Global Proteomics Analysis of Lysophosphatidic Acid Signaling in PC-3 Human Prostate Cancer Cells: Role of CCN1
Abstract
1. Introduction
2. Results
2.1. Identification of Proteins Differentially Expressed after LPA Treatment
2.2. Identification of Proteins Differentially Expressed after CCN1 Knockdown
2.3. Effects of CCN1 Knockdown on LPA-Induced Up-Regulation of MACC1 and TSP1
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Cell Culture
4.3. Cell Incubations and Sample Preparation
4.4. LC-MS Analysis
4.5. Immunoblotting
4.6. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibbs, T.C.; Rubio, M.V.; Zhang, Z.; Xie, Y.; Kipp, K.R.; Meier, K.E. Signal transduction responses to lysophosphatidic acid and sphingosine 1-phosphate in human prostate cancer cells. Prostate 2009, 69, 1493–1506. [Google Scholar] [CrossRef]
- Xie, Y.; Gibbs, T.C.; Mukhin, Y.V.; Meier, K.E. Role for 18:1 lysophosphatidic acid as an autocrine mediator in prostate cancer cells. J. Biol. Chem. 2002, 277, 32516–32526. [Google Scholar] [CrossRef]
- Hopkins, M.M.; Zhang, Z.; Liu, Z.; Meier, K.E. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells. J. Clin. Med. 2016, 5, 16. [Google Scholar] [CrossRef]
- Hopkins, M.M.; Liu, Z.; Meier, K.E. Positive and Negative Cross-Talk between Lysophosphatidic Acid Receptor 1, Free Fatty Acid Receptor 4, and Epidermal Growth Factor Receptor in Human Prostate Cancer Cells. J. Pharmacol. Exp. Ther. 2016, 359, 124–133. [Google Scholar] [CrossRef]
- Liu, Z.; Hopkins, M.M.; Zhang, Z.; Quisenberry, C.B.; Fix, L.C.; Galvan, B.M.; Meier, K.E. Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells. J. Pharmacol. Exp. Ther. 2015, 352, 380–394. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Herr, D.R.; Noguchi, K.; Yung, Y.C.; Lee, C.W.; Mutoh, T.; Lin, M.-E.; Teo, S.T.; Park, K.E.; Mosley, A.N.; et al. LPA receptors: Subtypes and biological actions. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 157–186. [Google Scholar] [CrossRef]
- Rao, P.V.; Pattabiraman, P.P.; Kopczynski, C. Role of the Rho GTPase/Rho kinase signaling pathway in pathogenesis and treatment of glaucoma: Bench to bedside research. Exp. Eye Res. 2017, 158, 23–32. [Google Scholar] [CrossRef]
- Pattabiraman, P.P.; Maddala, R.; Rao, P.V. Regulation of plasticity and fibrogenic activity of trabecular meshwork cells by Rho GTPase signaling. J. Cell. Physiol. 2014, 229, 927–942. [Google Scholar] [CrossRef]
- Pattabiraman, P.P.; Rao, P.V. Mechanistic basis of Rho GTPase-induced extracellular matrix synthesis in trabecular meshwork cells. Am. J. Physiol. Cell Physiol. 2010, 298, C749–C763. [Google Scholar] [CrossRef]
- Walsh, C.T.; Stupack, D.; Brown, J.H. G protein-coupled receptors go extracellular: RhoA integrates the integrins. Mol. Interv. 2008, 8, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.I.; Lau, L.F. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat. Rev. Drug Discov. 2011, 10, 945–963. [Google Scholar] [CrossRef]
- Kireeva, M.L.; Mo, F.E.; Yang, G.P.; Lau, L.F. Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion. Mol. Cell. Biol. 1996, 16, 1326–1334. [Google Scholar] [CrossRef]
