Utilising Hyperspectral Autofluorescence Imaging in the Objective Assessment of Disease State and Pain in Patients with Rheumatoid Arthritis
Abstract
1. Introduction
2. Results
2.1. Patient Demographic
2.2. Histological Assessment of Inflammation Within the ST
2.3. Differentiation of RA Disease States and Pain States Within Each from Synovial Tissue Cells Only
2.4. Differentiation of RA Disease States and Pain States Within Each from Synovial Tissue Fibres Only
2.5. Deep Learning Encoder Algorithm for the Identification of Inflammatory Signatures
2.6. Collagen II Staining of the ST to Compare Relative Abundance Levels of Collagen from HAI
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Study Design
4.3. Histological Assessment of Synovial Tissue (ST)
4.4. CD68 Staining
4.5. Type II Collagen Staining
4.6. Hyperspectral Autofluorescence Imaging and Bright-Field Imaging (HAI)
4.7. HAI Data Analysis
4.8. Unmixing of Endogenous Fluorophores
4.9. Analysis of Cellular and Fibre Features and Classification
4.10. Deep Learning Autoencoder Algorithm to Facilitate Imaging of Group Signatures
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mikuls, T.R.; Saag, K.G. Comorbidity in Rheumatoid Arthritis. Rheum. Dis. Clin. N. Am. 2001, 27, 283–303. [Google Scholar] [CrossRef] [PubMed]
- Schett, G. Erosive arthritis. Arthritis Res. Ther. 2007, 9, S2. [Google Scholar] [CrossRef] [PubMed]
- Boyden, S.D.; Hossain, I.N.; Wohlfahrt, A.; Lee, Y.C. Non-inflammatory Causes of Pain in Patients with Rheumatoid Arthritis. Curr. Rheumatol. Rep. 2016, 18, 30. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.; Manger, B.; Alvaro-Gracia, J.; Johnstone, R.; Gomez-Reino, J.; Eberhardt, E.; Wolfe, F.; Schwartzman, S.; Furfaro, N.; Kavanaugh, A. Patient Perceptions concerning Pain Management in the Treatment of Rheumatoid Arthritis. J. Int. Med. Res. 2010, 38, 1213–1224. [Google Scholar] [CrossRef]
- Santos, E.J.F.; Duarte, C.; da Silva, J.A.P.; Ferreira, R.J.O. The impact of fatigue in rheumatoid arthritis and the challenges of its assessment. Rheumatology 2019, 58, v3–v9. [Google Scholar] [CrossRef] [PubMed]
- Prevoo, M.L.; van’t Hof, M.; Kuper, H.H.; van Leeuwen, M.A.; van de Putte, L.B.; van Riel, P.L. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995, 38, 44–48. [Google Scholar] [CrossRef]
- Lee, Y.C.; Cui, J.; Lu, B.; Frits, M.L.; Iannaccone, C.K.; Shadick, N.A.; Weinblatt, M.; Solomon, D.H. Pain persists in DAS28 rheumatoid arthritis remission but not in ACR/EULAR remission: A longitudinal observational study. Arthritis Res. Ther. 2011, 13, R83. [Google Scholar] [CrossRef]
- French, T.; Hewlett, S.; Kirwan, J.; Sanderson, T. Different wording of the Patient Global Visual Analogue Scale (PG-VAS) affects rheumatoid arthritis patients’ scoring and the overall Disease Activity Score (DAS28): A cross-sectional study. Muscoskeletal Care 2013, 11, 229–237. [Google Scholar] [CrossRef]
- Hayashi, K.; Ikemoto, T.; Ueno, T.; Arai, Y.C.; Shimo, K.; Nishihara, M.; Suzuki, S.; Ushida, T. Regional differences of repeatability on visual analogue scale with experimental mechanical pain stimuli. Neurosci. Lett. 2015, 585, 67–71. [Google Scholar] [CrossRef]
- Monici, M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol. Annu. Rev. 2005, 11, 227–256. [Google Scholar]
