google Scholar] [CrossRef] [PubMed]
- Willauer, A.N.; Liu, Y.; Pereira, A.A.L.; Lam, M.; Morris, J.S.; Raghav, K.P.S.; Morris, V.K.; Menter, D.; Broaddus, R.; Meric-Bernstam, F.; et al. Clinical and molecular characterization of early-onset colorectal cancer. Cancer 2019, 125, 2002–2010. [Google Scholar] [CrossRef] [PubMed]
- Daca Alvarez, M.; Quintana, I.; Terradas, M.; Mur, P.; Balaguer, F.; Valle, L. The Inherited and Familial Component of Early-Onset Colorectal Cancer. Cells 2021, 10, 710. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.H.; Liu, P.H.; Zheng, X.; Keum, N.; Zong, X.; Li, X.; Wu, K.; Fuchs, C.S.; Ogino, S.; Ng, K.; et al. Sedentary Behaviors, TV Viewing Time, and Risk of Young-Onset Colorectal Cancer. JNCI Cancer Spectr. 2018, 2, pky073. [Google Scholar] [CrossRef]
- Liu, P.H.; Wu, K.; Ng, K.; Zauber, A.G.; Nguyen, L.H.; Song, M.; He, X.; Fuchs, C.S.; Ogino, S.; Willett, W.C.; et al. Association of Obesity With Risk of Early-Onset Colorectal Cancer Among Women. JAMA Oncol. 2019, 5, 37–44. [Google Scholar] [CrossRef]
- Stoffel, E.M.; Murphy, C.C. Epidemiology and Mechanisms of the Increasing Incidence of Colon and Rectal Cancers in Young Adults. Gastroenterology 2020, 158, 341–353. [Google Scholar] [CrossRef]
- Dhooge, M.; Baert-Desurmont, S.; Corsini, C.; Caron, O.; Andrieu, N.; Berthet, P.; Bonadona, V.; Cohen-Haguenauer, O.; De Pauw, A.; Delnatte, C.; et al. National recommendations of the French Genetics and Cancer Group—Unicancer on the modalities of multi-genes panel analyses in hereditary predispositions to tumors of the digestive tract. Eur. J. Med. Genet. 2020, 63, 104080. [Google Scholar] [CrossRef]
- Pearlman, R.; Frankel, W.L.; Swanson, B.; Zhao, W.; Yilmaz, A.; Miller, K.; Bacher, J.; Bigley, C.; Nelsen, L.; Goodfellow, P.J.; et al. Prevalence and Spectrum of Germline Cancer Susceptibility Gene Mutations Among Patients With Early-Onset Colorectal Cancer. JAMA Oncol. 2017, 3, 464–471. [Google Scholar] [CrossRef]
- Stoffel, E.M.; Koeppe, E.; Everett, J.; Ulintz, P.; Kiel, M.; Osborne, J.; Williams, L.; Hanson, K.; Gruber, S.B.; Rozek, L.S. Germline Genetic Features of Young Individuals With Colorectal Cancer. Gastroenterology 2018, 154, 897–905.E1. [Google Scholar] [CrossRef]
- Zhunussova, G.; Afonin, G.; Abdikerim, S.; Jumanov, A.; Perfilyeva, A.; Kaidarova, D.; Djansugurova, L. Mutation Spectrum of Cancer-Associated Genes in Patients With Early Onset of Colorectal Cancer. Front. Oncol. 2019, 9, 673. [Google Scholar] [CrossRef] [PubMed]
