The Preventive Effect of Urinary Trypsin Inhibitor on Postoperative Cognitive Dysfunction, on the Aspect of Behavior, Evaluated by Y-Maze Test, via Modulation of Microglial Activity
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, X.; Chen, Y.; Zhang, P.; Chen, G.; Zhou, Y.; Yu, X. The potential mechanism of postoperative cognitive dysfunction in older people. Exp. Gerontol. 2020, 130, 110791. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhu, Y.; Kang, Y.; Qin, S.; Chai, J. Neuroinflammation as the underlying mechanism of postoperative cognitive dysfunction and therapeutic strategies. Front. Cell. Neurosci. 2022, 16, 843069. [Google Scholar] [CrossRef]
- Bowden, T.; Hurt, C.S.; Sanders, J.; Aitken, L.M. Effectiveness of cognitive interventions for adult surgical patients after general anaesthesia to improve cognitive functioning: A systematic review. J. Clin. Nurs. 2023, 32, 3117–3129. [Google Scholar] [CrossRef] [PubMed]
- Rundshagen, I. Postoperative cognitive dysfunction. Dtsch. Ärztebl. Int. 2014, 111, 119. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, J.A.; Kavanagh, E.; Engskog-Vlachos, P.; Engskog, M.K.; Herrera, A.J.; Espinosa-Oliva, A.M.; Joseph, B.; Hajji, N.; Venero, J.L.; Burguillos, M.A. Microglia: Agents of the CNS pro-inflammatory response. Cells 2020, 9, 1717. [Google Scholar] [CrossRef] [PubMed]
- He, H.W.; Zhang, H. The efficacy of different doses of ulinastatin in the treatment of severe acute pancreatitis. Ann. Palliat. Med. 2020, 9, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhang, L.; Gao, L.; Ding, Q.; Yang, Q.; Kuai, J. Ulinastatin attenuates lipopolysaccharide-induced cardiac dysfunction by inhibiting inflammation and regulating autophagy. Exp. Ther. Med. 2020, 20, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Du, C.; Zhang, Y.; Wang, S.; Zhou, Q.; Wu, L.; Wang, Y.; Yang, X. Protective effect of rhubarb combined with ulinastatin for patients with sepsis. Medicine 2020, 99, e18895. [Google Scholar] [CrossRef]
- Yao, Y.-T.; Fang, N.-X.; Liu, D.-H.; Li, L.-H. Ulinastatin reduces postoperative bleeding and red blood cell transfusion in patients undergoing cardiac surgery: A PRISMA-compliant systematic review and meta-analysis. Medicine 2020, 99, e19184. [Google Scholar] [CrossRef]
- Zhou, J.J.; Zhang, C.; Yang, X.X.; Zhang, X.X.; Zhang, N.X.; Fang, X.; Zhu, Y.H.; Liu, D.X.; Xu, S.; Xu, M.Q. Study on the effect of sevoflurane on the cognitive function of aged rats based on the activation of cortical microglia. Ibrain 2021, 7, 288–297. [Google Scholar] [CrossRef]
- Meng, C.; Qian, Y.; Zhang, W.-H.; Liu, Y.; Song, X.-C.; Liu, H.; Wang, X. A retrospective study of ulinastatin for the treatment of severe sepsis. Medicine 2020, 99, e23361. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Li, M.-Y.; Tang, L.; Zou, Y.; Chen, K. Protective effect of Ulinastatin on acute lung injury in diabetic sepsis rats. Int. Immunopharmacol. 2022, 108, 108908. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Jiang, X.-M.; Wang, D.-W.; Chen, J.; Han, D.-F.; Liu, X.-L. Protective effects and mechanisms of action of ulinastatin against cerebral ischemia-reperfusion injury. Curr. Pharm. Des. 2020, 26, 3332–3340. [Google Scholar] [CrossRef] [PubMed]
- Takata, F.; Nakagawa, S.; Matsumoto, J.; Dohgu, S. Blood-brain barrier dysfunction amplifies the development of neuroinflammation: Understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction. Front. Cell. Neurosci. 2021, 15, 661838. [Google Scholar] [CrossRef] [PubMed]
- Hussain, B.; Fang, C.; Chang, J. Blood–brain barrier breakdown: An emerging biomarker of cognitive impairment in normal aging and dementia. Front. Neurosci. 2021, 15, 688090. [Google Scholar] [CrossRef]