- Lau, L.F.; Lam, S.C. The CCN family of angiogenic regulators: The integrin connection. Exp. Cell Res. 1999, 248, 44–57. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yokoyama, M.; Zhang, X.; Prakash, K.; Nagao, K.; Hatanaka, T.; Getzenberg, R.H.; Kakahi, Y. Increased expression of CYR61, an extracellular matrix signaling protein, in human benign prostatic hyperplasia and its regulation by lysophosphatidic acid. Endocrinology 2004, 145, 2929–2940. [Google Scholar] [CrossRef]
- Walsh, C.T.; Radeff-Huang, J.; Matteo, R.; Hsiao, A.; Subramaniam, S.; Stupack, D.; Brown, J.H. Thrombin receptor and RhoA mediate cell proliferation through integrins and cysteine-rich protein 61. FASEB J. 2008, 22, 4011–4021. [Google Scholar] [CrossRef]
- Quan, T.; Zu, Y.; Qin, Z.; Robichaud, P.; Betcher, S.; Calderone, K.; He, T.; Johnson, T.M.; Voorhees, J.J.; Fisher, G.J. Elevated YAP and its downstream targets CCN1 and CCN2 in basal cell carcinoma. Am. J. Pathol. 2014, 184, 937–943. [Google Scholar] [CrossRef]
- Balijepalli, P.; Knode, B.K.; Nahulu, S.A.; Abrahamson, E.L.; Nivison, M.P.; Meier, K.E. Role for CCN1 in lysophosphatidic acid response in PC-3 human prostate cancer cells. J. Cell Commun. Signal. 2022, 36. [Google Scholar] [CrossRef]
- Chen, N.; Chen, C.C.; Lau, L.F. Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6 beta 1 and cell surface heparan sulfate proteoglycans. J. Biol. Chem. 2000, 275, 24953–24961. [Google Scholar] [CrossRef]
- Wu, D.D.; Zhang, F.; Hao, F.; Chun, J.; Xu, X.; Cui, M.Z. Matricellular protein Cyr61 bridges lysophosphatidic acid and integrin pathways leading to cell migration. J. Biol. Chem. 2014, 289, 5774–5783. [Google Scholar] [CrossRef]
- Franzen, C.A.; Chen, C.-C.; Todorovic, V.; Juric, V.; Monzon, R.I.; Lau, L.F. Matrix protein CCN1 is critical for prostate carcinoma cell proliferation and TRAIL-induced apoptosis. Mol. Cancer Res. 2009, 7, 1045–1046. [Google Scholar] [CrossRef]
- Radhakrishnan, H.; Walther, W.; Zincke, F.; Kobelt, D.; Imbastari, F.; Erdem, M.; Kortum, B.; Dahlmann, M.; Stein, U. MACC1—The first decade of a key metastasis molecule from gene discovery to clinical translation. Cancer Metastasis Rev. 2018, 37, 805–820. [Google Scholar] [CrossRef]
- Murphy-Ullrich, J.E. Thrombospondin 1 and Its Diverse Roles as a Regulator of Extracellular Matrix in Fibrotic Disease. J. Histochem. Cytochem. 2019, 67, 683–699. [Google Scholar] [CrossRef]
- Kaur, S.; Bronson, S.M.; Pal-Nath, D.; Miller, T.W.; Soto-Pantoja, D.R.; Roberts, D.D. Functions of Thrombospondin-1 in the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 4570. [Google Scholar] [CrossRef]
- Dash, R.; Su, Z.Z.; Lee, S.G.; Azab, B.; Boukerche, H.; Sarkar, D.; Fisher, P.B. Inhibition of AP-1 by SARI negatively regulates transformation progression mediated by CCN1. Oncogene 2010, 29, 4412–4423. [Google Scholar] [CrossRef]
- Perez-Benavente, B.; Fathinajafabadi, A.; de la Fuente, L.; Gandia, C.; Martinez-Ferriz, A.; Pardo-Sanchez, J.M.; Millian, L.; Conesa, A.; Romero, O.A.; Carretero, J.; et al. New roles for AP-1/JUNB in cell cycle control and tumorigenic cell invasion via regulation of cyclin E1 and TGF-beta2. Genome Biol. 2022, 23, 252. [Google Scholar] [CrossRef]
