A Novel Gene, OsRLCK191, Involved in Culm Strength Improving Lodging Resistance in Rice
Abstract
:1. Introduction
2. Results
2.1. Production of OsRLCK191 Knockdown Mutants Using CRISPR/Cas9 Method
2.2. OsRLCK191-Induced Mutations Involved in Culm Strength
2.3. Investigation of Agronomic Traits
2.4. RNA-seq Analysis of OsRLCK191 Mutant in Shoot Apex
3. Discussion
4. Materials and Methods
4.1. Plant Cultivation
4.2. Measurement of Lodging Resistance Traits
4.3. Construction of CRISPR/Cas9 Vector System
4.4. Microscopical Observation of Internode Transverse Section
4.5. RNA-seq
4.6. Differential Expression Analysis and Functional Enrichment
4.7. Assay of Quantitative Real-Time PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Wang, R.; Wang, Y.; Zhang, L.; Zhang, L.; Xu, Y.; Yao, S. Short and Solid Culm/RFL/APO2 for Culm Development in Rice. Plant J. 2017, 91, 85–96. [Google Scholar] [CrossRef] [PubMed]
- López-cristoffanini, C.; Serrat, X.; Jáuregui, O.; Nogués, S.; López-carbonell, M. Phytohormone Profiling Method for Rice: Effects of GA20ox Mutation on the Gibberellin Content of Japonica Rice Varieties. Front. Plant Sci. 2019, 10, 733. [Google Scholar] [CrossRef] [PubMed]
- Spielmeyer, W.; Ellis, M.H.; Chandler, P.M. Semidwarf (sd-1), “Green Revolution” Rice, Contains a Defective Gibberellin 20-Oxidase Gene. Proc. Natl. Acad. Sci. USA 2002, 99, 9043–9048. [Google Scholar] [CrossRef] [PubMed]
- Okuno, A.; Hirano, K.; Asano, K.; Takase, W.; Masuda, R.; Morinaka, Y.; Ueguchi-Tanaka, M.; Kitano, H.; Matsuoka, M. New Approach to Increasing Rice Lodging Resistance and Biomass Yield through the Use of High Gibberellin Producing Varieties. PLoS ONE 2014, 9, e86870. [Google Scholar] [CrossRef]
- Sha, H.; Liu, H.; Zhao, G.; Han, Z.; Chang, H.; Wang, J.; Zheng, H.; Zhang, J.; Yu, Y.; Liu, Y.; et al. Elite Sd1 Alleles in Japonica Rice and Their Breeding Applications in Northeast China. Crop J. 2022, 10, 224–233. [Google Scholar] [CrossRef]
- Tsugawa, S.; Shima, H.; Ishimoto, Y.; Ishikawa, K. Thickness-Stiffness Trade-off Improves Lodging Resistance in Rice. Sci. Rep. 2023, 13, 10828. [Google Scholar] [CrossRef]
- Hirano, K.; Ordonio, R.L.; Matsuoka, M. Engineering the Lodging Resistance Mechanism of Post-Green Revolution Rice to Meet Future Demands. Proc. Japan Acad. Ser. B Phys. Biol. Sci. 2017, 93, 220–233. [Google Scholar] [CrossRef]
- Chigira, K.; Kojima, N.; Yamasaki, M.; Yano, K.; Adachi, S.; Nomura, T.; Jiang, M.; Katsura, K.; Ookawa, T. Landraces of temperate japonica Rice Have Superior Alleles for Improving Culm Strength Associated with Lodging Resistance. Sci. Rep. 2020, 10, 19855. [Google Scholar] [CrossRef]
- Badri, J.; Padmashree, R.; Anilkumar, C.; Mamidi, A.; Isetty, S.R.; Swamy, A.V.S.R.; Sundaram, R.M. Genome-Wide Association Studies for a Comprehensive Understanding of the Genetic Architecture of Culm Strength and Yield Traits in Rice. Front. Plant Sci. 2023, 14, 1298083. [Google Scholar] [CrossRef]
- Sowadan, O.; Xu, S.; Li, Y.; Muleke, E.M.; Sitoe, H.M.; Dang, X.; Jiang, J.; Dong, H.; Hong, D. Genome-Wide Association Analysis Unravels New Quantitative Trait Loci (QTLs) for Eight Lodging Resistance Constituent Traits in Rice (Oryza sativa L.). Genes 2024, 15, 105. [Google Scholar] [CrossRef]
- Kashiwagi, T. Identification of Quantitative Trait Loci for Resistance to Bending-Type Lodging in Rice (Oryza sativa L.). Euphytica 2014, 198, 353–367. [Google Scholar] [CrossRef]
