You are currently viewing a new version of our website. To view the old version click .
International Journal of Molecular Sciences
  • Review
  • Open Access

26 April 2024

Autoimmunity, New Potential Biomarkers and the Thyroid Gland—The Perspective of Hashimoto’s Thyroiditis and Its Treatment

,
,
and
1
Department of Internal Medicine and Internal Medicine in Nursing, Medical University of Lublin, Witold Chodźki Street 7, 20-093 Lublin, Poland
2
Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland
3
Endocrinology Department with Nuclear Medicine Department, Center of Oncology of the Lublin Region St. Jana z Dukli, Kazimierz Jaczewski Street 7, 20-090 Lublin, Poland
4
Department of Gastroenterology, Medical University of Lublin, Poland, Jaczewski Street 8, 20-954 Lublin, Poland
This article belongs to the Special Issue New Insights in Biomarkers of Autoimmune and Autoinflammatory Diseases

Abstract

Autoimmune thyroid disease (AITD) is the most common organic specific illness of the thyroid gland. It may manifest as the overproduction or the decline of thyroxine and triiodothyronine. Hyperthyroidism develops due to the overproduction of hormones as an answer to the presence of stimulatory antibodies against the TSH receptor. Hashimoto’s thyroiditis (HT) is generally characterized by the presence of thyroid peroxidase and thyroglobulin antibodies, with a concomitant infiltration of lymphocytes in the thyroid. Due to the progressive destruction of cells, AITD can lead to subclinical or overt hypothyroidism. Pathophysiology of AITD is extremely complicated and still not fully understood, with genetic, environmental and epigenetic factors involved in its development. Due to increasing incidence and social awareness of this pathology, there is an urgent need to expand the background concerning AITD. A growing body of evidence suggests possible ways of treatment apart from traditional approaches. Simultaneously, the role of potential new biomarkers in the diagnosis and monitoring of AITD has been highlighted recently, too. Therefore, we decided to review therapeutic trends in the course of AITD based on its pathophysiological mechanisms, mainly focusing on HT. Another aim was to summarize the state of knowledge regarding the role of new biomarkers in this condition.

1. Introduction

Thyroiditis constitutes a medical condition of special concern due to its diversified background. Autoimmune factors, inflammatory reasons, drug-induced occurrences or fibrotic process might constitute the background of its development. Among these potential scenarios, the most common one constitutes autoimmune thyroiditis (Hashimoto’s thyroiditis (HT), Graves’ Disease, postpartum thyroiditis or painless sporadic thyroiditis). HT, also known as chronic lymphocytic or autoimmune thyroiditis, is the most common, an organ-specific autoimmune disease in iodine-sufficient areas, affecting the thyroid gland. In some cases, this pathology may lead to the development of hypothyroidism [1,2]. Additionally, a viral infection, with the viral structure being similar to the thyroid protein, is believed to induce the synthesis of antibodies against the thyroid gland. HT is characterized by the presence of specific autoantibodies, such as thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) antibodies. Both HT and Graves’ Disease are classified as autoimmune thyroid disorders (AITDs), sometimes called “the opposite poles of the same disease” [3,4]. Their natural history is modified by various influencing factors, e.g., infection, genetic and environmental reasons. Therefore, a clinical manifestation might be significantly diversified Autoimmune thyroiditis has been originally discovered by Hakaru Hashimoto in 1912 (1). He identified thyroidectomized gland as an enlarged organ infiltrated with lymphocytes. The connection between this finding and the presence of autoantibodies was unknown till 1956, when Roitt, Doniach et al. discovered antithyroglobulin antibodies in the serum of patient with lymphocytic goiter, suggesting this state to be an autoimmune pathology [5,6]. HT is not only the most common autoimmune endocrine disease [2,7], but it is also the major cause of hypothyroidism in iodine-sufficient areas [8]. The overall prevalence of HT is about 7.5%, with a prevalence of 17.5% in women and 6.0% in men, depending on the geographic region [9]. As mentioned above, predominance of illness in females is clearly noticeable, as only about 10% of affected individuals are men [10]. It seems that a growing overall incidence of hypothyroidism [11] and autoimmune thyroiditis [12] can be triggered by greater exposure to iodine. Autoimmune thyroiditis leads to the chronic inflammation of the thyroid gland tissue, and might be followed by hypothyroidism in about 25% of patients [13]. Deficiency in thyroid hormones may be subclinical or overt, depending on free thyroxine (fT4) and free triiodothyronine (fT3) levels and the clinical manifestation of the disease. A typical combination of symptoms (including fatigue, cold intolerance, weight gain) is the result of generalized reduction in metabolic processes and/or the accumulation of matrix glycosaminoglycans in the interstitial spaces (coarse hair or hoarseness of voice) [14]. The final intensity of complaints is varied. In children, hypothyroidism may manifest with goiter, delayed puberty or growth retardation [14]. Hypothyroidism due to HT becomes more common in advanced age, with a peak of onset between 40 to 60 years [8]. Substantial differences in geographic variability in the prevalence and incidence concerning HT are also observed among patients [3]. The coexistence of AITD with different autoimmune disorders is another commonly observed dependence [15] (Figure 1).
Figure 1. Autoimmune disorders related to HT [15].