- Rackner, R.D.; Thiele, S.; Gobel, A.; Browne, A.; Fuessel, S.; Erdmann, K.; Wirth, M.P.; Frohner, M.; Todenhofer, T.; Muders, M.H.; et al. High serum levels of Dickkof-1 are associated with a poor prognosis in prostate cancer patients. BMC Cancer 2014, 14, 649. [Google Scholar]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Deng, J.; Pan, T.; Liu, Z.; McCarthy, C.; Vicencio, J.M.; Cao, L.; Alfano, G.; Swaidan, A.A.; Yin, M.; Beatson, R.; et al. The role of TXNIP in cancer: A fine balance between redox, metabolic, and immunological tumor control. Br. J. Cancer 2023, 129, 1877–1892. [Google Scholar] [CrossRef]
- Xie, M.; Xie, R.; Xie, S.; Wu, Y.; Wang, W.; Li, X.; Xu, Y.; Liu, B.; Zhou, Y.; Wang, T.; et al. Thioredoxin interacting proteins (TXNIP) acts as a tumor suppressor in human prostate cancer. Cell Biol. Int. 2020, 44, 2094–2106. [Google Scholar] [CrossRef]
- Li, F.-Q.; Chen, X.; Fisher, C.; Siller, S.S.; Zelikman, K.; Kuriyama, R.; Takemaru, K.-I. BAR domain-containing FAM92 proteins interact with Chibby1 to facilitate ciliogenesis. Mol. Cell. Biol. 2016, 36, 2668–2680. [Google Scholar] [CrossRef]
- Pampliega, O.; Orhon, I.; Patel, B.; Sridhar, S.; Diaz-Carretero, A.; Beau ICodogno, P.; Satir, B.; Satir, P.; Cuervo, A. Functional interaction between autophagy and ciliogenesis. Nature 2013, 502, 194–200. [Google Scholar] [CrossRef]
- Pirkmajer, S.; Chibalin, A.V. Serum starvations: Caveat emptor. Am. J. Physiol. Cell Physiol. 2011, 301, C272–C279. [Google Scholar] [CrossRef]
- Zhao, H.; Khan, Z.; Westlake, C.J. Ciliogenesis membrane dynamics and organization. Semin. Cell Dev. Biol. 2023, 133, 20–31. [Google Scholar] [CrossRef]
- Afratis, N.A.; Nikitovic, D.; Multhaupt, H.A.B.; Theocharis, A.D.; Couchman, J.R.; Karamanos, N.K. Syndecans—Key regulators of cell signaling and biological functions. FEBS J. 2017, 284, 27–41. [Google Scholar] [CrossRef]
- Guo, S.; Wu, X.; Le, T.; Wang, Y.; Zhang, L.; Zhao, Q.; Huang, Y.; Shi, Y.; Wu, L. The role and therapeutic value of syndecan-1 in cancer metastasis and drug resistance. Front. Cell Dev. Biol. 2022, 9, 784983. [Google Scholar] [CrossRef]
- Lazniewska, J.; Li, K.L.; Johnson, I.R.D.; Sorvina, A.; Logan, J.; Artini, C.; Moore, C.; Ung, B.S.-Y.; Karageorgos, L.; Hickey, S.M.; et al. Dynamic interplay between sortilin and syndecan-1 contributes to prostate cancer progression. Sci. Rep. 2023, 13, 13489. [Google Scholar] [CrossRef]
- Valtonen-Andre, C.; Bjartell, A.; Hellsten, R.; Lilja, H.; Harkonen, P.; Lundwall, A. A highly conserved protein secreted by the prostate cancer cell line PC-3 is expressed in benign and malignant prostate tissue. Biol. Chem. 2007, 388, 289–295. [Google Scholar] [CrossRef]
- Zhan, P.; Li, H.; Han, M.; Wang, Z.; Zhao, J.; Tu, J.; Shi, X.; Fu, Y. PSMP Is Discriminative for Chronic Active Antibody-Mediated Rejection and Associate with Intimal Arteritis in Kidney Transplantation. Front. Immunol. 2021, 12, 661911. [Google Scholar] [CrossRef]
- Mitamura, T.; Pradeep, S.; McGuire, M.; Wu, S.Y.; Ma, S.; Hatakeyama, H.; Lyons, Y.A.; Hisamatsu, T.; Noh, K.; Villar-Prados, A.; et al. Induction of anti-VEGF therapy resistance by upregulated expression of microseminoprotein (MSMP). Oncogene 2018, 37, 722–731. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, J.; Chen, S.; Wang, W.; Meng, S.; Liu, B. Nonconserved miR-608 suppresses prostate cancer progression through RAC2/PAK4/LIMK1 and BCL2L1/caspase-3 pathways by targeting the 3′-UTRs of RAC2/BCL2L1 and the coding region of PAK4. Cancer Med. 2019, 8, 5716–5734. [Google Scholar] [CrossRef]