- Zhao, D.D.; Son, J.H.; Lee, G.S.; Kim, K.M. Screening for a Novel Gene, OsPSLSq6, Using QTL Analysis for Lodging Resistance in Rice. Agronomy 2021, 11, 334. [Google Scholar] [CrossRef]
- Ishimaru, K.; Togawa, E.; Ookawa, T.; Kashiwagi, T.; Madoka, Y.; Hirotsu, N. New Target for Rice Lodging Resistance and Its Effect in a Typhoon. Planta 2008, 227, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, T.; Ishimaru, K. Identification and Functional Analysis of a Locus for Improvement of Lodging Resistance in Rice. Plant Physiol. 2004, 134, 676–683. [Google Scholar] [CrossRef]
- Ookawa, T.; Hobo, T.; Yano, M.; Murata, K.; Ando, T.; Miura, H.; Asano, K.; Ochiai, Y.; Ikeda, M.; Nishitani, R.; et al. New Approach for Rice Improvement Using a Pleiotropic QTL Gene for Lodging Resistance and Yield. Nat. Commun. 2010, 1, 132. [Google Scholar] [CrossRef]
- Ookawa, T.; Nomura, T.; Kamahora, E.; Jiang, M.; Ochiai, Y.; Samadi, A.F.; Yamaguchi, T.; Adachi, S.; Katsura, K.; Motobayashi, T. Pyramiding of Multiple Strong-Culm Genes Originating from indica and Tropical japonica to the Temperate japonica Rice. Sci. Rep. 2022, 12, 15400. [Google Scholar] [CrossRef]
- Samadi, A.F.; Suzuki, H.; Ueda, T.; Yamamoto, T.; Adachi, S.; Ookawa, T. Identification of Quantitative Trait Loci for Breaking and Bending Types Lodging Resistance in Rice, Using Recombinant Inbred Lines Derived from Koshihikari and a Strong Culm Variety, Leaf Star. Plant Growth Regul. 2019, 89, 83–98. [Google Scholar] [CrossRef]
- Yano, K.; Ookawa, T.; Aya, K.; Ochiai, Y.; Hirasawa, T.; Ebitani, T.; Takarada, T.; Yano, M.; Yamamoto, T.; Fukuoka, S.; et al. Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism. Mol. Plant. 2015, 8, 303–314. [Google Scholar] [CrossRef]
- Yang, X.; Lai, Y.; Wang, L.; Zhao, M.; Wang, J.; Li, M.; Chi, L.; Lv, G.; Liu, Y.; Cui, Z.; et al. Isolation of a Novel QTL, qSCM4, Associated with Strong Culm Affects Lodging Resistance and Panicle Branch Number in Rice. Int. J. Mol. Sci. 2023, 24, 812. [Google Scholar] [CrossRef]
- Rashid, M.A.R.; Zhao, Y.; Azeem, F.; Zhao, Y.; Ahmed, H.G.M.D.; Atif, R.M.; Pan, Y.; Zhu, X.; Liang, Y.; Zhang, H.; et al. Unveiling the Genetic Architecture for Lodging Resistance in Rice (Oryza sativa. L) by Genome-Wide Association Analyses. Front. Genet. 2022, 13, 960007. [Google Scholar] [CrossRef]
- Zhai, L.; Li, D.; Ren, N.; Zhu, S.; Wang, D.; Shen, C.; Chen, K.; Xu, J. Identification of Advantaged Genes for Lodging Resistance-Related Traits in the Temperate Geng Group (Oryza sativa L.) Using a Genome-Wide Association Study. Agronomy 2023, 13, 2711. [Google Scholar] [CrossRef]
- Vij, S.; Giri, J.; Dansana, P.K.; Kapoor, S.; Tyagi, A.K. The Receptor-like Cytoplasmic Kinase (OsRLCK) Gene Family in Rice: Organization, Phylogenetic Relationship, and Expression during Development and Stress. Mol. Plant 2008, 1, 732–750. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Ma, W.; Liu, C.; Zhang, C.; Wu, S.; Chen, M.; Liu, K.; Cai, F.; Lin, F. Evolution and Expression Characteristics of Receptor-like Cytoplasmic Protein Kinases in Maize, Rice and Arabidopsis. Int. J. Mol. Sci. 2018, 19, 3680. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Wu, S.; Gao, X.; Zhang, Y.; Shan, L.; He, P. A Receptor-like Cytoplasmic Kinase, BIK1, Associates with a Flagellin Receptor Complex to Initiate Plant Innate Immunity. Proc. Natl. Acad. Sci. USA 2010, 107, 496–501. [Google Scholar] [CrossRef]