2. Chronic Autoimmune Thyroiditis—A General Overview

Genetic and environmental factors are known to be involved in the pathogenesis of chronic autoimmune thyroiditis [3], whereas epigenetics factors [16] are also indicated as important players in the development of the disease. All of the above-mentioned factors cause a dysregulation of the immune system, followed by abnormal function of the innate and humoral response. Chronic autoimmune thyroiditis has been associated with the failure of T cell-mediated inflammatory pathways through complex mechanisms involving antigen presenting T cells and B cells. Infiltration of thyroid tissue with lymphocytes, mainly T helper 1 (Th1) cells, can directly alter thyroid gland function through the mediation of interleukin-1 (IL-1), tumor necrosis factor (TNF) and interferon gamma (IFN-γ) [14]. In some cases, infiltration of the thyroid with lymphocytes leads to the deposition of fibrotic tissue in the thyroid and subsequently causes hypothyroidism. The infiltration of the thyroid with lymphocytes may be observed as a hypoechogenic pattern in ultrasonography [17]. What is more, ultrasonography mode can be supported by artificial intelligence. This combination might constitute a potential breakthrough in the accurate diagnosis of the classic form of HT, as well as an antibody-negative chronic autoimmune thyroiditis (SN-CAT) [18]. The assessment of the serum concentration of TPOAb and TgAb, which are serum biomarkers of HT, plays a fundamental role not only in the clarification of a diagnostic approach in the course of illness, but also in the prediction of progression regarding thyroid-followed immunity to hypothyroidism [19]. Autoantibodies directed against different minor thyroid antigens, such as pendrin, sodium iodide symporter and megalin, are also known. However, they are not widely used is the clinical practice due to the lack of sufficient data describing their potential function [20]. Based on its etiology, HT may be classified as primary (with no known direct cause of the illness) or secondary (due to identifiable factor) forms [2]. Histologically, several main types of a primary HT may be distinguished: a classic form, fibrous variant, IgG4-related subtype, juvenile form, Hashitoxicosis and, finally, sporadically developed postpartum painless or silent thyroiditis [2]. Nevertheless, regardless of the certain background of primary HT, the common feature of pathological findings in the thyroid gland is its lymphocytic infiltration. Moving further, the secondary form of HT is the iatrogenic one in the majority of cases, with a known etiological cause, e.g., due to immunomodulatory therapy—for example interferon-alpha (IFN-α) or immunotherapy for cancer [2]. As the etiology of chronic thyroiditis is multifactorial, a potential causal treatment seems to be a complicated solution. Thus, the main broadly accepted type of management is L-thyroxine substitution therapy. Considering the still increasing prevalence of the illness and its significant impact on quality of life, new biomarkers assessing different aspects of immune system dysfunction and its pathogenesis are urgently required to be investigated. Alternative or complementary types of therapeutic procedures should be continuously researched and implemented towards incomplete response to basic treatment in all of the individuals with HT. The interest of researchers should be directed into the development of new serological parameters useful in the monitoring of the disease, as well as verifying the efficacy of ongoing treatment. Nowadays, the already known and novel markers of AITD are considered to be used in everyday clinical practice (Figure 2). Nonetheless, surveys in this area are still conducted and some new molecular pathways worth exploring them are still in front of us. Fetal cell microchimerism (FCM) and maternal cell microchimerism (MCM) belong to them. They constitute phenomena that take place during pregnancy, when the transfer of cells, including some from the immune systems, can occur either from the fetus to the mother (FCM) or from the mother to the fetus (MCM). Thus, the increased risk of AITD might be explained in several ways. FCM induces a graft-versus-host reaction (due to infectious or environmental factors, drugs, or abnormal tissue proteins), and it breaks the maternal tolerance to fetal cells and results in AITD. Subsequently, the molecular mimicry mechanism between gut and thyroid tissue transglutaminase might be the reason for thyroiditis in patients with celiac disease. Predisposition to AITD may be also explained with some kind of previously underwent viral infections. Molecular mimicry together with the presence of viral and bacterial superantigens are the examples of such causative factors. From the genetic background, FOX3P3 gene is known as a key player in the production of T regulatory cells. Some surveys have shown to present a notable relationship between them and the development of AITD. HLA-DR3 constitutes another molecular particle more common among patients with autoimmune thyroiditis [2].
Figure 2. Possible biomarkers applicable in AITD, with a special focus on HT.

3. Oxidative Stress in Thyroid Disorders

Oxidation–reduction (redox) homeostasis is essential to maintain proper functions of vital processes. Reactive oxygen species (ROS) belong to subcellular messengers in signal transductions pathways [21]. ROS are primarily generated by mitochondria [22] or produced as byproducts in reactions conducted via specific enzymes, such as glutathione peroxidase, superoxide dismutases, peroxiredoxins, myeloperoxidases or catalase [21]. Oxidative stress is generally known as “a disturbance in the prooxidant–antioxidant balance in favor of the former” [23]. Reactive oxygen species are very short-lived, so the direct measurement of their concentrations appears to be almost impossible [24]. Therefore, identifiable metabolites generated due to oxidative damage of cell components (proteins, lipids and DNA) are used to measure the intensity of the redox state—these molecules are known as specific biomarkers; 8-hidroxy-2-deoxyguanosine (8-OHdG) [25], malondialdehyde (MDA) [26] or total antioxidant capacity (TAC) measurements [27] may be pointed as examples [28]. Oxidative stress (OS) is considered to be involved in the development of many various diseases, e.g., cancer [29], diabetes [30], cardiovascular [21] or liver disorders [31], Alzheimer’s disease [32], psychological disturbances [33], pathological states affecting reproductive health [34,35,36] any many others. HT is also known to be connected with OS [37], as well as in children and adolescents [27]. None of the already known biomarkers of OS are currently widely accepted as the best tool to be implied in HT, so researchers use different novel molecules within investigations. In the group of patients with subclinical hypothyroidism and HT, mean total oxidant status (TOS) and oxidative stress index (OSI) were significantly higher in individuals, who developed overt disorders, which raised the suspicion that oxidative stress may be an effective risk factor in the development of overt hypothyroidism in the course of HT [38]. According to already achieved data, mitochondrial DNA copy number (mtDNAcn) and mtDNA damage could be also perceived as other possible markers of OS in patients with HT [39,40]. It is worth mentioning here that microRNAs (miRNAs) are the small non-coding particles of RNA that regulate gene expression at the posttranscriptional level. They were reported as emerging potential biomarkers and a therapeutic target for several diseases, including AITD [41]. One of the studies was established to explore OS-related genes potentially involved in the course of HT [42]. Xu et al. managed to isolate a few of them and even to indicate notable relationships between certain genes and the expression of selected miRNAs. Interestingly, evident dependences between immune system cells (natural killer cells, B cells) and selected genes among HT patients were revealed. Such observations highlight the need to explore a genetic and immune background of thyroid disorders in the aspect of their treatment. Another exploration in this field showed advanced glycation end products (AGEs) to be potential biomarkers of OS in individuals with HT. Additionally, the expression of antioxidant paraoxonase (PON-1) was identified to be significantly decreased. Of note, AGEs and PON-1 correlated with each other conversely, emphasizing the phenomenon of inflammatory and pro-oxidant imbalance in the course of HT [43]. Focusing on the amelioration of oxidative imbalance, adjuvant therapies based on selenium, zinc and vitamins D and C can be perceived as potential additional strategies in patients with thyroiditis [44].

5. Conclusions

HT is an autoimmune disease with multifactorial and still not entirely known etiology. Further investigations concerning pathogenesis of the disease will open the field for an exploration of new possible ways of treatment. A more precise determination of the genetic background according to HT will probably become a milestone in choosing the treatment option for the individual patients. The precise interpretation of environmental factors influencing the onset and the course of thyroiditis will contribute to proposing certain lifestyle changes, enabling the prevention and slowing down the course of HT in the relation to genetic predispositions. L-thyroxine substitution therapy is a well-known and accepted way of treatment of hypothyroidism due to AITD. Recent data suggest this drug to be an agent exerting a notable immunomodulatory effect. However, the implementation of T4 cannot be perceived as an entirely curative approach for each mechanism underlying the pathogenesis of HT. Due to the current knowledge, the introduction of some alternative substances or supplements seems to be worth considering in the treatment of patients with thyroid immunity, especially when nutritional deficiencies are recognized. On the other hand, when a patient’s well-being cannot be optimized with ongoing treatment, the awareness of the co-occurrence related to different autoimmune diseases has to be underlined.
Simultaneously, this immune background of thyroid pathologies was shown to be inseparably related to OS. Therefore, besides the addition of pharmacological cofactors acting against the development of free radicals, oxidative derivatives are explored as potential markers of thyroid disease. The incidence of AITD with chronic autoimmune thyroiditis is rapidly growing worldwide. As a consequence of this observation, new trustworthy biomarkers confirming the diagnosis, indicating the progression and the possible outcome of an illness, are urgently needed.