- Gosnell, M.E.; Anwer, A.G.; Cassano, J.C.; Sue, C.M.; Goldys, E.M. Functional hyperspectral imaging captures subtle details of cell metabolism in olfactory neurosphere cells, disease-specific models of neurodegenerative disorders. Biochim. Et Biophys. Acta (BBA) Mol. Cell Res. 2016, 1863, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Mahbub, S.B.; Guller, A.; Campbell, J.M.; Anwer, A.G.; Gosnell, M.E.; Vesey, G.; Goldys, E.M. Non-Invasive Monitoring of Functional State of Articular Cartilage Tissue with Label-Free Unsupervised Hyperspectral Imaging. Sci. Rep. 2019, 9, 4398. [Google Scholar] [CrossRef] [PubMed]
- Gosnell, M.E.; Staikopoulos, V.; Anwer, A.G.; Mahbub, S.B.; Hutchinson, M.R.; Mustafa, S.; Goldys, E.M. Autofluorescent imprint of chronic constriction nerve injury identified by deep learning. Neurobiol. Dis. 2021, 160, 105528. [Google Scholar] [CrossRef] [PubMed]
- Esser, E.L.; Zimmermann, J.A.; Storp, J.J.; Eter, N.; Mihailovic, N. Retinal microvascular density analysis in patients with rheumatoid arthritis treated with hydroxychloroquine. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 261, 1433–1442. [Google Scholar] [CrossRef]
- Lin, Y.; Xiao, S.; Yao, W.; Lv, Z.; Tang, Y.; Zhang, Y.; Chen, L. Molecular photoacoustic imaging for early diagnosis and treatment monitoring of rheumatoid arthritis in a mouse model. Am. J. Transl. Res. 2021, 13, 8873–8884. [Google Scholar]
- Guo, H.; Wang, Q.; Qi, W.; Sun, X.; Ke, B.; Xi, L. Assessing the development and treatment of rheumatoid arthritis using multiparametric photoacoustic and ultrasound imaging. J. Biophotonics 2019, 12, e201900127. [Google Scholar] [CrossRef]
- Wang, Z.; Tong, Z.; Chen, H.; Nie, G.; Hu, J.; Liu, W.; Wang, E.; Yuan, B.; Wang, Z.; Hu, J. Photoacoustic/ultrasonic dual-mode imaging for monitoring angiogenesis and synovial erosion in rheumatoid arthritis. Photoacoustics 2023, 29, 100458. [Google Scholar] [CrossRef]
- Muselimyan, N.; Swift, L.M.; Asfour, H.; Chahbazian, T.; Mazhari, R.; Mercader, M.A.; Sarvazyan, N.A. Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach. PLoS ONE 2016, 11, e0167760. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Bresnihan, B.; Pontifex, E.; Thurlings, R.M.; Vinkenoog, M.; El-Gabalawy, H.; Fearon, U.; Fitzgerald, O.; Gerlag, D.M.; Rooney, T.; van de Sande, M.G.; et al. Synovial Tissue Sublining CD68 Expression Is a Biomarker of Therapeutic Response in Rheumatoid Arthritis Clinical Trials: Consistency Across Centers. J. Rheumatol. 2009, 36, 1800. [Google Scholar] [CrossRef]
- Tak, P.P.; Smeets, T.J.M.; Daha, M.R.; Kluin, P.M.; Meijers, K.A.E.; Brand, R.; Meinders, A.E.; Breedveld, F.C. Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in relation to local disease activity. Arthritis Rheum. 1997, 40, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Gerlag, D.M.; Haringman, J.J.; Smeets, T.J.M.; Zwinderman, A.H.; Kraan, M.C.; Laud, P.J.; Morgan, S.; Nash, A.F.P.; Tak, P.P. Effects of oral prednisolone on biomarkers in synovial tissue and clinical improvement in rheumatoid arthritis. Arthritis Rheum. 2004, 50, 3783–3791. [Google Scholar] [CrossRef] [PubMed]
- Pope, J.E.; Choy, E.H. C-reactive protein and implications in rheumatoid arthritis and associated comorbidities. Semin. Arthritis Rheum. 2021, 51, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Bartok, B.; Firestein, G.S. Fibroblast-like synoviocytes: Key effector cells in rheumatoid arthritis. Immunol. Rev. 2020, 233, 233–255. [Google Scholar] [CrossRef]