- Reyes Zamora, O.; Troncoso-Rojas, R.; Báez-Flores, M.E.; Tiznado-Hernández, M.E.; Rascón-Chu, A. Signaling of Plant Defense Mediated by Receptor-like Kinases, Receptor-like Cytoplasmic Protein Kinases and MAPKs Triggered by Fungal Chitin in Horticultural Crops. Horticulturae 2024, 10, 361. [Google Scholar] [CrossRef]
- Wang, J.; Wu, G.; Peng, C.; Zhou, X.; Li, W.; He, M.; Wang, J.; Yin, J.; Yuan, C.; Ma, W.; et al. The Receptor-Like Cytoplasmic Kinase OsRLCK102 Regulates XA21-Mediated Immunity and Plant Development in Rice. Plant Mol. Biol. Rep. 2016, 34, 628–637. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, J. Regulation of Plant Responses to Biotic and Abiotic Stress by Receptor-like Cytoplasmic Kinases. Stress Biol. 2022, 2, 25. [Google Scholar] [CrossRef]
- Li, Z.; Ao, Y.; Feng, D.; Liu, J.; Wang, J.; Wang, H.-B.; Liu, B. OsRLCK 57, OsRLCK107 and OsRLCK118 Positively Regulate Chitin- and PGN-Induced Immunity in Rice. Rice 2017, 10, 6. [Google Scholar] [CrossRef]
- Sade, N.; Weng, F.; Tajima, H.; Zeron, Y.; Zhang, L.; Wilhelmi, M.D.M.R.; Day, G.; Peleg, Z.; Blumwald, E. A Cytoplasmic Receptor-like Kinase Contributes to Salinity Tolerance. Plants 2020, 9, 1383. [Google Scholar] [CrossRef]
- Tian, Y.; Zeng, H.; Wu, J.C.; Dai, G.X.; Zheng, H.P.; Liu, C.; Wang, Y.; Zhou, Z.K.; Tang, D.Y.; Deng, G.F.; et al. The Zinc Finger Protein DHHC09 S-Acylates the Kinase STRK1 to Regulate H2O2 Homeostasis and Promote Salt Tolerance in Rice. Plant Cell 2024, 36, 919–940. [Google Scholar] [CrossRef]
- Giri, J.; Vij, S.; Dansana, P.K.; Tyagi, A.K. Rice A20/AN1 Zinc-Finger Containing Stress-Associated Proteins (SAP1/11) and a Receptor-like Cytoplasmic Kinase (OsRLCK253) Interact via A20 Zinc-Finger and Confer Abiotic Stress Tolerance in Transgenic Arabidopsis Plants. New Phytol. 2011, 191, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Z.; Zhao, X.; Liu, L.; Tang, Q.; Fu, J.; Tang, X.; Yang, R.; Lin, J.; Liu, X.; et al. Receptor-Like Cytoplasmic Kinase STK Confers Salt Tolerance in Rice. Rice 2023, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.B.; Liu, C.; Tang, D.Y.; Yan, L.; Wang, D.; Yang, Y.Z.; Gui, J.S.; Zhao, X.Y.; Li, L.G.; Tang, X.D.; et al. The Receptor-like Cytoplasmic Kinase STRK1 Phosphorylates and Activates CatC, Thereby Regulating H2O2 Homeostasis and Improving Salt Tolerance in Rice. Plant Cell 2018, 30, 1100–1118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, J.; Peng, C.; Zhu, X.; Yin, J.; Li, W.; He, M.; Wang, J.; Chern, M.; Yuan, C.; et al. Four Receptor-like Cytoplasmic Kinases Regulate Development and Immunity in Rice. Plant Cell Environ. 2016, 39, 1381–1392. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Wang, Y.; Gao, Y.; Xu, R.; Ma, J.; Xu, Z.; Shang-Guan, K.; Zhang, B.; Zhou, Y. The RLCK–VND6 Module Coordinates Secondary Cell Wall Formation and Adaptive Growth in Rice. Mol. Plant 2023, 16, 999–1015. [Google Scholar] [CrossRef]
- Yi, X.; Du, Z.; Su, Z. PlantGSEA: A Gene Set Enrichment Analysis Toolkit for Plant Community. Nucleic Acids Res. 2013, 41, 98–103. [Google Scholar] [CrossRef]
- Peng, H.; Wang, K.; Chen, Z.; Cao, Y.; Gao, Q.; Li, Y.; Li, X.; Lu, H.; Du, H.; Lu, M.; et al. MBKbase for Rice: An Integrated Omics Knowledgebase for Molecular Breeding in Rice. Nucleic Acids Res. 2020, 48, D1085–D1092. [Google Scholar] [CrossRef]