Author Contributions

E.T., A.M., J.Ś. and A.Z. have outlined this manuscript, which was developed, enriched, reviewed and approved by each of the co-authors. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ Thyroiditis: Epidemiology, Pathogenesis, Clinic and Therapy. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101367. [Google Scholar] [CrossRef]
  2. Vargas-Uricoechea, H. Molecular Mechanisms in Autoimmune Thyroid Disease. Cells 2023, 12, 918. [Google Scholar] [CrossRef]
  3. Antonelli, A.; Ferrari, S.M.; Corrado, A.; Di Domenicantonio, A.; Fallahi, P. Autoimmune Thyroid Disorders. Autoimmun. Rev. 2015, 14, 174–180. [Google Scholar] [CrossRef]
  4. Shrestha, A.; Adhikari, N.; Devkota, S.; Chowdhury, T.; Shiferaw-Deribe, Z.; Gousy, N.; Adhikari, S. Fluctuating Hyperthyroidism and Hypothyroidism in Graves’ Disease: The Swinging between Two Clinical Entities. Cureus 2022, 14, e27715. [Google Scholar] [CrossRef]
  5. Hashimoto, H. Zur Kenntnis der lymphoatosen Veranderung der Schilddruse (Struma lymphomatoa). Langenbecks Arch. Klin Chir. 1912, 97, 219–248. [Google Scholar]
  6. Roitt, I.M.; Doniach, D.; Campbell, P.N.; Vaughan Hudson, R. Auto-antibodies in hashimoto’s disease (lymphadenoid goitre). Lancet 1956, 268, 820–821. [Google Scholar] [CrossRef]
  7. Radetti, G. Clinical Aspects of Hashimoto’s Thyroiditis. Endocr. Dev. 2014, 26, 158–170. [Google Scholar] [CrossRef] [PubMed]
  8. Jonklaas, J. Optimal Thyroid Hormone Replacement. Endocr. Rev. 2022, 43, 366–404. [Google Scholar] [CrossRef]
  9. Hu, X.; Chen, Y.; Shen, Y.; Tian, R.; Sheng, Y.; Que, H. Global Prevalence and Epidemiological Trends of Hashimoto’s Thyroiditis in Adults: A Systematic Review and Meta-Analysis. Front. Public Health 2022, 10, 1020709. [Google Scholar] [CrossRef]
  10. Hiromatsu, Y.; Satoh, H.; Amino, N. Hashimoto’s Thyroiditis: History and Future Outlook. Hormones 2013, 12, 12–18. [Google Scholar] [CrossRef]
  11. Bülow Pedersen, I.; Laurberg, P.; Knudsen, N.; Jørgensen, T.; Perrild, H.; Ovesen, L.; Rasmussen, L.B. An Increased Incidence of Overt Hypothyroidism after Iodine Fortification of Salt in Denmark: A Prospective Population Study. J. Clin. Endocrinol. Metab. 2007, 92, 3122–3127. [Google Scholar] [CrossRef] [PubMed]
  12. Teng, W.; Shan, Z.; Teng, X.; Guan, H.; Li, Y.; Teng, D.; Jin, Y.; Yu, X.; Fan, C.; Chong, W.; et al. Effect of Iodine Intake on Thyroid Diseases in China. N. Engl. J. Med. 2006, 354, 2783–2793. [Google Scholar] [CrossRef]
  13. McLeod, D.S.A.; Cooper, D.S. The Incidence and Prevalence of Thyroid Autoimmunity. Endocrine 2012, 42, 252–265. [Google Scholar] [CrossRef] [PubMed]
  14. Chaker, L.; Razvi, S.; Bensenor, I.M.; Azizi, F.; Pearce, E.N.; Peeters, R.P. Hypothyroidism. Nat. Rev. Dis. Prim. 2022, 8, 30. [Google Scholar] [CrossRef] [PubMed]
  15. Fallahi, P.; Ferrari, S.M.; Ruffilli, I.; Elia, G.; Biricotti, M.; Vita, R.; Benvenga, S.; Antonelli, A. The Association of Other Autoimmune Diseases in Patients with Autoimmune Thyroiditis: Review of the Literature and Report of a Large Series of Patients. Autoimmun. Rev. 2016, 15, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
  16. Coppedè, F. Epigenetics and Autoimmune Thyroid Diseases. Front. Endocrinol. 2017, 8, 276898. [Google Scholar] [CrossRef] [PubMed]
  17. Rago, T.; Chiovato, L.; Grasso, L.; Pinchera, A.; Vitti, P. Thyroid Ultrasonography as a Tool for Detecting Thyroid Autoimmune Diseases and Predicting Thyroid Dysfunction in Apparently Healthy Subjects. J. Endocrinol. Investig. 2001, 24, 763–769. [Google Scholar] [CrossRef] [PubMed]
  18. Yao, S.; Zhang, B.; Fei, X.; Xiao, M.; Lu, L.; Liu, D.; Zhang, S.; Cui, J. AI-Assisted Ultrasound for the Early Diagnosis of Antibody-Negative Autoimmune Thyroiditis. J. Multidiscip. Healthc. 2023, 16, 1801–1810. [Google Scholar] [CrossRef] [PubMed]
  19. Vargas-Uricoechea, H.; Nogueira, J.P.; Pinzón-Fernández, M.V.; Schwarzstein, D. The Usefulness of Thyroid Antibodies in the Diagnostic Approach to Autoimmune Thyroid Disease. Antibodies 2023, 12, 48. [Google Scholar] [CrossRef] [PubMed]
  20. Eleftheriadou, A.M.; Mehl, S.; Renko, K.; Kasim, R.H.; Schaefer, J.A.; Minich, W.B.; Schomburg, L. Re-Visiting Autoimmunity to Sodium-Iodide Symporter and Pendrin in Thyroid Disease. Eur. J. Endocrinol. 2020, 163, 571–580. [Google Scholar] [CrossRef] [PubMed]
  21. Dubois-deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef] [PubMed]
  22. Kowalczyk, P.; Sulejczak, D.; Kleczkowska, P.; Bukowska-Ośko, I.; Kucia, M.; Popiel, M.; Wietrak, E.; Kramkowski, K.; Wrzosek, K.; Kaczyńska, K. Mitochondrial Oxidative Stress—A Causative Factor and Therapeutic Target in Many Diseases. Int. J. Mol. Sci. 2021, 22, 13384. [Google Scholar] [CrossRef] [PubMed]
  23. Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef]
  24. Demirci-Çekiç, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of Oxidative Stress and Antioxidant Defense. J. Pharm. Biomed. Anal. 2022, 209, 114477. [Google Scholar] [CrossRef] [PubMed]
  25. Valavanidis, A.; Vlachogianni, T.; Fiotakis, C. 8-Hydroxy-2′ -Deoxyguanosine (8-OHdG): A Critical Biomarker of Oxidative Stress and Carcinogenesis. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 120–139. [Google Scholar] [CrossRef] [PubMed]
  26. Jelic, M.D.; Mandic, A.D.; Maricic, S.M.; Srdjenovic, B.U. Oxidative Stress and Its Role in Cancer. J. Cancer Res. Ther. 2021, 17, 22–28. [Google Scholar] [CrossRef] [PubMed]