- Beltrami, C.M.; do Canto, L.M.; Villacis, R.A.R.; Petersen, A.H.; Aagaard, M.M.; Cury, S.S.; Formiga, M.; Junior, S.A.; Rogatto, S.R. The repertoire of germline variants in patients with early-onset rectal cancer. Cancer Commun. 2022, 42, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Tanskanen, T.; Gylfe, A.E.; Katainen, R.; Taipale, M.; Renkonen-Sinisalo, L.; Jarvinen, H.; Mecklin, J.P.; Bohm, J.; Kilpivaara, O.; Pitkanen, E.; et al. Systematic search for rare variants in Finnish early-onset colorectal cancer patients. Cancer Genet. 2015, 208, 35–40. [Google Scholar] [CrossRef]
- Zhang, J.X.; Fu, L.; de Voer, R.M.; Hahn, M.M.; Jin, P.; Lv, C.X.; Verwiel, E.T.; Ligtenberg, M.J.; Hoogerbrugge, N.; Kuiper, R.P.; et al. Candidate colorectal cancer predisposing gene variants in Chinese early-onset and familial cases. World J. Gastroenterol. 2015, 21, 4136–4149. [Google Scholar] [CrossRef]
- de Voer, R.M.; Hahn, M.M.; Weren, R.D.; Mensenkamp, A.R.; Gilissen, C.; van Zelst-Stams, W.A.; Spruijt, L.; Kets, C.M.; Zhang, J.; Venselaar, H.; et al. Identification of Novel Candidate Genes for Early-Onset Colorectal Cancer Susceptibility. PLoS Genet. 2016, 12, e1005880. [Google Scholar] [CrossRef]
- Toh, M.R.; Chiang, J.B.; Chong, S.T.; Chan, S.H.; Ishak, N.D.B.; Courtney, E.; Lee, W.H.; Syed Abdillah Al, S.; Carson Allen, J., Jr.; Lim, K.H.; et al. Germline Pathogenic Variants in Homologous Recombination and DNA Repair Genes in an Asian Cohort of Young-Onset Colorectal Cancer. JNCI Cancer Spectr. 2018, 2, pky054. [Google Scholar] [CrossRef]
- Thutkawkorapin, J.; Lindblom, A.; Tham, E. Exome sequencing in 51 early onset non-familial CRC cases. Mol. Genet. Genomic Med. 2019, 7, e605. [Google Scholar] [CrossRef]
- Mikaeel, R.R.; Symonds, E.L.; Kimber, J.; Smith, E.; Horsnell, M.; Uylaki, W.; Tapia Rico, G.; Hewett, P.J.; Yong, J.; Tonkin, D.; et al. Young-onset colorectal cancer is associated with a personal history of type 2 diabetes. Asia Pac. J. Clin. Oncol. 2021, 17, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Rozadilla, C.; Alvarez-Barona, M.; Quintana, I.; Lopez-Novo, A.; Amigo, J.; Cameselle-Teijeiro, J.M.; Roman, E.; Gonzalez, D.; Llor, X.; Bujanda, L.; et al. Exome sequencing of early-onset patients supports genetic heterogeneity in colorectal cancer. Sci. Rep. 2021, 11, 11135. [Google Scholar] [CrossRef]
- Brunet, T.; Berutti, R.; Dill, V.; Hecker, J.S.; Choukair, D.; Andres, S.; Deschauer, M.; Diehl-Schmid, J.; Krenn, M.; Eckstein, G.; et al. Clonal hematopoiesis as a pitfall in germline variant interpretation in the context of Mendelian disorders. Hum. Mol. Genet. 2022, 31, 2386–2395. [Google Scholar] [CrossRef]
- Siitonen, H.A.; Sotkasiira, J.; Biervliet, M.; Benmansour, A.; Capri, Y.; Cormier-Daire, V.; Crandall, B.; Hannula-Jouppi, K.; Hennekam, R.; Herzog, D.; et al. The mutation spectrum in RECQL4 diseases. Eur. J. Hum. Genet. 2009, 17, 151–158. [Google Scholar] [CrossRef]