- Guo, Z.; Ruan, Z.; Zhang, D.; Liu, X.; Hou, L.; Wang, Q. Rotenone impairs learning and memory in mice through microglia-mediated blood brain barrier disruption and neuronal apoptosis. Chemosphere 2022, 291, 132982. [Google Scholar] [CrossRef]
- Israelov, H.; Ravid, O.; Atrakchi, D.; Rand, D.; Elhaik, S.; Bresler, Y.; Twitto-Greenberg, R.; Omesi, L.; Liraz-Zaltsman, S.; Gosselet, F. Caspase-1 has a critical role in blood-brain barrier injury and its inhibition contributes to multifaceted repair. J. Neuroinflamm. 2020, 17, 267. [Google Scholar] [CrossRef] [PubMed]
- Molla, M.D.; Akalu, Y.; Geto, Z.; Dagnew, B.; Ayelign, B.; Shibabaw, T. Role of caspase-1 in the pathogenesis of inflammatory-associated chronic noncommunicable diseases. J. Inflamm. Res. 2020, 13, 749–764. [Google Scholar] [CrossRef]
- Ye, X.; Song, G.; Huang, S.; Liang, Q.; Fang, Y.; Lian, L.; Zhu, S. Caspase-1: A Promising Target for Preserving Blood–Brain Barrier Integrity in Acute Stroke. Front. Mol. Neurosci. 2022, 15, 856372. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, X.; Li, F.; Qiu, J.; Zhang, Y. Effects of PYRIN-containing Apaf1-like protein 1 on isoflurane-induced postoperative cognitive dysfunction in aged rats. Mol. Med. Rep. 2020, 22, 1391–1399. [Google Scholar] [CrossRef]
- Wendimu, M.Y.; Hooks, S.B. Microglia phenotypes in aging and neurodegenerative diseases. Cells 2022, 11, 2091. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Yao, R.-Q.; Zhang, H.; Feng, Y.-W.; Yao, Y.-M. Sepsis-associated encephalopathy: A vicious cycle of immunosuppression. J. Neuroinflamm. 2020, 17, 304. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ran, M.; Li, H.; Lin, Y.; Ma, K.; Yang, Y.; Fu, X.; Yang, S. New insight into neurological degeneration: Inflammatory cytokines and blood–brain barrier. Front. Mol. Neurosci. 2022, 15, 1013933. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Liu, F.; Fu, H.; Feng, S.; Wang, X.; Wang, T. Effect of ulinastatin on early postoperative cognitive dysfunction in elderly patients undergoing surgery: A systemic review and meta-analysis. Front. Neurosci. 2021, 15, 618589. [Google Scholar] [CrossRef]
- Zhan, M.-X.; Tang, L.; Lu, Y.-F.; Wu, H.-H.; Guo, Z.-B.; Shi, Z.-M.; Yang, C.-L.; Zou, Y.-Q.; Yang, F.; Chen, G.-Z. Ulinastatin exhibits antinociception in rat models of acute somatic and visceral pain through inhibiting the local and central inflammation. J. Pain Res. 2021, 14, 1201–1214. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Xu, X.; Qi, X.; Zhang, F. Efficacy and safety of ulinastatin on cognitive dysfunction after general anesthesia in elderly patients: A protocol for systematic review and meta-analysis. Medicine 2021, 100, e24814. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, J.; Zheng, P.; Zheng, R.; Meng, X.; Wang, Y. Ulinastatin plus biapenem for severe pneumonia in the elderly and its influence on pulmonary function and inflammatory cytokines. Am. J. Transl. Res. 2021, 13, 5027. [Google Scholar]
- He, Y.; Chen, X.; Zhang, G.; Guan, L.; Yu, X. Clinical efficacy and safety of norepinephrine combined with ulinastatin in the treatment of septic shock. Pak. J. Pharm. Sci. 2022, 35, 657–663. [Google Scholar]
- Cleal, M.; Fontana, B.D.; Ranson, D.C.; McBride, S.D.; Swinny, J.D.; Redhead, E.S.; Parker, M.O. The Free-movement pattern Y-maze: A cross-species measure of working memory and executive function. Behav. Res. Methods 2021, 53, 536–557. [Google Scholar] [CrossRef]
- López-Moraga, A.; Beckers, T.; Luyten, L. The effects of stress on avoidance in rodents: An unresolved matter. Front. Behav. Neurosci. 2022, 16, 983026. [Google Scholar] [CrossRef]