  27. Metwalley, K.A.; Farghaly, H.S.; Saad, K.; Othman, H.A.K. Oxidative Status in Children and Adolescents with Autoimmune Thyroiditis. Clin. Exp. Med. 2016, 16, 571–575. [Google Scholar] [CrossRef] [PubMed]
  28. Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef] [PubMed]
  29. Klaunig, J.E. Oxidative Stress and Cancer. Curr. Pharm. Des. 2019, 24, 4771–4778. [Google Scholar] [CrossRef] [PubMed]
  30. Burgos-Morón, E.; Abad-Jiménez, Z.; de Marañón, A.M.; Iannantuoni, F.; Escribano-López, I.; López-Domènech, S.; Salom, C.; Jover, A.; Mora, V.; Roldan, I.; et al. Relationship between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J. Clin. Med. 2019, 8, 1385. [Google Scholar] [CrossRef]
  31. Cichoz-Lach, H.; Michalak, A. Oxidative Stress as a Crucial Factor in Liver Diseases. World J. Gastroenterol. 2014, 20, 8082–8091. [Google Scholar] [CrossRef] [PubMed]
  32. Chen, Z.; Zhong, C. Oxidative Stress in Alzheimer’s Disease. Neurosci. Bull. 2014, 30, 271–281. [Google Scholar] [CrossRef] [PubMed]
  33. Salim, S. Oxidative Stress and Psychological Disorders. Curr. Neuropharmacol. 2014, 12, 140–147. [Google Scholar] [CrossRef] [PubMed]
  34. Aitken, R.J.; Smith, T.B.; Jobling, M.S.; Baker, M.A.; De Iuliis, G.N. Oxidative Stress and Male Reproductive Health. Asian J. Androl. 2014, 16, 31–38. [Google Scholar] [CrossRef] [PubMed]
  35. Mannucci, A.; Argento, F.R.; Fini, E.; Coccia, M.E.; Taddei, N.; Becatti, M.; Fiorillo, C. The Impact of Oxidative Stress in Male Infertility. Front. Mol. Biosci. 2022, 8, 799294. [Google Scholar] [CrossRef] [PubMed]
  36. Chiarello, D.I.; Abad, C.; Rojas, D.; Toledo, F.; Vázquez, C.M.; Mate, A.; Sobrevia, L.; Marín, R. Oxidative Stress: Normal Pregnancy versus Preeclampsia. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165354. [Google Scholar] [CrossRef]
  37. Ruggeri, R.M.; Campennì, A.; Giuffrida, G.; Casciaro, M.; Barbalace, M.C.; Hrelia, S.; Trimarchi, F.; Cannavò, S.; Gangemi, S. Oxidative Stress as a Key Feature of Autoimmune Thyroiditis: An Update. Minerva Endocrinol. 2021, 45, 326–343. [Google Scholar] [CrossRef] [PubMed]
  38. Ates, I.; Arikan, M.F.; Altay, M.; Yilmaz, F.M.; Yilmaz, N.; Berker, D.; Guler, S. The Effect of Oxidative Stress on the Progression of Hashimoto’s Thyroiditis. Arch. Physiol. Biochem. 2018, 124, 351–356. [Google Scholar] [CrossRef]
  39. Esfahanian, F.; Hazaveh, M.M.; Garehbagh, L.H.; Falahati, K.; Ataei, M.; Sanati, M.H.; Jadali, Z. Increased Mitochondrial Dna Copy Number and Oxidative Damage in Patients with Hashimoto’s Thyroiditis. Iran. J. Public Health 2021, 50, 1697–1704. [Google Scholar] [CrossRef]
  40. Zeber-Lubecka, N.; Kulecka, M.; Suchta, K.; Dąbrowska, M.; Ciebiera, M.; Hennig, E.E. Association of Mitochondrial Variants with the Joint Occurrence of Polycystic Ovary Syndrome and Hashimoto’s Thyroiditis. Antioxidants 2023, 12, 1983. [Google Scholar] [CrossRef]
  41. Martínez-Hernández, R.; Marazuela, M. MicroRNAs in Autoimmune Thyroid Diseases and Their Role as Biomarkers. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101741. [Google Scholar] [CrossRef] [PubMed]
  42. Xu, B.; Huang, S.; Peng, W.; Cai, G.; Zhou, H.; Guo, Y.; Du, J.; Ge, X.; Wu, X. Comprehensive Analysis of Hub Biomarkers Associated with Immune and Oxidative Stress in Hashimoto’s Thyroiditis. Arch. Biochem. Biophys. 2023, 745, 109713. [Google Scholar] [CrossRef] [PubMed]
  43. Ruggeri, R.M.; Cristani, M.T.; Crupi, F.; Molonia, M.S.; Burduja, N.; Alibrandi, A.; Campennì, A.; Cannavò, S. Evaluation of Paraoxonase Activity and Association with Serum Advanced Glycation End Products as Reliable Markers of Oxidative Stress in Hashimoto’s Thyroiditis. Minerva Endocrinol. 2022. [Google Scholar] [CrossRef] [PubMed]
  44. da Silva, G.B.; Yamauchi, M.A.; Bagatini, M.D. Oxidative Stress in Hashimoto’s Thyroiditis: Possible Adjuvant Therapies to Attenuate Deleterious Effects. Mol. Cell. Biochem. 2023, 478, 949–966. [Google Scholar] [CrossRef] [PubMed]
  45. Virili, C.; Bruno, G.; Santaguida, M.G.; Gargano, L.; Stramazzo, I.; De Vito, C.; Cicenia, A.; Scalese, G.; Porowska, B.; Severi, C.; et al. Levothyroxine Treatment and Gastric Juice PH in Humans: The Proof of Concept. Endocrine 2022, 77, 102–111. [Google Scholar] [CrossRef] [PubMed]
  46. Tagami, T.; Tamanaha, T.; Shimazu, S.; Honda, K.; Nanba, K.; Nomura, H.; Yoriko, S.U.; Usui, T.; Shimatsu, A.; Naruse, M. Lipid Profiles in the Untreated Patients with Hashimoto Thyroiditis and the Effects of Thyroxine Treatment on Subclinical Hypothyroidism with Hashimoto Thyroiditis. Endocr. J. 2010, 57, 253–258. [Google Scholar] [CrossRef] [PubMed]
  47. Adamarczuk-Janczyszyn, M.; Zdrojowy-Welna, A.; Rogala, N.; Zatońska, K.; Bednarek-Tupikowska, G. Evaluation of Selected Atherosclerosis Risk Factors in Women with Subclinical Hypothyroidism Treated with L-Thyroxine. Adv. Clin. Exp. Med. 2016, 25, 457–463. [Google Scholar] [CrossRef] [PubMed]
  48. Mariotti, S.; Zoncu, S.; Pigliaru, F.; Putzu, C.; Cambuli, V.M.; Vargiu, S.; Deidda, M.; Mercuro, G. Cardiac Effects of L-Thyroxine Administration in Borderline Hypothyroidism. Int. J. Cardiol. 2008, 126, 190–195. [Google Scholar] [CrossRef] [PubMed]