- Cullinane, C.M.; Creavin, B.; O’Connell, E.P.; Kelly, L.; O’Sullivan, M.J.; Corrigan, M.A.; Redmond, H.P. Risk of colorectal cancer associated with BRCA1 and/or BRCA2 mutation carriers: Systematic review and meta-analysis. Br. J. Surg. 2020, 107, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Felicio, P.S.; Grasel, R.S.; Campacci, N.; de Paula, A.E.; Galvao, H.C.R.; Torrezan, G.T.; Sabato, C.S.; Fernandes, G.C.; Souza, C.P.; Michelli, R.D.; et al. Whole-exome sequencing of non-BRCA1/BRCA2 mutation carrier cases at high-risk for hereditary breast/ovarian cancer. Hum. Mutat. 2021, 42, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Raskin, L.; Guo, Y.; Du, L.; Clendenning, M.; Rosty, C.; Colon Cancer Family, R.; Lindor, N.M.; Gruber, S.B.; Buchanan, D.D. Targeted sequencing of established and candidate colorectal cancer genes in the Colon Cancer Family Registry Cohort. Oncotarget 2017, 8, 93450–93463. [Google Scholar] [CrossRef]
- Walsh, C.A.; Qin, L.; Tien, J.C.; Young, L.S.; Xu, J. The function of steroid receptor coactivator-1 in normal tissues and cancer. Int. J. Biol. Sci. 2012, 8, 470–485. [Google Scholar] [CrossRef]
- Triki, M.; Lapierre, M.; Cavailles, V.; Mokdad-Gargouri, R. Expression and role of nuclear receptor coregulators in colorectal cancer. World J. Gastroenterol. 2017, 23, 4480–4490. [Google Scholar] [CrossRef] [PubMed]
- Luong, T.T.; Bernstein, K.A. Role and Regulation of the RECQL4 Family during Genomic Integrity Maintenance. Genes 2021, 12, 1919. [Google Scholar] [CrossRef]
- Grelet, M.; Blanck, V.; Sigaudy, S.; Philip, N.; Giuliano, F.; Khachnaoui, K.; Morel, G.; Grotto, S.; Sophie, J.; Poirsier, C.; et al. Outcomes of 4 years of molecular genetic diagnosis on a panel of genes involved in premature aging syndromes, including laminopathies and related disorders. Orphanet J. Rare Dis. 2019, 14, 288. [Google Scholar] [CrossRef]
- Salih, A.; Inoue, S.; Onwuzurike, N. Rothmund-Thomson syndrome (RTS) with osteosarcoma due to RECQL4 mutation. BMJ Case Rep. 2018, 2018, bcr-2017-222384. [Google Scholar] [CrossRef]
- Lindor, N.M.; Furuichi, Y.; Kitao, S.; Shimamoto, A.; Arndt, C.; Jalal, S. Rothmund-Thomson syndrome due to RECQ4 helicase mutations: Report and clinical and molecular comparisons with Bloom syndrome and Werner syndrome. Am. J. Med. Genet. 2000, 90, 223–228. [Google Scholar] [CrossRef]
- Van Maldergem, L.; Siitonen, H.A.; Jalkh, N.; Chouery, E.; De Roy, M.; Delague, V.; Muenke, M.; Jabs, E.W.; Cai, J.; Wang, L.L.; et al. Revisiting the craniosynostosis-radial ray hypoplasia association: Baller-Gerold syndrome caused by mutations in the RECQL4 gene. J. Med. Genet. 2006, 43, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Martin-Giacalone, B.A.; Rideau, T.T.; Scheurer, M.E.; Lupo, P.J.; Wang, L.L. Cancer risk among RECQL4 heterozygotes. Cancer Genet. 2022, 262–263, 107–110. [Google Scholar] [CrossRef]