- Lee, H.R.; Yoo, S.J.; Jinhyun, K.; Yoo, I.S.; Park, C.K.; Kang, S.W. The effect of nicotinamide adenine dinucleotide phosphate oxidase 4 on migration and invasion of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res. Ther. 2020, 22, 116. [Google Scholar] [CrossRef]
- Zhuo, Q.; Yang, W.; Chen, J.; Wang, Y. Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol. 2012, 8, 729–737. [Google Scholar] [CrossRef]
- Falconer, J.; Murphy, A.; Young, S.; Clark, A.; Tiziani, S.; Guma, M.; Buckley, C. Synovial cell metabolism and chronic inflammation in Rheumatoid Arthritis. Arthritis Rheumatol. 2018, 70, 984–999. [Google Scholar] [CrossRef]
- Mulherin, D.M.; Thurnham, D.I.; Situnayake, R.D. Glutathione reductase activity, riboflavin status, and disease activity in rheumatoid arthritis. Ann. Rheum. Dis. 1996, 55, 837–840. [Google Scholar] [CrossRef]
- Menezes, R.R.; Godin, A.M.; Rodrigues, F.F.; Coura, G.M.; Melo, I.S.; Brito, A.M.S.; Bertollo, C.M.; Paulino, T.P.; Rachid, M.A.; Machado, R.R.; et al. Thiamine and riboflavin inhibit production of cytokines and increase the anti-inflammatory activity of a corticosteroid in a chronic model of inflammation induced by complete Freund’s adjuvant. Pharmacol. Rep. 2017, 69, 1036–1043. [Google Scholar] [CrossRef]
- Handy, D.E.; Loscalzo, J. Redox regulation of mitochondrial function. Antioxid. Redox Signal. 2012, 16, 1323–1367. [Google Scholar] [CrossRef]
- Ahn, J.K.; Kim, S.; Hwang, J.; Kim, J.; Kim, K.H.; Cha, H.-S. GC/TOF-MS-based metabolomic profiling in cultured fibroblast-like synoviocytes from rheumatoid arthritis. Jt. Bone Spine 2016, 83, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, S.R.; Filer, A.; Buckley, C.; Raza, K.; Young, S. THU0098 The Metabolic Profile of Synovial Fibroblasts—Implications for Disease Processes in Early Inflammatory Arthritis. Ann. Rheum. Dis. 2013, 72 (Suppl. S3), A196. [Google Scholar] [CrossRef]
- Sanchez-Lopez, E.; Cheng, A.; Guma, M.A.-O. Can Metabolic Pathways Be Therapeutic Targets in Rheumatoid Arthritis? J. Clin. Med. 2019, 8, 753. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.D.; Chandran, G.; Youssef, P.P.; Darby, T.; Ahern, M.J. Day case knee arthroscopy under regional anaesthesia, performed by rheumatologists. Aust. N. Z. J. Med. 1996, 26, 108–109. [Google Scholar] [CrossRef]
- Fransen, J.; van Riel, P.L.C.M. The Disease Activity Score and the EULAR response criteria. Clin. Exp. Rheumatol. 2005, 23 (Suppl. S39), S93–S99. [Google Scholar] [CrossRef]
- Campbell, J.M.; Mahbub, S.; Habibalahi, A.; Paton, S.; Gronthos, S.; Goldys, E. Ageing human bone marrow mesenchymal stem cells have depleted NAD(P)H and distinct multispectral autofluorescence. GeroScience 2021, 43, 859–868. [Google Scholar] [CrossRef]
- Gosnell, M.E.; Anwer, A.G.; Mahbub, S.B.; Menon Perinchery, S.; Inglis, D.W.; Adhikary, P.P.; Jazayeri, J.A.; Cahill, M.A.; Saad, S.; Pollock, C.A.; et al. Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features. Sci. Rep. 2016, 6, 23453. [Google Scholar] [CrossRef]