  49. Scarpa, V.; Kousta, E.; Tertipi, A.; Vakaki, M.; Fotinou, A.; Petrou, V.; Hadjiathanasiou, C.; Papathanasiou, A. Treatment with Thyroxine Reduces Thyroid Volume in Euthyroid Children and Adolescents with Chronic Autoimmune Thyroiditis. Horm. Res. Paediatr. 2010, 73, 61–67. [Google Scholar] [CrossRef]
  50. Guclu, F.; Ozmen, B.; Kirmaz, C.; Kafesciler, S.O.; Degirmenci, P.B.; Taneli, F.; Hekimsoy, Z. Down-Regulation of the Auto-Aggressive Processes in Patients with Hypothyroid Hashimoto’s Thyroiditis Following Substitutive Treatment with L-Thyroxine. Eur. Cytokine Netw. 2009, 20, 27–32. [Google Scholar] [CrossRef] [PubMed]
  51. Stasiolek, M.; Dedecjus, M.; Adamczewski, Z.; Sliwka, P.W.; Brzezinski, J.; Lewinski, A. Effect of L-Thyroxine Treatment on Peripheral Blood Dendritic Cell Subpopulations in Patients with Hashimoto’s Thyroiditis. Folia Histochem. Cytobiol. 2014, 52, 138–143. [Google Scholar] [CrossRef]
  52. Zimmermann, M.B.; Boelaert, K. Iodine Deficiency and Thyroid Disorders. Lancet Diabetes Endocrinol. 2015, 3, 286–295. [Google Scholar] [CrossRef]
  53. Hu, S.; Rayman, M.P. Multiple Nutritional Factors and the Risk of Hashimoto’s Thyroiditis. Thyroid 2017, 27, 597–610. [Google Scholar] [CrossRef]
  54. Duntas, L.H. The Role of Iodine and Selenium in Autoimmune Thyroiditis. Horm. Metab. Res. 2015, 47, 721–726. [Google Scholar] [CrossRef]
  55. Heidari, Z.; Sheikhi, V. Serum Selenium Status in Graves’ Disease and Hashimoto’s Thyroiditis in an Iodine-Sufficient Area: A Case–Control Study. J. Res. Med. Sci. 2022, 27, 87. [Google Scholar] [CrossRef] [PubMed]
  56. Wang, W.; Jiang, Q.L.; Xu, Q.; Zeng, Y.; Jiang, R.; Jiang, J. Selenium Regulates T Cell Differentiation in Experimental Autoimmune Thyroiditis in Mice. Int. Immunopharmacol. 2023, 124, 110993. [Google Scholar] [CrossRef]
  57. Zhang, L.; Sun, X.; Yan, S.L.; Ren, Y.; Li, C.; Sui, G. Effects of Levothyroxine Sodium Tablets Combined with Sodium Selenite on Autoimmune Antibodies, Thyroxine and T Lymphocyte Subsets in Patients with Hashimoto’s Thyroiditis. Acta Medica Mediterr. 2020, 36, 1527–1531. [Google Scholar] [CrossRef]
  58. Huwiler, V.V.; Maissen-Abgottspon, S.; Stanga, Z.; Mühlebach, S.; Trepp, R.; Bally, L.; Bano, A. Selenium Supplementation in Patients with Hashimoto Thyroiditis:A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Thyroid 2024, 34. [Google Scholar] [CrossRef] [PubMed]
  59. Sun, Q.; Oltra, E.; Dijck-Brouwer, D.A.J.; Chillon, T.S.; Seemann, P.; Asaad, S.; Demircan, K.; Espejo-Oltra, J.A.; Sánchez-Fito, T.; Martín-Martínez, E.; et al. Autoantibodies to Selenoprotein P in Chronic Fatigue Syndrome Suggest Selenium Transport Impairment and Acquired Resistance to Thyroid Hormone. Redox Biol. 2023, 65, 102796. [Google Scholar] [CrossRef] [PubMed]
  60. Rostami, R.; Nourooz-Zadeh, S.; Mohammadi, A.; Khalkhali, H.R.; Ferns, G.; Nourooz-Zadeh, J. Serum Selenium Status and Its Interrelationship with Serum Biomarkers of Thyroid Function and Antioxidant Defense in Hashimoto’s Thyroiditis. Antioxidants 2020, 9, 1070. [Google Scholar] [CrossRef]
  61. Effraimidis, G.; Wiersinga, W.M. Mechanisms in Endocrinology: Autoimmune Thyroid Disease: Old and New Players. Eur. J. Endocrinol. 2014, 170, R241–R252. [Google Scholar] [CrossRef] [PubMed]
  62. Zhao, R.; Zhang, W.; Ma, C.; Zhao, Y.; Xiong, R.; Wang, H.; Chen, W.; Zheng, S.G. Immunomodulatory Function of Vitamin D and Its Role in Autoimmune Thyroid Disease. Front. Immunol. 2021, 12, 574967. [Google Scholar] [CrossRef] [PubMed]
  63. Kundu, R.; Theodoraki, A.; Haas, C.T.; Zhang, Y.; Chain, B.; Kriston-Vizi, J.; Noursadeghi, M.; Khoo, B. Cell-Type-Specific Modulation of Innate Immune Signalling by Vitamin D in Human Mononuclear Phagocytes. Immunology 2017, 150, 55–63. [Google Scholar] [CrossRef]
  64. Safari, S.; Rafraf, M.; Malekian, M.; Molani-Gol, R.; Asghari-Jafarabadi, M.; Mobasseri, M. Effects of Vitamin D Supplementation on Metabolic Parameters, Serum Irisin and Obesity Values in Women with Subclinical Hypothyroidism: A Double-Blind Randomized Controlled Trial. Front. Endocrinol. 2023, 14, 1306470. [Google Scholar] [CrossRef] [PubMed]
  65. Tang, J.; Shan, S.; Li, F.; Yun, P. Effects of Vitamin D Supplementation on Autoantibodies and Thyroid Function in Patients with Hashimoto’s Thyroiditis: A Systematic Review and Meta-Analysis. Medicine 2023, 102, E36759. [Google Scholar] [CrossRef]
  66. Legakis, I.; Chrousos, G.P.; Chatzipanagiotou, S. Thyroid Diseases and Intestinal Microbiome. Horm. Metab. Res. 2023, 55, 813–818. [Google Scholar] [CrossRef] [PubMed]
  67. Leeming, E.R.; Louca, P.; Gibson, R.; Menni, C.; Spector, T.D.; Le Roy, C.I. The Complexities of the Diet-Microbiome Relationship: Advances and Perspectives. Genome Med. 2021, 13, 10. [Google Scholar] [CrossRef]
  68. Sawicka-Gutaj, N.; Gruszczyński, D.; Zawalna, N.; Nijakowski, K.; Muller, I.; Karpiński, T.; Salvi, M.; Ruchała, M. Microbiota Alterations in Patients with Autoimmune Thyroid Diseases: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 13450. [Google Scholar] [CrossRef]
  69. Bargiel, P.; Szczuko, M.; Stachowska, L.; Prowans, P.; Czapla, N.; Markowska, M.; Petriczko, J.; Kledzik, J.; Jędrzejczyk-Kledzik, A.; Palma, J.; et al. Microbiome Metabolites and Thyroid Dysfunction. J. Clin. Med. 2021, 10, 3609. [Google Scholar] [CrossRef] [PubMed]