- Amisaki, M.; Tsuchiya, H.; Sakabe, T.; Fujiwara, Y.; Shiota, G. Identification of genes involved in the regulation of TERT in hepatocellular carcinoma. Cancer Sci. 2019, 110, 550–560. [Google Scholar] [CrossRef]
- French, C.A.; Miyoshi, I.; Kubonishi, I.; Grier, H.E.; Perez-Atayde, A.R.; Fletcher, J.A. BRD4-NUT fusion oncogene: A novel mechanism in aggressive carcinoma. Cancer Res. 2003, 63, 304–307. [Google Scholar] [PubMed]
- Lim, E.B.; Oh, H.S.; Kim, K.C.; Kim, M.H.; Kim, Y.J.; Kim, B.J.; Nho, C.W.; Cho, Y.S. Identification and functional validation of HLA-C as a potential gene involved in colorectal cancer in the Korean population. BMC Genom. 2022, 23, 261. [Google Scholar] [CrossRef] [PubMed]
- Labrousse, G.; Vande Perre, P.; Parra, G.; Jaffrelot, M.; Leroy, L.; Chibon, F.; Escudie, F.; Selves, J.; Hoffmann, J.-S.; Guimbaud, R.; et al. The hereditary N363K POLE exonuclease mutant extends PPAP tumor spectrum to glioblastomas by causing DNA damage and aneuploidy in addition to increased mismatch mutagenicity. NAR Cancer 2023, 5, zcad011. [Google Scholar] [CrossRef]
- Al Saati, A.; Vande Perre, P.; Plenecassagnes, J.; Gilhodes, J.; Monselet, N.; Cabarrou, B.; Lignon, N.; Filleron, T.; Telly, D.; Perello-Lestrade, E.; et al. Multigene Panel Sequencing Identifies a Novel Germline Mutation Profile in Male Breast Cancer Patients. Int. J. Mol. Sci. 2023, 24, 14348. [Google Scholar] [CrossRef]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Jaganathan, K.; Kyriazopoulou Panagiotopoulou, S.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548.E24. [Google Scholar] [CrossRef]
- Leman, R.; Parfait, B.; Vidaud, D.; Girodon, E.; Pacot, L.; Le Gac, G.; Ka, C.; Ferec, C.; Fichou, Y.; Quesnelle, C.; et al. SPiP: Splicing Prediction Pipeline, a machine learning tool for massive detection of exonic and intronic variant effects on mRNA splicing. Hum. Mutat. 2022, 43, 2308–2323. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [PubMed]
EOCRC (n = 87) | LOCRC (n = 82) | p-Value | |
---|---|---|---|
Median age at cancer diagnosis (years) [range] | 34 [20; 40] | 62.5 [50; 85] | <0.001 |
Sex: women/men | 50 (57.5%)/37 (42.5%) | 39 (47.6%)/43 (52.4%) | 0.197 |
Histology: adenocarcinoma | |||
Lieberkuhnian | 46 (73.0%) | 39 (69.6%) | |
Colloid or mucinous | 10 (15.9%) | 9 (16.1%) | |
Signet ring cell carcinoma | 2 (3.2%) | 3 (5.4%) | |
Medullary | 0 | 0 | |
Mixed Lieberkuhnian and colloid | 3 (4.8%) | 4 (7.1%) | |