- Liu, R.; Wu, Z.; Yu, H. Effect of different treatments on macrophage differentiation in chronic obstructive pulmonary disease and repeated pulmonary infection. Saudi J. Biol. Sci. 2020, 27, 2076–2081. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, B.; Tang, Y.; Chang, P.; Yao, L.; Huang, B.; Lodato, R.F.; Liu, Z. Corrigendum: Improvement of sepsis prognosis by Ulinastatin: A systematic review and meta-analysis of randomized controlled trials. Front. Pharmacol. 2020, 10, 1697. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Cao, W.; Xia, Y.; Li, X. Ulinastatin alleviates cerebral ischemia-reperfusion injury in rats by activating the Nrf-2/HO-1 signaling pathway. Ann. Transl. Med. 2020, 8, 1136. [Google Scholar] [CrossRef]
- Bellinger, D.C. Long-term cognitive and behavioral outcomes following early exposure to general anesthetics. Curr. Opin. Anaesthesiol. 2022, 35, 442–447. [Google Scholar]
- Khodaei, S.; Wang, D.-S.; Ariza, A.; Syed, R.M.; Orser, B.A. The impact of inflammation and general anesthesia on memory and executive function in mice. Anesth. Analg. 2023, 136, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- Negrini, D.; Wu, A.; Oba, A.; Harnke, B.; Ciancio, N.; Krause, M.; Clavijo, C.; Al-Musawi, M.; Linhares, T.; Fernandez-Bustamante, A. Incidence of postoperative cognitive dysfunction following inhalational vs total intravenous general anesthesia: A systematic review and meta-analysis. Neuropsychiatr. Dis. Treat. 2022, 18, 1455. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Zhang, L.; Deng, L.; Yao, H. Clinical study on effects of ulinastatin on patients with systemic inflammatory response syndrome. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue = Chin. Crit. Care Med. = Zhongguo Weizhongbing Jijiuyixue 2005, 17, 228–230. [Google Scholar]
- Meng, W.-t.; Qing, L.; Li, C.-z.; Zhang, K.; Yi, H.-j.; Zhao, X.-p.; Xu, W.-g. Ulinastatin: A potential alternative to glucocorticoid in the treatment of severe decompression sickness. Front. Physiol. 2020, 11, 273. [Google Scholar] [CrossRef]
Control Group | Ulinastatin Group | p Value | |
---|---|---|---|
Pro-inflammatory cytokines | |||
TNF-α (pg/mL) | 1456.00 ± 303.60 | 7.35 ± 0.89 | <0.001 |
IL-1β (pg/mL) | 1298.00 ± 783.50 | 8.54 ± 1.52 | 0.0062 |
Anti-inflammatory cytokines | |||
IL-4 (pg/mL) | 23.52 ± 4.06 | 25.72 ± 0.98 | 0.28 |
IL-10 (pg/mL) | 7.02 ± 1.80 | 14.55 ± 1.89 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, E.-H.; In, C.-B.; Lee, G.-W.; Hong, S.-W.; Seo, E.-H.; Lee, W.H.; Kim, S.-H. The Preventive Effect of Urinary Trypsin Inhibitor on Postoperative Cognitive Dysfunction, on the Aspect of Behavior, Evaluated by Y-Maze Test, via Modulation of Microglial Activity. Int. J. Mol. Sci. 2024, 25, 2708. https://doi.org/10.3390/ijms25052708
Cho E-H, In C-B, Lee G-W, Hong S-W, Seo E-H, Lee WH, Kim S-H. The Preventive Effect of Urinary Trypsin Inhibitor on Postoperative Cognitive Dysfunction, on the Aspect of Behavior, Evaluated by Y-Maze Test, via Modulation of Microglial Activity. International Journal of Molecular Sciences. 2024; 25(5):2708. https://doi.org/10.3390/ijms25052708
Chicago/Turabian StyleCho, Eun-Hwa, Chi-Bum In, Gyu-Won Lee, Seung-Wan Hong, Eun-Hye Seo, Won Hyung Lee, and Seong-Hyop Kim. 2024. "The Preventive Effect of Urinary Trypsin Inhibitor on Postoperative Cognitive Dysfunction, on the Aspect of Behavior, Evaluated by Y-Maze Test, via Modulation of Microglial Activity" International Journal of Molecular Sciences 25, no. 5: 2708. https://doi.org/10.3390/ijms25052708
APA StyleCho, E.-H., In, C.-B., Lee, G.-W., Hong, S.-W., Seo, E.-H., Lee, W. H., & Kim, S.-H. (2024). The Preventive Effect of Urinary Trypsin Inhibitor on Postoperative Cognitive Dysfunction, on the Aspect of Behavior, Evaluated by Y-Maze Test, via Modulation of Microglial Activity. International Journal of Molecular Sciences, 25(5), 2708. https://doi.org/10.3390/ijms25052708