- Wang, G.; Gu, J.; Gao, Y. MicroRNA target for MACC1 and CYR61 to inhibit tumor growth in mice with colorectal cancer. Tumour Biol. 2016, 37, 13983–13993. [Google Scholar] [CrossRef]
- Han, S.; Bui, N.T.; Ho, M.T.; Kim, Y.M.; Cho, M.; Shin, D.B. Dexamethasone Inhibits TGF-beta1-Induced Cell Migration by Regulating the ERK and AKT Pathways in Human Colon Cancer Cells Via CYR61. Cancer Res. Treat. 2016, 48, 1141–1153. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Y.; Mao, Z.; Ma, X.; Fan, X.; Cui, L.; Qu, L.; Xie, D.; Zhang, J. CCN1 promotes tumorigenicity through Rac1/Akt/NF-κB signaling pathway in pancreatic cancer. Tumour Biol. 2012, 33, 1745–1758. [Google Scholar] [CrossRef]
- Xu, S.T.; Ding, X.; Ni, Q.F.; Jin, S.J. Targeting MACC1 by RNA interference inhibits proliferation and invasion of bladder urothelial carcinoma in T24 cells. Int. J. Clin. Exp. Pathol. 2015, 8, 7937–7944. [Google Scholar]
- Stein, U.; Walther, W.; Arlt, F.; Schwabe, H.; Smith, J.; Fichtner, I.; Birchmeier, W.; Schlag, P.M. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat. Med. 2009, 15, 59–67. [Google Scholar] [CrossRef]
- Burock, S.; Herrmann, P.; Wendler, I.; Niederstrasser, M.; Wenecke, K.-D.; Stein, U. Circulating metastasis associated in colon cancer 1 transcripts in gastric cancer patient plasma as diagnostic and prognostic biomarker. World J. Gastroenterol. 2015, 21, 333–341. [Google Scholar] [CrossRef]
- Wang, G.; Kang, M.X.; Lu, W.J.; Chen, Y.; Zhang, B.; Wu, Y.L. MACC1: A potential molecule associated with pancreatic cancer metastasis and chemoresistance. Oncol. Lett. 2012, 4, 783–791. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, M.; Weng, Y.; Zhang, F.; Meng, D.; Song, J.; Zhou, H.; Xie, Z. Circulating MACC1 as a novel diagnostic and prognostic biomarker for non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2015, 141, 1353–1361. [Google Scholar] [CrossRef]
- Ashktorab, H.; Hermann, P.; Nourale, M.; Shokrani, B.; Lee, E.; Haidary, T.; Brim, H.; Stein, U. Increased MACC1 levels in tissues and blook identify colon adenoma patients at high risk. J. Transl. Med. 2016, 14, 215. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Wen, L.; Cao, J.; Yang, J.; Yuan, Y. Diagnostic value of PSA, TAP and MACC1 expression in blood of patients with prostate cancer. J. Shanghai Jiao Tong Univ. (Med. Sci.) 2022, 42, 496–501. [Google Scholar]
- Imbastari, F.; Dahlman, M.; Sorbert, A.; Mattioli, C.C.; Mari, T.; Scholz, F.; Timm, L.; Twamley, S.; Migotti, R.; Walther, W.; et al. MACC1 regulates clathrin-mediated endocytosis and receptor recycling of transferrin receptor and EGFR in colorectal cancer. Cell. Mol. Life Sci. 2021, 78, 3525–3542. [Google Scholar] [CrossRef]
- Hohmann, T.; Hohmann, U.; Dehghani, F. MACC1-induced migration in tumors: Current state and perspectives. Front. Oncol. 2023, 13, 1165676. [Google Scholar] [CrossRef]
- Bravo-Cordero, J.J.; Hodgson, K.M.; Condeelis, J.S. Directed cell invasion during metastasis. Curr. Opin. Cell Biol. 2012, 24, 277–283. [Google Scholar] [CrossRef]
- Hohmann, T.; Hohmann, U.; Kolbe, M.R.; Dahlmann, M.; Kobelt, D.; Stein, U.; Dehghani, F. MACC1 driven alterations in cellular biomechanics facilitate cell motility in glioblastoma. Cell Commun. Signal. 2020, 18, 85. [Google Scholar] [CrossRef]