Mixed colloid and signet ring cell | 1 (1.6%) | 1 (1.8%) | |
Mixed medullary and signet ring cell | 1 (1.6%) | 0 | |
Missing data | 24 | 26 | |
Cancer by location | |||
Small bowel | 4 (4.7%) | 2 (2.6%) | |
Appendix | 3 (3.5%) | 0 | |
Ascending colon | 18 (21.2%) | 39 (51.3%) | |
Transverse colon | 7 (8.2%) | 1 (1.3%) | |
Descending colon | 16 (18.8%) | 18 (23.7%) | |
Sigmoid | 19 (22.4%) | 6 (7.9%) | |
Rectum | 18 (21.2%) | 10 (13.2%) | |
Missing data | 2 | 6 | |
Location subclasses | 0.002 | ||
“Proximal” (small bowel, appendix, ascending colon) | 25 (29.4%) | 41 (53.9%) | |
“Medial” (transverse and descending colon) | 23 (27.1%) | 19 (25.0%) | |
“Distal” (sigmoid, rectum) | 37 (43.5%) | 16 (21.1%) | |
Colon without documented location | 2 | 6 | |
Metastatic CRC at primary diagnosis | 0.002 | ||
Yes | 20 (23.5%) | 4 (5.5%) | |
No | 65 (76.5%) | 69 (94.5%) | |
Missing data | 2 | 9 | |
Tumor microsatellite instability | <0.001 | ||
MSS or MSI-L | 48 (76.2%) | 13 (19.4%) | |
MSI-H | 15 (23.8%) | 54 (80.6%) | |
Missing data | 24 | 15 | |
Immunohistochemistry MMR protein expression | <0.001 | ||
pMMR | 55 (79.7%) | 14 (19.7%) | |
dMMR | 14 (20.3%) | 57 (80.3%) | |
Missing (or incomplete) IHC | 18 | 11 | |
Methylation of the MLH1 promoter | 0.283 | ||
Yes | 2 (22.2%) | 20 (44.4%) | |
No | 7 (77.8%) | 25 (55.6%) | |
Missing data | 78 | 37 | |
BRAF V600E mutation | 0.160 | ||
Yes | 3 (15.0%) | 20 (44.4%) | |
No | 17 (85.0%) | 25 (55.6%) | |
Missing data | 67 | 37 | |
CRC patients with an additional independent cancer history | 0.032 | ||
Yes | 11 (12.6%) | 21 (25.6%) | |
No | 76 (87.4%) | 61 (74.4%) | |
Type(s) of independent cancer(s): | |||
Colorectal | 2 (18.2%) | 3 (14.3%) | |
Small bowel NET | 1 (9.1%) | 0 | |
Cholangiocarcinoma | 1 (9.1%) | 0 | |
Prostate | 1 (9.1%) | 3 (14.3%) | |
Lung | 1 (9.1%) | 1 (4.8%) | |
Melanoma | 2 (18.2%) | 1 (4.8%) | |
Breast | 2 (18.2%) | 4 (19.0%) | |
Hematological malignancies (ALL, CLL) | 1 (9.1%) | 1 (4.8%) | |
Hodgkin’s lymphoma | 1 (9.1%) | 0 | |
Skin lymphoma | 0 | 1 (4.8%) | |
Pineal dysgerminoma | 1 (9.1%) | 0 | |
Kidney | 0 | 3 (14.3%) | |
Pancreas | 0 | 1 (4.8%) | |
Bladder | 0 | 1 (4.8%) | |
Ovary | 0 | 3 (14.3%) | |
Adrenal cortex | 0 | 1 (4.8%) | |
Non-melanoma skin tumor | 0 | 2 (9.5%) | |
Endometrium | 0 | 1 (4.8%) | |
Thyroid | 0 | 2 (9.5%) | |
Family history of CRC | 0.680 | ||
Yes | 32 (38.1%) | 33 (41.3%) | |
No | 52 (61.9%) | 47 (58.8%) | |
Missing data | 3 | 2 | |
If yes: | |||
1st-degree relative | 11 (34.4%) | 25 (75.8%) | <0.001 |
2nd-degree relative | 24 (75.0%) | 13 (39.4%) | 0.004 |
Function | Gene | Patient ID | HGVS Nomenclature | VAF (%) | Adjusted p-Value | Medical CRC History (Age at Diagnosis) | |