- Mahbub, S.B.; Plöschner, M.; Gosnell, M.E.; Anwer, A.G.; Goldys, E.M. Statistically strong label-free quantitative identification of native fluorophores in a biological sample. Sci. Rep. 2017, 7, 15792. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Mahbub, S.B.; Campbell, J.M.; Tan, T.C.Y.; Dunning, K.R.; Habibalahi, A.; Bertoldo, M.; Goss, D.; Wu, L.; Goldys, E.M. Label-free multispectral monitoring of functional state: From embryos to human articular cartilage tissue. In Label-Free Biomedical Imaging and Sensing (LBIS) 2020; Shaked, N.T., Hayden, O., Eds.; SPIE, International Society for Optics and Photonics: Bellingham, WA, USA, 2020; Volume 11251, p. 112510H. [Google Scholar] [CrossRef]
- Mahbub, S.B.; Gosnell, M.E.; Anwer, A.G.; Goldys, E.M. Label-free unsupervised hyperspectral analysis for regenerative treatments on various cartilage layers. In Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVI; Farkas, D.L., Nicolau, D.V., Leif, R.C., Eds.; SPIE, International Society for Optics and Photonics: San Francisco, CA, USA, 2018; p. 104970I. [Google Scholar] [CrossRef]
- Cao, R.; Wallrabe, H.; Siller, K.; Rehman Alam, S.; Periasamy, A.A.-O.X. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H. Cytom. A 2019, 95, 110–121. [Google Scholar] [CrossRef]
- Skala, M.C.; Riching, K.M.; Gendron-Fitzpatrick, A.; Eickhoff, J.; Eliceiri, K.W.; White, J.G.; Ramanujam, N. in vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl. Acad. Sci. USA 2007, 104, 19494. [Google Scholar] [CrossRef] [PubMed]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995; 188p. [Google Scholar]
- Mahbub, S.B.; Tomczyk, J.; Goldys, E.M. GUI_Preprocess Version 3.12 2020. Github. Available online: https://zenodo.org/records/4146738 (accessed on 1 September 2024).
- Bengio, Y. Learning Deep Architectures for AI; Now Publishers Inc.: Boston, MA, USA, 2009. [Google Scholar]
- Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lees, F.; Mahbub, S.B.; Gosnell, M.E.; Campbell, J.M.; Weedon, H.; Habibalahi, A.; Goldys, E.M.; Wechalekar, M.D.; Hutchinson, M.R.; Crotti, T.N. Utilising Hyperspectral Autofluorescence Imaging in the Objective Assessment of Disease State and Pain in Patients with Rheumatoid Arthritis. Int. J. Mol. Sci. 2024, 25, 11996. https://doi.org/10.3390/ijms252211996
Lees F, Mahbub SB, Gosnell ME, Campbell JM, Weedon H, Habibalahi A, Goldys EM, Wechalekar MD, Hutchinson MR, Crotti TN. Utilising Hyperspectral Autofluorescence Imaging in the Objective Assessment of Disease State and Pain in Patients with Rheumatoid Arthritis. International Journal of Molecular Sciences. 2024; 25(22):11996. https://doi.org/10.3390/ijms252211996
Chicago/Turabian StyleLees, Florence, Saabah B. Mahbub, Martin E. Gosnell, Jared M. Campbell, Helen Weedon, Abbas Habibalahi, Ewa M. Goldys, Mihir D. Wechalekar, Mark R. Hutchinson, and Tania N. Crotti. 2024. "Utilising Hyperspectral Autofluorescence Imaging in the Objective Assessment of Disease State and Pain in Patients with Rheumatoid Arthritis" International Journal of Molecular Sciences 25, no. 22: 11996. https://doi.org/10.3390/ijms252211996
APA StyleLees, F., Mahbub, S. B., Gosnell, M. E., Campbell, J. M., Weedon, H., Habibalahi, A., Goldys, E. M., Wechalekar, M. D., Hutchinson, M. R., & Crotti, T. N. (2024). Utilising Hyperspectral Autofluorescence Imaging in the Objective Assessment of Disease State and Pain in Patients with Rheumatoid Arthritis. International Journal of Molecular Sciences, 25(22), 11996. https://doi.org/10.3390/ijms252211996