  70. Mendoza-León, M.J.; Mangalam, A.K.; Regaldiz, A.; González-Madrid, E.; Rangel-Ramírez, M.A.; Álvarez-Mardonez, O.; Vallejos, O.P.; Méndez, C.; Bueno, S.M.; Melo-González, F.; et al. Gut Microbiota Short-Chain Fatty Acids and Their Impact on the Host Thyroid Function and Diseases. Front. Endocrinol. 2023, 14, 1192216. [Google Scholar] [CrossRef]
  71. Heintz-Buschart, A.; Wilmes, P. Human Gut Microbiome: Function Matters. Trends Microbiol. 2018, 26, 563–574. [Google Scholar] [CrossRef] [PubMed]
  72. Krótkołańcuchowe Kwasy Tłuszczowe Czajkowska—Szukaj w Google. Available online: https://www.google.com/search?client=firefox-b-d&q=Krótkołańcuchowe+kwasy+tłuszczowe+Czajkowska (accessed on 30 January 2022).
  73. Cheng, H.; Guan, X.; Chen, D.; Ma, W. The Th17/Treg Cell Balance: A Gut Microbiota-Modulated Story. Microorganisms 2019, 7, 583. [Google Scholar] [CrossRef] [PubMed]
  74. de Freitas Cayres, L.C.; de Salis, L.V.V.; Rodrigues, G.S.P.; van Helvoort Lengert, A.; Biondi, A.P.C.; Sargentini, L.D.B.; Brisotti, J.L.; Gomes, E.; de Oliveira, G.L.V. Detection of Alterations in the Gut Microbiota and Intestinal Permeability in Patients with Hashimoto Thyroiditis. Front. Immunol. 2021, 12, 579140. [Google Scholar] [CrossRef]
  75. Knezevic, J.; Starchl, C.; Berisha, A.T.; Amrein, K. Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function? Nutrients 2020, 12, 1769. [Google Scholar] [CrossRef] [PubMed]
  76. Wang, W.; Uzzau, S.; Goldblum, S.E.; Fasano, A. Human Zonulin, a Potential Modulator of Intestinal Tight Junctions. J. Cell Sci. 2000, 113 Pt 24, 4435–4440. [Google Scholar] [CrossRef] [PubMed]
  77. Caviglia, G.P.; Dughera, F.; Ribaldone, D.G.; Rosso, C.; Abate, M.L.; Pellicano, R.; Bresso, F.; Smedile, A.; Saracco, G.M.; Astegiano, M. Serum Zonulin in Patients with Inflammatory Bowel Disease: A Pilot Study. Minerva Med. 2019, 110, 95–100. [Google Scholar] [CrossRef] [PubMed]
  78. Demir, E.; Önal, B.; Özkan, H.; Utku, İ.K.; Şahtiyanci, B.; Kumbasar, A.; Yenmiş, G.; Demir, B. The Relationship between Elevated Plasma Zonulin Levels and Hashimoto’s Thyroiditis. Turkish J. Med. Sci. 2022, 52, 605–612. [Google Scholar] [CrossRef] [PubMed]
  79. Aydın, B.K.; Yıldız, M.; Akgün, A.; Topal, N.; Adal, E.; Önal, H. Children with Hashimoto’s Thyroiditis Have Increased Intestinal Permeability: Results of a Pilot Study. J. Clin. Res. Pediatr. Endocrinol. 2020, 12, 303–307. [Google Scholar] [CrossRef] [PubMed]
  80. Hastalarda, H.T.; Düzeylerinin, Z.; Zehra, İ.; İşleyen, S.; Yıldırım, S.; Gündoğan, E.; Sarı, H.; Küçük, S.H.; Atay, A.E. Serum Zonulin Levels in Patients with Hashimoto’s Thyroiditis. Med. J. Bakirkoy 2022, 18, 377. [Google Scholar] [CrossRef]
  81. Bykova, S.V.; Bладимирoвна, Б.C.; Sabelnikova, E.A.; Aнатoльевна, C.E.; Novikov, A.A.; Aлександрoвич, H.A.; Baulo, E.V.; Bасильевна, Б.E.; Khomeriki, S.G.; Германoвич, X.C.; et al. Zonulin and I-FABP Are Markers of Enterocyte Damage in Celiac Disease. Ter. Arkh. 2022, 94, 511–516. [Google Scholar] [CrossRef] [PubMed]
  82. Tajik, N.; Frech, M.; Schulz, O.; Schälter, F.; Lucas, S.; Azizov, V.; Dürholz, K.; Steffen, F.; Omata, Y.; Rings, A.; et al. Targeting Zonulin and Intestinal Epithelial Barrier Function to Prevent Onset of Arthritis. Nat. Commun. 2020, 11, 1995. [Google Scholar] [CrossRef] [PubMed]
  83. Kim, S.; Goel, R.; Kumar, A.; Qi, Y.; Lobaton, G.; Hosaka, K.; Mohammed, M.; Handberg, E.M.; Richards, E.M.; Pepine, C.J.; et al. Imbalance of Gut Microbiome and Intestinal Epithelial Barrier Dysfunction in Patients with High Blood Pressure. Clin. Sci. 2018, 132, 701–718. [Google Scholar] [CrossRef] [PubMed]
  84. Gopalakrishnan, S.; Durai, M.; Kitchens, K.; Tamiz, A.P.; Somerville, R.; Ginski, M.; Paterson, B.M.; Murray, J.A.; Verdu, E.F.; Alkan, S.S.; et al. Larazotide Acetate Regulates Epithelial Tight Junctions in Vitro and in Vivo. Peptides 2012, 35, 86–94. [Google Scholar] [CrossRef] [PubMed]
  85. Gopalakrishnan, S.; Tripathi, A.; Tamiz, A.P.; Alkan, S.S.; Pandey, N.B. Larazotide Acetate Promotes Tight Junction Assembly in Epithelial Cells. Peptides 2012, 35, 95–101. [Google Scholar] [CrossRef] [PubMed]
  86. Troisi, J.; Venutolo, G.; Terracciano, C.; Carri, M.D.; Di Micco, S.; Landolfi, A.; Fasano, A. The Therapeutic Use of the Zonulin Inhibitor AT-1001 (Larazotide) for a Variety of Acute and Chronic Inflammatory Diseases. Curr. Med. Chem. 2021, 28, 5788–5807. [Google Scholar] [CrossRef] [PubMed]
  87. Shu, Q.; Kang, C.; Li, J.; Hou, Z.; Xiong, M.; Wang, X.; Peng, H. Effect of Probiotics or Prebiotics on Thyroid Function: A Meta-Analysis of Eight Randomized Controlled Trials. PLoS ONE 2024, 19, e0296733. [Google Scholar] [CrossRef] [PubMed]
  88. Zawadzka, K.; Kałuzińska, K.; Świerz, M.J.; Sawiec, Z.; Antonowicz, E.; Leończyk-Spórna, M.; Abadi, A.K.; Trofimiuk-Müldner, M.; Bała, M.M. Are Probiotics, Prebiotics, and Synbiotics Beneficial in Primary Thyroid Diseases? A Systematic Review with Meta-Analysis. Ann. Agric. Environ. Med. 2023, 30, 217–223. [Google Scholar] [CrossRef]
  89. Vaghef-Mehrabany, E.; Alipour, B.; Homayouni-Rad, A.; Sharif, S.K.; Asghari-Jafarabadi, M.; Zavvari, S. Probiotic Supplementation Improves Inflammatory Status in Patients with Rheumatoid Arthritis. Nutrition 2014, 30, 430–435. [Google Scholar] [CrossRef] [PubMed]