---|---|---|---|---|---|---|---|
Patient | Family | ||||||
DNA repair | BRCA2 | EOCRC#16 | c.3847_3848del, p.(Val1283Lysfs*2) | 53 | 0.0219 | Rectum ADK (39) | No |
CHEK2 | EOCRC#09 | c.190G>A, p.(Glu64Lys) | 47 | 0.0466 | Ascending colon ADK (33) | Maternal GM: CRC (65) and paternal GF: CRC (67) | |
FANCF | EOCRC#76 | c.604del, p.(Leu202*) | 54 | 0.0102 | Ascending colon ADK (39) | Brother: CRC (57) | |
POLQ | EOCRC#80 | c.7537C>T, p.(Gln2513*) | 49 | 0.0398 | Sigmoid ADK (38) | No | |
RAD50 | EOCRC#59 | c.130-1G>T | 51 | 0.0093 | Sigmoid ADK (34) | Father: CRC (72) | |
RAD51C | EOCRC#20 | c.773G>A, p.(Arg258His) | 54 | 0.0134 | ADK of the small bowel (28) | Paternal GM: CRC (73) | |
DNA helicase | RECQL4 | EOCRC#57 | c.1573del, p.(Cys525Alafs*33) | 47 | 0.0093 | Ascending colon ADK (32) | Father: CRC (64) |
EOCRC#16 | 36 | Rectum ADK (39) | No | ||||
Transcription factor | ETV1 | EOCRC#55 | c.1378dup, p.(Met460Asnfs*80) | 46 | 0.0144 | Rectum ADK (39) | Father: RC (NA) |
NCOA1 | EOCRC#05 | c.4282dup, p.(Gln1428Profs*14) | 51 | 0.0093 | Ascending colon ADK (33) | No | |
Enzyme (steroid biosynthesis) | HSD3B2 | EOCRC#44 | c.776C>T, p.(Thr259Met) | 45 | 0.0093 | Ascending colon ADK (36) | Father: CRC (NA) |
Microtubule/Golgi binding protein | TRIP11 | EOCRC#64 | c.5719+2T>C | 49 | 0.0297 | Descending colon ADK (37) | No |
Transferase and tyrosine kinase activity | EPHA10 | EOCRC#03 | c.2446G>T, p.(Glu816*) | 48 | 0.0146 | Rectum ADK (36) | Maternal GM: CRC (56) |
Deubiquitination and vesicle-mediated transport regulation | USP6 | EOCRC#44 | c.3228+1G>A | 41 | 0.0394 | Ascending colon ADK (36) | Father: CRC (NA) |
TGFβ binding | LTBP2 | EOCRC#21 | c.4933C>T, p.(Arg1645Trp) | 46 | 0.0202 | Descending colon ADK (32) | 2 Paternal uncles: CRC (75) |
Regulator of the TERT pathway | NUTM1 | EOCRC#51 | c.2076_2077del, p.(Gly694Serfs*26) | 46 | 0.0093 | Appendix ADK (36) | No |
EOCRC#23 | 38 | Colon cancer of unknown anatomical location (34) | No |
Gene | Patient ID | HGVS Nomenclature | VAF (%) | Medical CRC History (Age at Diagnosis) | |
---|---|---|---|---|---|
Patient | Family | ||||
CHEK2 | LOCRC#69 | c.591del, p.(Val198Phefs*7) | 46 | Colon cancer of unknown anatomical location (60) | Sister: CRC (46) |
LOCRC#74 | 49 | ADK of the ascending colon (60 and 71) | No | ||
FANCF | LOCRC#23 | c.1087C>T, p.(Gln363*) | 38 | ADK of the descending colon (59) | No |
POLQ | LOCRC#62 | c.4262_4268del, p.(Ile1421Argfs*8) | 45 | ADK of the ascending colon (53) | No |
LOCRC#51 | 48 | ADK of the ascending colon (60, 72 and 83) | Father: CRC (NA) | ||
TRIP11 | LOCRC#76 | c.2467_2470del, p.(Arg823Valfs*15) | 42 | ADK of the ascending colon (55) | No |