- Eble, J.A.; Niland, S. The extracellular matrix in tumor progression and metastasis. Clin. Exp. Metastasis 2019, 36, 171–198. [Google Scholar] [CrossRef]
- Kobelt, D.; Perez-Hernandez, D.; Fleuter, C.; Dahlmann, M.; Zincke, F.; Smith, J.; Migotti, R.; Popp, O.; Burock, S.; Walther, W.; et al. The newly identified MEK1 tyrosine phosphorylation target MACC1 is druggable by approved MEK1 inhibitors to restrict colorectal cancer metastasis. Oncogene 2021, 40, 5286–5301. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, Y.; Cen, Y.; Qiu, X.; Li, J.; Jie, M.; Yang, S.; Qin, S. MACC1 promotes pancreatic cancer metastasis by interacting with the EMT regulator SNAI1. Cell Death Dis. 2022, 13, 923. [Google Scholar] [CrossRef]
- Kobelt, D.; Zhang, C.; Clayton-Lucey, I.A.; Glauben, R.; Voss, C.; Siegmund, B.; Stein, U. Pro-inflammatory TNF-α and IFN-γ promote tumor growth and metastasis via induction of MACC1. Front. Immunol. 2020, 11, 980. [Google Scholar] [CrossRef]
- Osaki, M.; Inaba, A.; Nishikawa, K.; Sugimoto, Y.; Shomori, K.; Inoue, T.; Oshimura, M.; Ito, H. Cysteine-rich protein 61 suppresses cell invasion via down-regulation of matrix metalloproteinase-7 expression in the human gastric carcinoma cell line MKN-45. Mol. Med. Rep. 2010, 3, 711–715. [Google Scholar] [CrossRef]
- Perbal, B. The concept of the CCN protein family revisited: A centralized coordination network. J. Cell Commun. Signal 2018, 12, 3–12. [Google Scholar] [CrossRef]
- Reid, S.E.; Kay, E.J.; Neilson, L.J.; Henze, A.T.; Serneels, J.; McGhee, E.J.; Dhayade, S.; Nixon, C.; Mackey, J.B.; Santi, A.; et al. Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. EMBO J. 2017, 36, 2373–2389. [Google Scholar] [CrossRef]
- Hisaoka-Nakashima, K.; Yokoe, T.; Watanabe, S.; Nakamura, Y.; Kajitani, N.; Okada-Tsuchioka, M.; Takebayashi, M.; Nakata, Y.; Morioka, N. Lysophosphatidic acid induces thrombospondin-1 production in primary cultured rat cortical astrocytes. J. Neurochem. 2021, 158, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.S.; Lindholm, P.F. Constitutive and inducible expression of invasion-related factors in PC-3 prostate cancer cells. J. Cancer Prev. 2015, 20, 121–128. [Google Scholar] [CrossRef]
Protein Name | Description | Fold Change |
---|---|---|
CCN1 | CCN family member 1 | 3.9 |
MACC1 | Metastasis-associated in colon cancer protein 1 | 2.8 |
THBS1 | Thrombospondin-1 | 2.5 |
DKK1 | Dickkopf-related protein 1 | 2.3 |
UPF2 | Regulator of nonsense transcripts 2 | 2.2 |
FOSL1 | Fos-related antigen 1 | 2.0 |
SEC22A | Vesicle-trafficking protein SEC22a | 2.0 |
LRCH4 | Leucine-rich repeat and calponin homology domain-containing protein 4 | 2.0 |
DMAC2 | Distal membrane-arm assembly complex protein 2 | 2.0 |
EFR3A | Protein EFR3 homolog A | 1.7 |
CELSR1 | Cadherin EGF LAG seven-pass G-type receptor 1 | 1.7 |
TMEM167A | Protein kish-A | 1.7 |
MAGT1 | Magnesium transporter protein 1 | 1.7 |
JUNB | Transcription factor jun-B | 1.6 |
ERMP1 | Endoplasmic reticulum metallopeptidase 1 | 1.5 |
OSTC | Oligosaccharyltransferase complex subunit OSTC | 1.5 |
LDLR | Low-density lipoprotein receptor | 1.5 |
KRR1 | KRR1 small subunit processome component homolog | 1.5 |
PWP1 | Periodic tryptophan protein 1 homolog | 1.5 |
CYB5R1 | NADH-cytochrome b5 reductase 1 | 1.5 |