  90. Nagpal, R.; Wang, S.; Ahmadi, S.; Hayes, J.; Gagliano, J.; Subashchandrabose, S.; Kitzman, D.W.; Becton, T.; Read, R.; Yadav, H. Human-Origin Probiotic Cocktail Increases Short-Chain Fatty Acid Production via Modulation of Mice and Human Gut Microbiome. Sci. Rep. 2018, 8, 12649. [Google Scholar] [CrossRef] [PubMed]
  91. Xu, M.Q.; Cao, H.L.; Wang, W.Q.; Wang, S.; Cao, X.C.; Yan, F.; Wang, B.M. Fecal Microbiota Transplantation Broadening Its Application beyond Intestinal Disorders. World J. Gastroenterol. 2015, 21, 102–111. [Google Scholar] [CrossRef] [PubMed]
  92. Fenneman, A.C.; Rampanelli, E.; Van Der Spek, A.H.; Fliers, E.; Nieuwdorp, M. Protocol for a Double-Blinded Randomised Controlled Trial to Assess the Effect of Faecal Microbiota Transplantations on Thyroid Reserve in Patients with Subclinical Autoimmune Hypothyroidism in the Netherlands: The IMITHOT Trial. BMJ Open 2023, 13, e073971. [Google Scholar] [CrossRef] [PubMed]
  93. Osowiecka, K.; Skrypnik, D.; Myszkowska-Ryciak, J. Assessment of the Impact of Nutritional Intervention with the Probiotic Lactiplantibacillus Plantarum 299v on Nutritional Status and Quality of Life of Hashimoto’s Thyroiditis Patients—A Randomized Double-Blind Study Protocol. J. Pers. Med. 2023, 13, 1659. [Google Scholar] [CrossRef]
  94. Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in Prevention and Therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [PubMed]
  95. Wang, K.; Wei, H.; Zhang, W.; Li, Z.; Ding, L.; Yu, T.; Tan, L.; Liu, Y.; Liu, T.; Wang, H.; et al. Severely Low Serum Magnesium Is Associated with Increased Risks of Positive Anti-Thyroglobulin Antibody and Hypothyroidism: A Cross-Sectional Study. Sci. Rep. 2018, 8, 9904. [Google Scholar] [CrossRef] [PubMed]
  96. Erdal, M.; Sahin, M.; Hasimi, A.; Uckaya, G.; Kutlu, M.; Saglam, K. Trace Element Levels in Hashimoto Thyroiditis Patients with Subclinical Hypothyroidism. Biol. Trace Elem. Res. 2008, 123, 1–7. [Google Scholar] [CrossRef]
  97. Czarnocka, B. Thyroperoxidase, Thyroglobulin, Na+/I- Symporter, Pendrin in Thyroid Autoimmunity. Front. Biosci. 2011, 16, 783–802. [Google Scholar] [CrossRef] [PubMed]
  98. McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; De Benoist, B. Worldwide Prevalence of Anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr. 2009, 12, 444–454. [Google Scholar] [CrossRef] [PubMed]
  99. Kassebaum, N.J.; Fleming, T.D.; Flaxman, A.; Phillips, D.E.; Steiner, C.; Barber, R.M.; Hanson, S.W.; Moradi-Lakeh, M.; Coffeng, L.E.; Haagsma, J.; et al. The Global Burden of Anemia. Hematol. Oncol. Clin. N. Am. 2016, 30, 247–308. [Google Scholar] [CrossRef] [PubMed]
  100. Jiang, Y.; Li, C.; Wu, Q.; An, P.; Huang, L.; Wang, J.; Chen, C.; Chen, X.; Zhang, F.; Ma, L.; et al. Iron-Dependent Histone 3 Lysine 9 Demethylation Controls B Cell Proliferation and Humoral Immune Responses. Nat. Commun. 2019, 10, 2935. [Google Scholar] [CrossRef] [PubMed]
  101. Weyh, C.; Krüger, K.; Peeling, P.; Castell, L. The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients 2022, 14, 644. [Google Scholar] [CrossRef] [PubMed]
  102. Rayman, M.P. Symposium 2: Nutrient Interactions and Their Role in Protection from Chronic Diseases: Multiple Nutritional Factors and Thyroid Disease, with Particular Reference to Autoimmune Thyroid Disease. Proc. Nutr. Soc. 2019, 78, 34–44. [Google Scholar] [CrossRef] [PubMed]
  103. Vogt, A.S.; Arsiwala, T.; Mohsen, M.; Vogel, M.; Manolova, V.; Bachmann, M.F. On Iron Metabolism and Its Regulation. Int. J. Mol. Sci. 2021, 22, 4591. [Google Scholar] [CrossRef] [PubMed]
  104. Huang, X.; Guo, T.; Wu, Y.; Xu, Q.; Dai, J.; Huang, Y. Iron Status, Thyroid Dysfunction and Iron Deficiency Anemia: A Two-Sample Mendelian Randomization Study. medRxiv 2023. [Google Scholar] [CrossRef]
  105. Ganesan, K.; Sultan, S. Oral Hypoglycemic Medications; StatPearls Publishing LLC: Treasure Island, FL, USA, 2023. [Google Scholar]
  106. Pappa, T.; Alevizaki, M. Metformin and Thyroid: An Update. Eur. Thyroid J. 2013, 2, 22. [Google Scholar] [CrossRef] [PubMed]
  107. Ursini, F.; Russo, E.; Pellino, G.; D’Angelo, S.; Chiaravalloti, A.; De Sarro, G.; Manfredini, R.; De Giorgio, R. Metformin and Autoimmunity: A “New Deal” of an Old Drug. Front. Immunol. 2018, 9, 1236. [Google Scholar] [CrossRef] [PubMed]
  108. Jia, X.; Zhai, T.; Qu, C.; Ye, J.; Zhao, J.; Liu, X.; Zhang, J.; Qian, Q. Metformin Reverses Hashimoto’s Thyroiditis by Regulating Key Immune Events. Front. Cell Dev. Biol. 2021, 9, 685522. [Google Scholar] [CrossRef] [PubMed]
  109. Jia, X.; Zhai, T.; Zhang, J. Metformin Reduces Autoimmune Antibody Levels in Patients with Hashimoto’s Thyroiditis: A Systematic Review and Meta-Analysis. Autoimmunity 2020, 53, 353–361. [Google Scholar] [CrossRef] [PubMed]
  110. Krysiak, R.; Kowalcze, K.; Okopień, B. The Impact of Combination Therapy with Metformin and Exogenous Vitamin D on Hypothalamic-pituitary-thyroid Axis Activity in Women with Autoimmune Thyroiditis and High-normal Thyrotropin Levels. J. Clin. Pharm. Ther. 2020, 45, 1382–1389. [Google Scholar] [CrossRef] [PubMed]
  111. Payer, J.; Jackuliak, P.; Kužma, M.; Džupon, M.; Vaňuga, P. Supplementation with Myo-Inositol and Selenium Improves the Clinical Conditions and Biochemical Features of Women with or at Risk for Subclinical Hypothyroidism. Front. Endocrinol. 2022, 13, 1067029. [Google Scholar] [CrossRef]