Gene NM | HGVS Nomenclature | Cancer Personal History of Carrier (Number of Carriers) | |
---|---|---|---|
CRC | Non-CRC Cancer | ||
NUTM1 NM_001284292.1 | c.303_304del, p.(Asp103Argfs*25) | - | EC (1 †) |
c.2076_2077del, p.(Gly694Serfs*26) | EOCRC (2: #23 and #51) | glioblastoma (1); OC (1) | |
c.2305del, p.(Glu769Argfs*3) | - | Cancer-free (1) | |
c.3106_3107del, p.(Lys1036Glyfs*7) | - | BC (1) | |
c.3406C>T, p.(Arg1136*) | EOCRC (1, additional, “EOCRC#89new”, diagnosed at 31 Y, DIGE-) | - | |
RECQL4 NM_004260.3 | c.1048_1049del, p.(Arg350Glyfs*21) | - | BC (1) |
c.1573del, p.(Cys525Alafs*33) | EOCRC (2: #57 and #16) | polyposis (1); cancer-free (1); BC (3) | |
c.2269C>T, p.(Gln757*) | - | polyposis (1); BC (1); OC (1) | |
c.2547_2548del, p.(Phe850Profs*33) | EOCRC (1, additional, “EOCRC#88new”, diagnosed at 39 Y, DIGE-); | MBC (1) | |
c.2590C>T, p.(Gln864*) | - | PC (1 ‡) | |
c.2755+1G>A | - | BC (1) | |
c.2994G>A, p.(Trp998*) | LOCRC (1, additional, diagnosed at 77 Y, DIGE-) | - | |
RAD50 NM_005732.3 | c.3229C>T, p.(Arg1077*) | - | BC (1) |
c.541dup, p.(Ser181Phefs*7) | - | BC (1) | |
c.713_714insT, p.(Lys238Asnfs*8) | - | BC (1); OC (1); BC and OC (1); polyposis (1) | |
c.2165dup, p.(Glu723Glyfs*5) | - | BC (1) | |
c.3G>A, p.? | - | BC (1) | |
c.2938_2942del, p.(Leu980*) | - | NA (1) | |
c.1111dup, p.(Ile371Asnfs*14) | LOCRC (1, additional, diagnosed at 66 Y, †) | - | |
c.354del, p.(Thr119Leufs*11) | - | BC (1) | |
c.3489_3495del, p.(Glu1164Glyfs*22) | - | BC (1) | |
c.2034del, p.(Gln678Hisfs*42) | LOCRC (1, additional, diagnosed at 68 Y, with polyposis, DIGE-) | BC (1); cancer-free (1) | |
c.130-1G>T | EOCRC (1: #59) | BC (1) | |
c.2801dup, p.(Asn934Lysfs*10) | - | BC (1) | |
c.1281dup, p.(Gln428Thrfs*4) | - | BC (1) | |
c.1704del, p.(Tyr569Ilefs*29) | - | BC and meningioma (1) | |
c.2985_2989del, p.(Glu995Aspfs*3) | - | BC (1) | |
RAD51C NM_058216.2 | c.1026+5_1026+7del | - | OC (2) |
c.31del, p.(Gln11Serfs*5) | - | BC (1) | |
c.709C>T, p.(Arg237*) | - | BC (1); OC (1) | |
c.965+5G>A | - | BC (2) | |
c.773G>A, p.(Arg258His) | EOCRC (1: #20) | - | |
c.414G>C, p.(Leu138Phe) | LOCRC (1, additional, diagnosed at 50 Y, DIGE-) | BC (2); MBC (1); cancer-free (1); | |
c.577C>T, p.(Arg193*) | - | EC (1) | |
c.358dup, p.(Thr120Asnfs*35) | - | OC (1); cancer-free (1) | |
c.705+1G>A | - | OC (2) | |
c.732del, p.(Ile244Metfs*9) | - | OC (1); melanoma (1) | |
c.904+5G>T | - | BC (1) | |
c.656dup, p.(Leu219Phefs*33) | - | OC (1) | |
c.837+2T>C | - | BC (2) | |
c.837+1G>T | - | BC (1) | |
c.878del, p.(Asn293Ilefs*9) | - | Gastric cancer (1) | |
ETV1 NM_004956.4 | c.1378dup, p.(Met460Asnfs*80) | EOCRC (1: #55) | MBC (1); PC (1) |
HSD3B2 NM_000198.3 | c.776C>T, p.(Thr259Met) | EOCRC (1: #44) | - |