- Rong, C.; Liu, Y.; Chang, Z.; Liu, Z.; Ding, Y.; Ding, C. Cytokinin Oxidase/Dehydrogenase Family Genes Exhibit Functional Divergence and Overlap in Rice Growth and Development, Especially in Control of Tillering. J. Exp. Bot. 2022, 73, 3552–3568. [Google Scholar] [CrossRef]
- Duan, J.; Yu, H.; Yuan, K.; Liao, Z.; Meng, X.; Jing, Y.; Liu, G.; Chu, J.; Li, J. Strigolactone Promotes Cytokinin Degradation through Transcriptional Activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in Rice. Proc. Natl. Acad. Sci. USA 2019, 116, 14319–14324. [Google Scholar] [CrossRef]
- Rao, Y.C.; Yang, Y.L.; Xin, D.D.; Li, X.J.; Zhai, K.E.; Ma, B.J.; Pan, J.W.; Qian, Q.; Zeng, D.L. Characterization and Cloning of a brittle culm mutant (bc88) in Rice (Oryza sativa L.). Chin. Sci. Bull. 2013, 58, 3000–3006. [Google Scholar] [CrossRef]
- Tanaka, K.; Murata, K.; Yamazaki, M.; Onosato, K.; Miyao, A.; Hirochika, H. Three Distinct Rice Cellulose Synthase Catalytic Subunit Genes Required for Cellulose Synthesis in the Secondary Wall. Plant Physiol. 2003, 133, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Qin, Y.; Fang, J.; Yuan, S.; Peng, L.; Zhao, J.; Li, X. A Missense Mutation in the Zinc Finger Domain of OsCESA7 Deleteriously Affects Cellulose Biosynthesis and Plant Growth in Rice. PLoS ONE 2016, 11, e0153993. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.; Liao, S.; Li, J.; Li, H.; Liu, X.; Yang, J.; Wei, P. Increasing Fidelity and Efficiency by Modifying Cytidine Base-Editing Systems in Rice. Crop J. 2020, 8, 396–402. [Google Scholar] [CrossRef]
- Cheng, S.; Chen, P.; Su, Z.; Ma, L.; Hao, P.; Zhang, J.; Ma, Q.; Liu, G.; Liu, J.; Wang, H.; et al. High-Resolution Temporal Dynamic Transcriptome Landscape Reveals a GhCAL-Mediated Flowering Regulatory Pathway in Cotton (Gossypium hirsutum L.). Plant Biotechnol. J. 2021, 19, 153–166. [Google Scholar] [CrossRef]
- Parrish, N.; Hormozdiari, F.; Eskin, E. Assembly of Non-Unique Insertion Content Using Next-Generation Sequencing. BMC Bioinform. 2011, 12, S3. [Google Scholar] [CrossRef]
- Wang, L.; Feng, Z.; Wang, X.; Wang, X.; Zhang, X. DEGseq: An R Package for Identifying Differentially Expressed Genes from RNA-Seq Data. Bioinformatics 2010, 26, 136–138. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.; Sha, H.; Gao, S.; Liu, Q.; Liu, Y.; Ma, C.; Shi, B.; Nie, S. A Novel Gene, OsRLCK191, Involved in Culm Strength Improving Lodging Resistance in Rice. Int. J. Mol. Sci. 2024, 25, 12382. https://doi.org/10.3390/ijms252212382
Chang H, Sha H, Gao S, Liu Q, Liu Y, Ma C, Shi B, Nie S. A Novel Gene, OsRLCK191, Involved in Culm Strength Improving Lodging Resistance in Rice. International Journal of Molecular Sciences. 2024; 25(22):12382. https://doi.org/10.3390/ijms252212382
Chicago/Turabian StyleChang, Huilin, Hanjing Sha, Shiwei Gao, Qing Liu, Yuqiang Liu, Cheng Ma, Bowen Shi, and Shoujun Nie. 2024. "A Novel Gene, OsRLCK191, Involved in Culm Strength Improving Lodging Resistance in Rice" International Journal of Molecular Sciences 25, no. 22: 12382. https://doi.org/10.3390/ijms252212382
APA StyleChang, H., Sha, H., Gao, S., Liu, Q., Liu, Y., Ma, C., Shi, B., & Nie, S. (2024). A Novel Gene, OsRLCK191, Involved in Culm Strength Improving Lodging Resistance in Rice. International Journal of Molecular Sciences, 25(22), 12382. https://doi.org/10.3390/ijms252212382