  112. Fallahi, P.; Ferrari, S.M.; Elia, G.; Ragusa, F.; Paparo, S.R.; Caruso, C.; Guglielmi, G.; Antonelli, A. Myo-Inositol in Autoimmune Thyroiditis, and Hypothyroidism. Rev. Endocr. Metab. Disord. 2018, 19, 349–354. [Google Scholar] [CrossRef] [PubMed]
  113. Paparo, S.R.; Ferrari, S.M.; Patrizio, A.; Elia, G.; Ragusa, F.; Botrini, C.; Balestri, E.; Guarneri, F.; Benvenga, S.; Antonelli, A.; et al. Myoinositol in Autoimmune Thyroiditis. Front. Endocrinol. 2022, 13, 930756. [Google Scholar] [CrossRef] [PubMed]
  114. Benvenga, S.; Feldt-Rasmussen, U.; Bonofiglio, D.; Asamoah, E. Nutraceutical Supplements in the Thyroid Setting: Health Benefits beyond Basic Nutrition. Nutrients 2019, 11, 2214. [Google Scholar] [CrossRef] [PubMed]
  115. Nordio, M.; Pajalich, R. Combined Treatment with Myo-Inositol and Selenium Ensures Euthyroidism in Subclinical Hypothyroidism Patients with Autoimmune Thyroiditis. J. Thyroid Res. 2013, 2013, 424163. [Google Scholar] [CrossRef] [PubMed]
  116. Ferrari, S.M.; Fallahi, P.; Di Bari, F.; Vita, R.; Benvenga, S.; Antonelli, A. Myo-Inositol and Selenium Reduce the Risk of Developing Overt Hypothyroidism in Patients with Autoimmune Thyroiditis. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 36–42. [Google Scholar] [PubMed]
  117. Kalra, E.K. Nutraceutical—Definition and Introduction. AAPS PharmSci 2003, 5, 27–28. [Google Scholar] [CrossRef] [PubMed]
  118. Farhangi, M.A.; Dehghan, P.; Tajmiri, S.; Abbasi, M.M. The Effects of Nigella Sativa on Thyroid Function, Serum Vascular Endothelial Growth Factor (VEGF)-1, Nesfatin-1 and Anthropometric Features in Patients with Hashimoto’s Thyroiditis: A Randomized Controlled Trial. BMC Complement. Altern. Med. 2016, 16, 471. [Google Scholar] [CrossRef] [PubMed]
  119. Osowiecka, K.; Myszkowska-Ryciak, J. The Influence of Nutritional Intervention in the Treatment of Hashimoto’s Thyroiditis—A Systematic Review. Nutrients 2023, 15, 1041. [Google Scholar] [CrossRef] [PubMed]
  120. Hollywood, J.B.; Hutchinson, D.; Feehery-Alpuerto, N.; Whitfield, M.; Davis, K.; Johnson, L.M. The Effects of the Paleo Diet on Autoimmune Thyroid Disease: A Mixed Methods Review. J. Am. Nutr. Assoc. 2023, 42, 727–736. [Google Scholar] [CrossRef]
  121. Ruggeri, R.M.; Giovinazzo, S.; Barbalace, M.C.; Cristani, M.; Alibrandi, A.; Vicchio, T.M.; Giuffrida, G.; Aguennouz, M.H.; Malaguti, M.; Angeloni, C.; et al. Influence of Dietary Habits on Oxidative Stress Markers in Hashimoto’s Thyroiditis. Thyroid 2021, 31, 96–105. [Google Scholar] [CrossRef]
  122. Matlock, C.L.; Vanhoof, A.R.; Rangrej, S.B.; Rathore, R. Comparison between Levothyroxine and Lifestyle Intervention on Subclinical Hypothyroidism in Women: A Review. Cureus 2023, 15, e38309. [Google Scholar] [CrossRef] [PubMed]
  123. Drozdz, D.; Alvarez-Pitti, J.; Wójcik, M.; Borghi, C.; Gabbianelli, R.; Mazur, A.; Herceg-čavrak, V.; Lopez-Valcarcel, B.G.; Brzeziński, M.; Lurbe, E.; et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 2021, 13, 4176. [Google Scholar] [CrossRef] [PubMed]
  124. Aigner, E.; Feldman, A.; Datz, C. Obesity as an Emerging Risk Factor for Iron Deficiency. Nutrients 2014, 6, 3587–3600. [Google Scholar] [CrossRef] [PubMed]
  125. Avgerinos, K.I.; Spyrou, N.; Mantzoros, C.S.; Dalamaga, M. Obesity and Cancer Risk: Emerging Biological Mechanisms and Perspectives. Metabolism 2019, 92, 121–135. [Google Scholar] [CrossRef]
  126. González-Mereles, A.P.; Arguinzoniz-Valenzuela, S.L.; López-López, A.P.; Maquedatenorio, S.E.; González-Baqué, I. Overweight and Obesity in Children and Adolescents with Chronic Autoimmune Thyroiditis. Bol. Med. Hosp. Infant. Mex. 2021, 78, 424–431. [Google Scholar] [CrossRef] [PubMed]
  127. Versini, M.; Jeandel, P.Y.; Rosenthal, E.; Shoenfeld, Y. Obesity in Autoimmune Diseases: Not a Passive Bystander. Autoimmun. Rev. 2014, 13, 981–1000. [Google Scholar] [CrossRef] [PubMed]
  128. Walczak, K.; Siemińska, L. The Relationships between Selected Serum Adipokines and Thyroid Function in Patients with Obesity. Endokrynol. Pol. 2022, 73, 353–360. [Google Scholar] [CrossRef] [PubMed]
  129. Francisco, V.; Pino, J.; Campos-Cabaleiro, V.; Ruiz-Fernández, C.; Mera, A.; Gonzalez-Gay, M.A.; Gómez, R.; Gualillo, O. Obesity, Fat Mass and Immune System: Role for Leptin. Front. Physiol. 2018, 9, 302410. [Google Scholar] [CrossRef] [PubMed]
  130. Procaccini, C.; Pucino, V.; Mantzoros, C.S.; Matarese, G. Leptin in Autoimmune Diseases. Metabolism 2015, 64, 92–104. [Google Scholar] [CrossRef] [PubMed]
  131. Wang, W.; Zhang, B.T.; Jiang, Q.L.; Zhao, H.Q.; Xu, Q.; Zeng, Y.; Xu, J.Y.; Jiang, J. Leptin Receptor Antagonist Attenuates Experimental Autoimmune Thyroiditis in Mice by Regulating Treg/Th17 Cell Differentiation. Front. Endocrinol. 2022, 13, 1042511. [Google Scholar] [CrossRef] [PubMed]
  132. Guldvog, I.; Reitsma, L.C.; Johnsen, L.; Lauzike, A.; Gibbs, C.; Carlsen, E.; Lende, T.H.; Narvestad, J.K.; Omdal, R.; Kvaløy, J.T.; et al. Thyroidectomy versus Medical Management for Euthyroid Patients with Hashimoto Disease and Persisting Symptoms: A Randomized Trial. Ann. Intern. Med. 2019, 170, 453–464. [Google Scholar] [CrossRef]
  133. Hoff, G.; Bernklev, T.; Johnsen, L.; Reitsma, L.; Sina, D.; Lauzike, A.; Gibbs, C.; Carlsen, E.; Lende, T.H.; Narvestad, J.K.; et al. Thyroidectomy for Euthyroid Patients with Hashimoto Disease and Persisting Symptoms. Ann. Intern. Med. 2024, 177, 101–103. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.