Protein Name | Description | Fold Change |
---|---|---|
LPAR1 | Lysophosphatidic acid receptor 1 | 0.22 |
PTMS | Parathymosin | 0.24 |
TXNIP | Thioredoxin-interacting protein | 0.30 |
PGM3 | Phosphoacetylglucosamine mutase | 0.35 |
DYNLT3 | Dynein light chain Tctex-type 3 | 0.36 |
SENP1 | Sentrin-specific protease 1 | 0.36 |
VOPP1 | WW domain binding protein VOPP1 | 0.37 |
RASA1 | Ras GTPase-activating protein 1 | 0.41 |
PPID | Peptidyl-prolyl cis-trans isomerase D | 0.43 |
ILK | Integrin-linked protein kinase | 0.48 |
Protein Name | Protein Description | Fold Change |
---|---|---|
CCN1 | Cysteine rich angiogenic factor-61 | 3.25 |
DKK1 | Dickkopf-related protein 1 | 3.11 |
THBS1 | Thrombospondin-1 | 2.68 |
MAN1A2 | Alpha-mannosidase 2 | 2.01 |
MT-ND1 | NADH-ubiquinone oxidoreductase chain 1 | 1.86 |
SORT1 | Sortilin | 1.79 |
MACC1 | Metastasis-associated in colon cancer protein 1 | 1.75 |
NDC1 | Nucleoporin NDC1 | 1.74 |
TOR1B | Torsin-1B | 1.67 |
ALG5 | Dolichyl-phosphate beta-glucosyltransferase | 1.65 |
TWISTNB | DNA-directed RNA polymerase I subunit RPA43 | 1.64 |
ERN1 | Serine/threonine-protein kinase/endoribonuclease IRE1 | 1.61 |
FOSL1 | Fos-related antigen 1 | 1.58 |
OSBPL8 | Oxysterol-binding protein-related protein 8 | 1.54 |
VMA21 | Vacuolar ATPase assembly integral membrane protein VMA21 | 1.53 |
CCDC71L | Coiled-coil domain-containing protein 71L | 1.52 |
COL6A2 | Collagen alpha-2(VI) chain | 1.51 |
CDKN1A | BRCA2 and CDKN1A-interacting protein | 1.50 |
HIP1R | Huntingtin-interacting protein 1-related protein | 1.50 |
TMEM254 | Phospholipid transfer protein C2CD2L | 1.47 |
Protein Name | Description | Fold Change |
---|---|---|
TXNIP | Thioredoxin-interacting protein | 0.29 |
LPAR1 | Lysophosphatidic acid receptor 1 | 0.31 |
FAM92B | CBY1-interacting BAR domain-containing protein 2 | 0.34 |
HSF1 | Heat shock factor protein 1 | 0.37 |
ALAS1 | 5-aminolevulinate synthase, nonspecific, mitochondrial | 0.38 |
GTPBP1 | GTP-binding protein 1 | 0.39 |
PRKAG1 | 5′-AMP-activated protein kinase subunit gamma-1 | 0.40 |
SDC1 | Syndecan-1 | 0.41 |
KYNU | Kynureninase | 0.41 |
HMBS | Porphobilinogen deaminase | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balijepalli, P.; Yue, G.; Prasad, B.; Meier, K.E. Global Proteomics Analysis of Lysophosphatidic Acid Signaling in PC-3 Human Prostate Cancer Cells: Role of CCN1. Int. J. Mol. Sci. 2024, 25, 2067. https://doi.org/10.3390/ijms25042067
Balijepalli P, Yue G, Prasad B, Meier KE. Global Proteomics Analysis of Lysophosphatidic Acid Signaling in PC-3 Human Prostate Cancer Cells: Role of CCN1. International Journal of Molecular Sciences. 2024; 25(4):2067. https://doi.org/10.3390/ijms25042067
Chicago/Turabian StyleBalijepalli, Pravita, Guihua Yue, Bhagwat Prasad, and Kathryn E. Meier. 2024. "Global Proteomics Analysis of Lysophosphatidic Acid Signaling in PC-3 Human Prostate Cancer Cells: Role of CCN1" International Journal of Molecular Sciences 25, no. 4: 2067. https://doi.org/10.3390/ijms25042067
APA StyleBalijepalli, P., Yue, G., Prasad, B., & Meier, K. E. (2024). Global Proteomics Analysis of Lysophosphatidic Acid Signaling in PC-3 Human Prostate Cancer Cells: Role of CCN1. International Journal of Molecular Sciences, 25(4), 2067. https://doi.org/10.3390/ijms25042067