LTBP2 NM_000428.2 | c.4933C>T, p.(Arg1645Trp) | EOCRC (1: #21) | - |
c.468_469insG, p.(Thr157Aspfs*69) | - | BC (1) | |
c.4721-1G>C | - | BC (1) | |
c.709C>T, p.(Arg237*) | - | BC (1) | |
c.2789-1G>A | - | OC (1) | |
USP6 NM_001304284.1 | c.3228+1G>A | EOCRC (1: #44) | BC (2) |
c.-1-2A>G | CRC (1, diagnosed at 47 Y, †) | BC (2); OC (1); | |
c.3752dup, p.(Ser1252Glnfs*12) | - | BC (2); prostate cancer (1) | |
c.349C>T, p.(Gln117*) | - | BC (2); OC (1) | |
c.2828G>A, p.(Arg943His) | - | BC (1) | |
c.2828G>T, p.(Arg943Leu) | - | BC (1) | |
c.1337G>A, p.(Trp446*) | - | Cancer-free (1) | |
c.79C>T, p.(Arg27*) | - | BC (1) | |
c.4119C>G, p.(Tyr1373*) | - | BC (1); melanoma (1) | |
c.3028C>T, p.(Gln1010*) | CRC (1, diagnosed at 47 Y, DIGE-) | BC (1) | |
c.2866C>T, p.(Arg956*) | - | BC (1) | |
EPHA10 NM_001099439.1 | c.2446G>T, p.(Glu816*) | EOCRC (1: #03) | BC (3); OC (1); cancer-free (1) |
c.2920del, p.(Val974*) | - | OC (2) | |
c.1066C>T, p.(Arg356*) | - | BC (2) | |
c.851-1G>C | - | BC (1) | |
NCOA1 NM_003743.4 | c.4282dup, p.(Gln1428Profs*14) | EOCRC (1: #05) | - |
c.3304-2A>G | - | BC (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vande Perre, P.; Al Saati, A.; Cabarrou, B.; Plenecassagnes, J.; Gilhodes, J.; Monselet, N.; Lignon, N.; Filleron, T.; Villarzel, C.; Gourdain, L.; et al. Germline Sequencing of Familial and Sporadic Early-Onset Colorectal Cancer: A Novel Pattern of Genes. Int. J. Mol. Sci. 2025, 26, 4672. https://doi.org/10.3390/ijms26104672
Vande Perre P, Al Saati A, Cabarrou B, Plenecassagnes J, Gilhodes J, Monselet N, Lignon N, Filleron T, Villarzel C, Gourdain L, et al. Germline Sequencing of Familial and Sporadic Early-Onset Colorectal Cancer: A Novel Pattern of Genes. International Journal of Molecular Sciences. 2025; 26(10):4672. https://doi.org/10.3390/ijms26104672
Chicago/Turabian StyleVande Perre, Pierre, Ayman Al Saati, Bastien Cabarrou, Julien Plenecassagnes, Julia Gilhodes, Nils Monselet, Norbert Lignon, Thomas Filleron, Carine Villarzel, Laure Gourdain, and et al. 2025. "Germline Sequencing of Familial and Sporadic Early-Onset Colorectal Cancer: A Novel Pattern of Genes" International Journal of Molecular Sciences 26, no. 10: 4672. https://doi.org/10.3390/ijms26104672
APA StyleVande Perre, P., Al Saati, A., Cabarrou, B., Plenecassagnes, J., Gilhodes, J., Monselet, N., Lignon, N., Filleron, T., Villarzel, C., Gourdain, L., Selves, J., Martinez, M., Chipoulet, E., Collet, G., Mallet, L., Bonnet, D., Guimbaud, R., & Toulas, C. (2025). Germline Sequencing of Familial and Sporadic Early-Onset Colorectal Cancer: A Novel Pattern of Genes. International Journal of Molecular Sciences, 26(10), 4672. https://doi.org/10.3390/ijms26104672